Docking, Scoring, and Virtual Screening in Drug Discovery
Francesca Spyrakis
Department of Drug Science and Technology, University of Turin, Turin, Italy
Search for more papers by this authorAurijit Sarkar
Fred Wilson School of Pharmacy, High Point University, High Point, NC, USA
Search for more papers by this authorGlen E. Kellogg
Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, USA
Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, USA
Search for more papers by this authorFrancesca Spyrakis
Department of Drug Science and Technology, University of Turin, Turin, Italy
Search for more papers by this authorAurijit Sarkar
Fred Wilson School of Pharmacy, High Point University, High Point, NC, USA
Search for more papers by this authorGlen E. Kellogg
Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, USA
Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, USA
Search for more papers by this authorAbstract
Since its introduction about four decades ago, docking and scoring are now the very heart of structure-based drug design. The past 10–20 years have seen a plethora of docking and scoring tools successfully integrated into drug discovery pipelines. Interestingly, while artificial intelligence is now receiving significant attention in the computational modeling arena, docking and scoring have long utilized these techniques. This comprehensive summary highlights some of the most significant achievements of docking and scoring, reviews the current status, provides descriptions of many of the tools available, comments on some of the outstanding challenges facing the paradigm, and offers perspectives and advice on best practices for users. While significant development is still needed in docking of flexible molecules and accurate Gibb's free energy predictions, docking and scoring are very useful when handled by experienced practitioners, but less so if treated as a “black box.” Lastly, we present a hypothetical case so beginners may appreciate the nuances of setting up a docking study. Focus in docking is now shifting toward parallel applications, i.e. protein–protein, protein–oligosaccharide, protein–DNA, or protein–RNA docking and polypharmacology. In summary, this article is intended to elucidate the nuances of the subject, while providing guidelines for practical implementation of effective workflows in drug discovery and structural biology.
References
- 1Hawkins, P.C.D., Warren, G.L., Skillman, A.G., and Nicholls, A. (2008). J. Comput. Aided Mol. Des. 22 (3–4): 179–190. doi: 10.1007/s10822-007-9166-3.
- 2Ramsbottom, K.A., Carr, D.F., Jones, A.R., and Rigden, D.J. (2018). Mol. Immunol. 101: 488–499. doi: 10.1016/j.molimm.2018.08.003.
- 3Kufareva, I., Katritch, V., Biggin, P., Kim, M., Park, K., Jung, S.W., Cho, A.E., Sands, Z.A., Ostopovici-Halip, L., Bologa, C.G., Norn, C., Brylinski, M., Skolnick, J., Keränen, H., Lenselink, B.E., Van Westen, G., Overington, J.P., De Teráán, H.G., Isberg, V., Fidom, K.M., Lehto, T.M., Gloriam, D.E., Ghosh, A., Sonavane, U., Joshi, R., Xia, J., Hsieh, J.H., Zhang, L., Wang, X.S., Vogel, H., Yuan, S., Feng, X., Chen, M., Ambia, J., Barth, P., Gageat, C., Stepniewski, M., Xhaard, H., Kelm, S., Pitt, W.R., Shi, J., Larsen, A., Li, H., Wagner, J., Bhattacharya, S., Vaidehi, N., Kanou, K., Cvicek, V., Kim, S.K., Trzaskowski, B., Goddard, W.A., Abrol, R., Selvam, B., Tikhonova, I.G., Cuzzolin, A., Sabbadin, D., Ciancetta, A., Moro, S., Freyd, T., Gabrielsen, M., Kristiansen, K., Sylte, I., Gaffney, K.J., Petasis, N.A., Latek, D., Bajda, M., Młynarczyk, K., Filipek, S., López, L., Kuiper, M., Beuming, T., Perez-Aguilar, J.M., Wang, R.Y.R., Park, H., Greisen, P., Song, Y., DiMaio, F., Baker, D., Shin, W.H., Heo, L., Lee, G.R., Seok, C., Yang, J., Zhang, Y., Ponassi, M., Rosano, C., Cheremovskiy, G., Grudinin, S., Chaudhari, R., Heim, A.J., Li, Z., Lv, Q., Grigorov, M.G., Hu, X., Sun, H., Shen, M., Southall, N., Jadhav, A., Rodríguez, D., Ranganathan, A., Carlsson, J., Najmanovich, R., Durdagi, S., De March, C., Diharce, J., Golebiowski, J., Antonczak, S., Fiorucci, S., Nguyen, E., Meiler, J., Gutcaits, A., Marti-Solano, M., Pastor, M., Selent, J., Stevens, R.C., and Abagyan, R. (2014). Structure 22 (8): 1120–1139. doi: 10.1016/j.str.2014.06.012.
- 4Ramírez, D. and Caballero, J. (2018). Molecules 23 (5): 1038. doi: 10.3390/molecules23051038.
- 5Spyrakis, F., Amadasi, A., Fornabaio, M., Abraham, D.J., Mozzarelli, A., Kellogg, G.E., and Cozzini, P. (2007). Eur. J. Med. Chem. 42 (7): 921–933. doi: 10.1016/j.ejmech.2006.12.037.
- 6Lin, H. and Truhlar, D.G. (2007). Theor. Chem. Accounts 117 (2): 185–199. doi: 10.1007/s00214-006-0143-z.
- 7Senn, H.M. and Thiel, W. (2009). Angew. Chem. Int. Ed. 48 (7): 1198–1229. doi: 10.1002/anie.200802019.
- 8Brunk, E. and Rothlisberger, U. (2015). Chem. Rev. 115 (12): 6217–6263. doi: 10.1021/cr500628b.
- 9Atkins, P.W. (1992). General Chemistry. Zanichelli.
- 10Jeffrey, G.A. and Saenger, W. (eds) (1994). The importance of hydrogen bonds. In: Hydrogen Bonding in Biological Structures, 3–14. Berlin, Heidelberg: Springer Berlin Heidelberg.
10.1007/978-3-642-85135-3_1 Google Scholar
- 11Nishio, M., Hirota, M., and Umezawa, Y. (1998). The CH-[Pi] Interaction: Evidence, Nature, and Consequences. Wiley.
- 12Shoichet, B.K., Walters, W.P., Jiang, H., and Bajorath, J. (2016). J. Med. Chem. 59 (9): 4033–4034. doi: 10.1021/acs.jmedchem.6b00511.
- 13Gohlke, H. and Klebe, G. (2002). Angew. Chem. Int. Ed. 41 (15): 2644–2676. doi: 10.1002/1521-3773(20020802)41:15<2644::AID-ANIE2644>3.0.CO;2-O.
- 14Pearlman, D.A. and Kollman, P.A. (1990). Biopolymers 29 (8–9): 1193–1209. doi: 10.1002/bip.360290810.
- 15Tame, J.R. (1999). Scoring functions: a view from the bench. J. Comput. Aided Mol. Des. 13: 99–108.
- 16Cappel, D., Sherman, W., and Beuming, T. (2017). Curr. Top. Med. Chem. 17 (23): 2586–2598. doi: 10.2174/1568026617666170414141452.
- 17Spyrakis, F., Ahmed, M.H., Bayden, A.S., Cozzini, P., Mozzarelli, A., and Kellogg, G.E. (2017). J. Med. Chem. 60 (16): 6781–6827. doi: 10.1021/acs.jmedchem.7b00057.
- 18Yang, Y., Abdallah, A.H.A., and Lill, M.A. (2018). Calculation of thermodynamic properties of bound water molecules. In: Methods in Molecular Biology (ed. Gore, M. and Jagtap, U.B.), vol. 1762, 389–402. Humana Press Inc.
- 19Dill, K.A. (1997). J. Biol. Chem. 272: 701–704. doi: 10.1074/jbc.272.2.701.
- 20Spyrakis, F., Cozzini, P., and Kellogg, G.E. (2010). Docking and scoring in drug discovery. In: Burger's Medicinal Chemistry and Drug Discovery (ed. D.J. Abraham), 601–684. Hoboken, NJ: Wiley.
10.1002/0471266949.bmc140 Google Scholar
- 21Wang, X., Song, K., Li, L., and Chen, L. (2018). Curr. Top. Med. Chem. 18 (12): 998–1006. doi: 10.2174/1568026618666180813152921.
- 22Davis, A.M., Teague, S.J., and Kleywegt, G.J. (2003). Angew. Chem. Int. Ed. 42 (24): 2718–2736. doi: 10.1002/anie.200200539.
- 23DePristo, M.A., De Bakker, P.I.W., and Blundell, T.L. (2004). Structure 12 (5): 831–838. doi: 10.1016/j.str.2004.02.031.
- 24Lowe, D. (2018). Knowing the structure | In the pipeline. https://blogs.sciencemag.org/pipeline/archives/2018/10/05/knowing-the-structure (accessed 15 February 2020).
- 25Van Montfort, R.L.M. and Workman, P. (2017). Essays Biochem. 61 (5): 431–437. doi: 10.1042/EBC20170052.
- 26Bränd'en, C.-I. and Alwyn Jones, T. (1990). Nature 343 (6260): 687–689. doi: 10.1038/343687a0.
- 27Zheng, H., Hou, J., Zimmerman, M.D., Wlodawer, A., and Minor, W. (2014). Expert Opin. Drug Discov. 9 (2): 125–137. doi: 10.1517/17460441.2014.872623.
- 28Mohan, V., Gibbs, A., Cummings, M., Jaeger, E., and DesJarlais, R. (2005). Curr. Pharm. Des. 11 (3): 323–333. doi: 10.2174/1381612053382106.
- 29Nespolo, M. (2011). Acta Crystallogr. A Found. Crystallogr. 67 (6): 561–563. doi: 10.1107/s0108767311039523.
- 30Brünger, A.T. (1992). Nature 355 (6359): 472–475. doi: 10.1038/355472a0.
- 31 Anonymous. Atomic coordinate entry format version 3.3. http://www.wwpdb.org/documentation/file-format-content/format33/v3.3.html (accessed 15 February 2020).
- 32Brown, I.D. and McMahon, B. (2002). Acta Crystallogr. B Struct. Sci. 58 (3 PART 1): 317–324. doi: 10.1107/S0108768102003464.
- 33Gnesi, M. and Carugo, O. (2017). J. Appl. Crystallogr. 50 (1): 96–101. doi: 10.1107/S1600576716018719.
- 34Schiebel, J., Gaspari, R., Wulsdorf, T., Ngo, K., Sohn, C., Schrader, T.E., Cavalli, A., Ostermann, A., Heine, A., and Klebe, G. (2018). Nat. Commun. 9 (1): 1–15. doi: 10.1038/s41467-018-05769-2.
- 35Wang, R., Fang, X., Lu, Y., and Wang, S. (2004). J. Med. Chem. 47 (12): 2977–2980. doi: 10.1021/jm030580l.
- 36Wang, R., Fang, X., Lu, Y., Yang, C.-Y., and Wang, S. (2005). J. Med. Chem. 48 (12): 4111–4119. doi: 10.1021/jm048957q.
- 37Chen, X., Lin, Y., and Gilson, M.K. (2001). Biopolymers 61 (2): 127–141. doi: 10.1002/1097-0282(2002)61:2<127::AID-BIP10076>3.0.CO;2-N.
- 38Benson, M.L., Smith, R.D., Khazanov, N.A., Dimcheff, B., Beaver, J., Dresslar, P., Nerothin, J., and Carlson, H.A. (2008). Nucleic Acids Res. 36 (SUPPL. 1): D674–D678. doi: 10.1093/nar/gkm911.
- 39Nissink, J.W.M., Murray, C., Hartshorn, M., Verdonk, M.L., Cole, J.C., and Taylor, R. (2002). Proteins Struct. Funct. Genet. 49 (4): 457–471. doi: 10.1002/prot.10232.
- 40Huang, N., Shoichet, B.K., and Irwin, J.J. (2006). J. Med. Chem. 49 (23): 6789–6801. doi: 10.1021/jm0608356.
- 41Mysinger, M.M., Carchia, M., Irwin, J.J., and Shoichet, B.K. (2012). J. Med. Chem. 55 (14): 6582–6594. doi: 10.1021/jm300687e.
- 42Renaud, J.-P., Chari, A., Ciferri, C., Liu, W., Rémigy, H.-W., Stark, H., and Wiesmann, C. (2018). Nat. Rev. Drug Discov. 17 (7): 471–492. doi: 10.1038/nrd.2018.77.
- 43Danev, R., Yanagisawa, H., and Kikkawa, M. (2019). Trends Biochem. Sci. 44 (10): 837–848. doi: 10.1016/j.tibs.2019.04.008.
- 44Lyumkis, D. (2019). J. Biol. Chem. 294 (13): 5181–5197. doi: 10.1074/jbc.REV118.005602.
- 45Qiu, W., Fu, Z., Xu, G.G., Grassucci, R.A., Zhang, Y., Frank, J., Hendrickson, W.A., and Guo, Y. (2018). Proc. Natl. Acad. Sci. U.S.A. 115 (51): 12985–12990. doi: 10.1073/pnas.1812526115.
- 46Merk, A., Bartesaghi, A., Banerjee, S., Falconieri, V., Rao, P., Davis, M.I., Pragani, R., Boxer, M.B., Earl, L.A., Milne, J.L.S., and Subramaniam, S. (2016). Cell 165 (7): 1698–1707. doi: 10.1016/j.cell.2016.05.040.
- 47Vonck, J. and Mills, D.J. (2017). Curr. Opin. Struct. Biol. 46: 48–54. doi: 10.1016/j.sbi.2017.05.016.
- 48Lam, S.D., Das, S., Sillitoe, I., and Orengo, C. (2017). Acta Crystallogr. D Struct. Biol. 73 (8): 628–640. doi: 10.1107/S2059798317008920.
- 49Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F.T., de Beer, T.A.P., Rempfer, C., Bordoli, L., Lepore, R., and Schwede, T. (2018). Nucleic Acids Res. 46 (W1): W296–W303. doi: 10.1093/nar/gky427.
- 50Saxena, A., Sangwan, R.S., and Mishra, S. (2013). Sci. Int. 1 (7): 237–252. doi: 10.17311/sciintl.2013.237.252.
- 51Kopp, J. and Schwede, T. (2004). Pharmacogenomics 5 (4): 405–416. doi: 10.1517/14622416.5.4.405.
- 52Muhammed, M.T. and Aki-Yalcin, E. (2019). Chem. Biol. Drug Des. 93 (1): 12–20. doi: 10.1111/cbdd.13388.
- 53Dunbrack, R.L. and Karplus, M. (1993). J. Mol. Biol. 230 (2): 543–574. doi: 10.1006/jmbi.1993.1170.
- 54Dunbrack, R.L. and Cohen, F.E. (1997). Protein Sci. 6 (8): 1661–1681. doi: 10.1002/pro.5560060807.
- 55Francis-Lyon, P., Gu, S., Hass, J., Amenta, N., and Koehl, P. (2010). BMC Bioinformatics 11 (1): 575. doi: 10.1186/1471-2105-11-575.
- 56Seo, U., Kim, K.-J.J., and Kang, B.S. (2018). Molecules 23 (10): 2459. doi: 10.3390/molecules23102459.
- 57Scouras, A.D. and Daggett, V. (2011). Protein Sci. 20 (2): 341–352. doi: 10.1002/pro.565.
- 58Loksha, I.V., Maiolo, J.R., Hong, C.W., Ng, A., and Snow, C.D. (2009). J. Comput. Chem. 30 (6): 999–1005. doi: 10.1002/jcc.21204.
- 59Ahmed, M.H., Koparde, V.N., Safo, M.K., Neel Scarsdale, J., and Kellogg, G.E. (2015). Proteins Struct. Funct. Bioinform. 83 (6): 1118–1136. doi: 10.1002/prot.24813.
- 60Ahmed, M.H., Catalano, C., Portillo, S.C., Safo, M.K., Neel Scarsdale, J., and Kellogg, G.E. (2019). J. Struct. Biol. 207 (2): 183–198. doi: 10.1016/j.jsb.2019.05.007.
- 61Miao, Z. and Cao, Y. (2016). Sci. Rep. 6 (1): 1–10. doi: 10.1038/srep37024.
- 62Peterson, L.X., Kang, X., and Kihara, D. (2014). Proteins Struct. Funct. Bioinform. 82 (9): 1971–1984. doi: 10.1002/prot.24552.
- 63Ryu, J., Lee, M., Cha, J., Laskowski, R.A., Ryu, S.E., and Kim, D.-S.S. (2016). Nucleic Acids Res. 44 (W1): W416–W423. doi: 10.1093/nar/gkw368.
- 64Patrick Walters, W., Stahl, M.T., and Murcko, M.A. (1998). Drug Discov. Today 3 (4): 160–178. doi: 10.1016/s1359-6446(97)01163-x.
10.1016/s1359‐6446(97)01163‐x Google Scholar
- 65Scott, D.E., Bayly, A.R., Abell, C., and Skidmore, J. (2016). Nat. Rev. Drug Discov. 15 (8): 533–550. doi: 10.1038/nrd.2016.29.
- 66Arkin, M.R., Tang, Y., and Wells, J.A. (2014). Chem. Biol. 21 (9): 1102–1114. doi: 10.1016/j.chembiol.2014.09.001.
- 67Wells, J.A. and McClendon, C.L. (2007). Nature 450 (7172): 1001–1009. doi: 10.1038/nature06526.
- 68Chaudhari, R., Tan, Z., Huang, B., and Zhang, S. (2017). Expert Opin. Drug Discov. 12 (3): 279–291. doi: 10.1080/17460441.2017.1280024.
- 69Rastelli, G. and Pinzi, L. (2015). Front. Pharmacol. 6 (Jul): 157. doi: 10.3389/fphar.2015.00157.
- 70Anighoro, A., Stumpfe, D., Heikamp, K., Beebe, K., Neckers, L.M., Bajorath, J., and Rastelli, G. (2015). J. Chem. Inf. Model. 55 (3): 676–686. doi: 10.1021/ci5006959.
- 71Campbell, S.J., Gold, N.D., Jackson, R.M., and Westhead, D.R. (2003). Curr. Opin. Struct. Biol. 13 (3): 389–395. doi: 10.1016/S0959-440X(03)00075-7.
- 72Pai, M.Y., Lomenick, B., Hwang, H., Schiestl, R., McBride, W., Loo, J.A., and Huang, J. (2015). Methods Mol. Biol. 1263: 287–298. doi: 10.1007/978-1-4939-2269-7_22.
- 73Rey, M., Sarpe, V., Burns, K.M., Buse, J., Baker, C.A.H., Van Dijk, M., Wordeman, L., Bonvin, A.M.J.J., and Schriemer, D.C. (2014). Structure 22 (10): 1538–1548. doi: 10.1016/j.str.2014.08.013.
- 74Kovács, I.A., Luck, K., Spirohn, K., Wang, Y., Pollis, C., Schlabach, S., Bian, W., Kim, D.K., Kishore, N., Hao, T., Calderwood, M.A., Vidal, M., and Barabási, A.L. (2019). Nat. Commun. 10 (1): 1–8. doi: 10.1038/s41467-019-09177-y.
- 75Dibble, C.C. and Manning, B.D. (2013). Nat. Cell Biol. 15 (6): 555–564. doi: 10.1038/ncb2763.
- 76Laplante, M. and Sabatini, D.M. (2012). Cell 149 (2): 274–293. doi: 10.1016/j.cell.2012.03.017.
- 77Stein, A., Mosca, R., and Aloy, P. (2011). Curr. Opin. Struct. Biol. 21 (2): 200–208. doi: 10.1016/j.sbi.2011.01.005.
- 78Moore, G.E. (2009). IEEE Solid-State Circuits Soc. Newsl. 11 (3): 33–35. doi: 10.1109/n-ssc.2006.4785860.
10.1109/n‐ssc.2006.4785860 Google Scholar
- 79Liddle, D.E. (2009). IEEE Solid-State Circuits Soc. Newsl. 11 (3): 28–30. doi: 10.1109/n-ssc.2006.4785858.
10.1109/n‐ssc.2006.4785858 Google Scholar
- 80Lyu, J., Wang, S., Balius, T.E., Singh, I., Levit, A., Moroz, Y.S., O'Meara, M.J., Che, T., Algaa, E., Tolmachova, K., Tolmachev, A.A., Shoichet, B.K., Roth, B.L., and Irwin, J.J. (2019). Nature 566 (7743): 224–229. doi: 10.1038/s41586-019-0917-9.
- 81Shaw, D.E., Deneroff, M.M., Dror, R.O., Kuskin, J.S., Larson, R.H., Salmon, J.K., Young, C., Batson, B., Bowers, K.J., Chao, J.C., Eastwood, M.P., Gagliardo, J., Grossman, J.P., Ho, C.R., Lerardi, D.J., Kolossváry, I., Klepeis, J.L., Layman, T., McLeavey, C., Moraes, M.A., Mueller, R., Priest, E.C., Shan, Y., Spengler, J., Theobald, M., Towles, B., and Wang, S.C. (2008). Commun. ACM 51 (7): 91–97. doi: 10.1145/1364782.1364802.
- 82Galindo-Murillo, R., Roe, D.R., and Cheatham, T.E. (2015). Biochim. Biophys. Acta 1850 (5): 1041–1058. doi: 10.1016/j.bbagen.2014.09.007.
- 83Popova, M., Isayev, O., and Tropsha, A. (2018). Sci. Adv. 4 (7): eaap7885. doi: 10.1126/sciadv.aap7885.
- 84Masek, B.B., Baker, D.S., Dorfman, R.J., DuBrucq, K., Francis, V.C., Nagy, S., Richey, B.L., and Soltanshahi, F. (2016). J. Chem. Inf. Model. 56 (4): 605–620. doi: 10.1021/acs.jcim.5b00697.
- 85Li, Y., Zhang, L., and Liu, Z. (2018). J. Cheminform. 10 (1): 33. doi: 10.1186/s13321-018-0287-6.
- 86Murcko, M.A. (1997). Recent advances in ligand design methods. In: Reviews in Computational Chemistry (ed. Lipkowitz, K.B. and Boyd, D.B.), 1–66. New York: Wiley.
10.1002/9780470125885.ch1 Google Scholar
- 87Schneider, G. (2012). J. Comput. Aided Mol. Des. 26 (1): 115–120. doi: 10.1007/s10822-011-9485-2.
- 88Blaney, J.M. and Dixon, J.S. (1993). Perspect. Drug Discov. Des. 1 (2): 301–319. doi: 10.1007/BF02174531.
- 89Bamborough, P. and Cohen, F.E. (1996). Curr. Opin. Struct. Biol. 6 (2): 236–241. doi: 10.1016/S0959-440X(96)80081-9.
- 90Taylor, R.D., Jewsbury, P.J., and Essex, J.W. (2002). J. Comput. Aided Mol. Des. 16 (3): 151–166. doi: 10.1023/A:1020155510718.
- 91Nero, T.L., Parker, M.W., and Morton, C.J. (2018). Biochem. Soc. Trans. 46 (5): 1367–1379. doi: 10.1042/BST20180202.
- 92Muegge, I. and Rarey, M. (2001). Small molecule docking and scoring. In: Reviews in Computational Chemistry (ed. Lipkowitz, K.B. and Boyd, D.B.), vol. 17, 1–60. Wiley.
- 93Brooijmans, N. and Kuntz, I.D. (2003). Annu. Rev. Biophys. Biomol. Struct. 32 (1): 335–373. doi: 10.1146/annurev.biophys.32.110601.142532.
- 94Cozzini, P., Kellogg, G.E., Spyrakis, F., Abraham, D.J., Costantino, G., Emerson, A., Fanelli, F., Gohlke, H., Kuhn, L.A., Morris, G.M., Orozco, M., Pertinhez, T.A., Rizzi, M., and Sotriffer, C.A. (2008). J. Med. Chem. 51 (20): 6237–6255. doi: 10.1021/jm800562d.
- 95Levinthal, C., Wodak, S.J., Kahn, P., and Dadivanian, A.K. (1975). Proc. Natl. Acad. Sci. U.S.A. 72 (4): 1330–1334. doi: 10.1073/pnas.72.4.1330.
- 96Gabb, H.A., Jackson, R.M., and Sternberg, M.J.E. (1997). J. Mol. Biol. 272 (1): 106–120. doi: 10.1006/jmbi.1997.1203.
- 97Goodsell, D.S. and Olson, A.J. (1990). Proteins Struct. Funct. Genet. 8 (3): 195–202. doi: 10.1002/prot.340080302.
- 98Morris, G.M., Goodsell, D.S., Huey, R., and Olson, A.J. (1996). J. Comput. Aided Mol. Des. 10 (4): 293–304. doi: 10.1007/BF00124499.
- 99Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., and Olson, A.J. (1998). J. Comput. Chem. 19 (14): 1639–1662. doi: 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B.
10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B CAS Web of Science® Google Scholar
- 100Meng, E.C., Shoichet, B.K., and Kuntz, I.D. (1992). J. Comput. Chem. 13 (4): 505–524. doi: 10.1002/jcc.540130412.
- 101Totrov, M. and Abagyan, R. (1997). Proteins Struct. Funct. Genet. 29 (SUPPL. 1): 215–220. doi: 10.1002/(SICI)1097-0134(1997)1+<215::AID-PROT29>3.0.CO;2-Q.
10.1002/(SICI)1097-0134(1997)1+<215::AID-PROT29>3.0.CO;2-Q Google Scholar
- 102Abagyan, R., Totrov, M., and Kuznetsov, D. (1994). J. Comput. Chem. 15 (5): 488–506. doi: 10.1002/jcc.540150503.
- 103Kontoyianni, M., McClellan, L.M., and Sokol, G.S. (2004). J. Med. Chem. 47 (3): 558–565. doi: 10.1021/jm0302997.
- 104Bissantz, C., Folkers, G., and Rognan, D. (2000). J. Med. Chem. 43 (25): 4759–4767. doi: 10.1021/jm001044l.
- 105Bursulaya, B.D., Totrov, M., Abagyan, R., and Brooks, C.L. (2003). J. Comput. Aided Mol. Des. 17 (11): 755–763. doi: 10.1023/B:JCAM.0000017496.76572.6f.
- 106Kroemer, R.T., Vulpetti, A., McDonald, J.J., Rohrer, D.C., Trosset, J.-Y., Giordanetto, F., Cotesta, S., McMartin, C., Kihlén, M., and Stouten, P.F.W. (2004). J. Chem. Inf. Comput. Sci. 44 (3): 871–881. doi: 10.1021/ci049970m.
- 107Cole, J.C., Murray, C.W., Nissink, J.W.M., Taylor, R.D., and Taylor, R. (2005). Proteins 60 (3): 325–332. doi: 10.1002/prot.20497.
- 108Warren, G.L., Andrews, C.W., Capelli, A.M., Clarke, B., LaLonde, J., Lambert, M.H., Lindvall, M., Nevins, N., Semus, S.F., Senger, S., Tedesco, G., Wall, I.D., Woolven, J.M., Peishoff, C.E., and Head, M.S. (2006). J. Med. Chem. 49 (20): 5912–5931. doi: 10.1021/jm050362n.
- 109Pagadala, N.S., Syed, K., and Tuszynski, J. (2017). Biophys. Rev. 9 (2): 91–102. doi: 10.1007/s12551-016-0247-1.
- 110Wang, Z., Sun, H., Yao, X., Li, D., Xu, L., Li, Y., Tian, S., and Hou, T. (2016). Phys. Chem. Chem. Phys. 18 (18): 12964–12975. doi: 10.1039/c6cp01555g.
- 111Li, H., Peng, J., Sidorov, P., Leung, Y., Leung, K.-S., Wong, M.-H., Lu, G., and Ballester, P.J. (2019). Bioinformatics 35 (20): 3989–3995. doi: 10.1093/bioinformatics/btz183.
- 112Berry, M., Fielding, B., and Gamieldien, J. (2015). Practical considerations in virtual screening and molecular docking. In: Emerging Trends in Computational Biology, Bioinformatics, and Systems Biology: Algorithms and Software Tools, 487–502. Elsevier Inc.
10.1016/B978-0-12-802508-6.00027-2 Google Scholar
- 113Novič, M., Tibaut, T., Anderluh, M., Borišek, J., and Tomašič, T. (2016). The comparison of docking search algorithms and scoring functions: An overview and case studies. In Methods and Algorithms for Molecular Docking-Based Drug Design and Discovery (ed. Dastmalchi, S., Hamzeh-Mivehroud, M. and Sokouti, B.), 99–127. IGI Global. http://doi:10.4018/978-1-5225-0115-2.ch004.
- 114Kuntz, I.D., Blaney, J.M., Oatley, S.J., Langridge, R., and Ferrin, T.E. (1982). J. Mol. Biol. 161 (2): 269–288. doi: 10.1016/0022-2836(82)90153-X.
- 115McGann, M.R., Almond, H.R., Nicholls, A., Grant, J.A., and Brown, F.K. (2003). Biopolymers 68 (1): 76–90. doi: 10.1002/bip.10207.
- 116 Anonymous. OpenEye Scientific OMEGA | Multi-conformer structure databases | Database preparation. https://www.eyesopen.com/omega (accessed 16 February 2020).
- 117McGaughey, G.B., Sheridan, R.P., Bayly, C.I., Culberson, J.C., Kreatsoulas, C., Lindsley, S., Maiorov, V., Truchon, J.-F., and Cornell, W.D. (2007). J. Chem. Inf. Model. 47 (4): 1504–1519. doi: 10.1021/ci700052x.
- 118Burkhard, P., Taylor, P., and Walkinshaw, M.D. (1998). J. Mol. Biol. 277 (2): 449–466. doi: 10.1006/jmbi.1997.1608.
- 119Zsoldos, Z., Szabo, I., Szabo, Z., and Johnson, A.P. (2003). Software tools for structure based rational drug design. Proc. J. Mol. Struct. THEOCHEM Elsevier 666–667: 659–665.
- 120Zsoldos, Z., Reid, D., Simon, A., Sadjad, S.B., and Johnson, A.P. (2007). J. Mol. Graph. Model. 26 (1): 198–212. doi: 10.1016/j.jmgm.2006.06.002.
- 121Smith, J.A., Edwards, S.J., Moth, C.W., and Lybrand, T.P. (2013). Biochemistry 52 (33): 5577–5584. doi: 10.1021/bi400158k.
- 122Banitt, I. and Wolfson, H.J. (2011). Nucleic Acids Res. 39 (20):e135. doi: 10.1093/nar/gkr620.
- 123Goldman, B.B. and Wipke, W.T. (2000). Proteins Struct. Funct. Genet. 38 (1): 79–94. doi: 10.1002/(SICI)1097-0134(20000101)38:1<79::AID-PROT9>3.0.CO;2-U.
10.1002/(SICI)1097-0134(20000101)38:1<79::AID-PROT9>3.0.CO;2-U CAS PubMed Web of Science® Google Scholar
- 124Friesner, R.A., Banks, J.L., Murphy, R.B., Halgren, T.A., Klicic, J.J., Mainz, D.T., Repasky, M.P., Knoll, E.H., Shelley, M., Perry, J.K., Shaw, D.E., Francis, P., and Shenkin, P.S. (2004). J. Med. Chem. 47 (7): 1739–1749. doi: 10.1021/jm0306430.
- 125Alogheli, H., Olanders, G., Schaal, W., Brandt, P., and Karlén, A. (2017). J. Chem. Inf. Model. 57 (2): 190–202. doi: 10.1021/acs.jcim.6b00443.
- 126Sotriffer, C., Klebe, G., Stahl, M., and Böhm, H.-J. (2003). Docking and scoring functions/virtual screening. In: Burger's Medicinal Chemistry and Drug Discovery (ed. Abraham, D.J.), 281–331. Hoboken, NJ: Wiley.
10.1002/0471266949.bmc007 Google Scholar
- 127Ewing, T.J.A., Makino, S., Skillman, A.G., and Kuntz, I.D. (2001). J. Comput. Aided Mol. Des. 15 (5): 411–428. doi: 10.1023/A:1011115820450.
- 128Allen, W.J., Balius, T.E., Mukherjee, S., Brozell, S.R., Moustakas, D.T., Lang, P.T., Case, D.A., Kuntz, I.D., and Rizzo, R.C. (2015). J. Comput. Chem. 36 (15): 1132–1156. doi: 10.1002/jcc.23905.
- 129Rarey, M., Kramer, B., Lengauer, T., and Klebe, G. (1996). J. Mol. Biol. 261 (3): 470–489. doi: 10.1006/jmbi.1996.0477.
- 130Rarey, M., Kramer, B., and Lengauer, T. (1997). J. Comput. Aided Mol. Des. 11 (4): 369–384. doi: 10.1023/A:1007913026166.
- 131Claussen, H., Buning, C., Rarey, M., and Lengauer, T. (2001). J. Mol. Biol. 308 (2): 377–395. doi: 10.1006/jmbi.2001.4551.
- 132Jain, A.N. (2003). J. Med. Chem. 46 (4): 499–511. doi: 10.1021/jm020406h.
- 133Cleves, A.E. and Jain, A.N. (2015). J. Comput. Aided Mol. Des. 29 (6): 485–509. doi: 10.1007/s10822-015-9846-3.
- 134Schnecke, V., Swanson, C.A., Getzoff, E.D., Tainer, J.A., and Kuhn, L.A. (1998). Proteins 33 (1): 74–87.
10.1002/(SICI)1097-0134(19981001)33:1<74::AID-PROT7>3.0.CO;2-L CAS PubMed Web of Science® Google Scholar
- 135Schnecke, V. and Kuhn, L.A. (2000). Virtual screening with solvation and ligand-induced complementarity. Proc. Perspect. Drug Discov. Des. Kluwer Academic Publishers 20: 171–190.
- 136Zavodszky, M.I. (2005). Protein Sci. 14 (4): 1104–1114. doi: 10.1110/ps.041153605.
- 137DesJarlais, R.L., Sheridan, R.P., Dixon, J.S., Kuntz, I.D., and Venkataraghavan, R. (1986). J. Med. Chem. 29 (11): 2149–2153. doi: 10.1021/jm00161a004.
- 138Sandak, B., Nussinov, R., and Wolfson, H.J. (1998). J. Comput. Biol. 5 (4): 631–654. doi: 10.1089/cmb.1998.5.631.
- 139Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., and Teller, E. (1953). J. Chem. Phys. 21 (6): 1087. doi: 10.1063/1.1699114.
- 140Westhead, D.R., Clark, D.E., and Murray, C.W. (1997). J. Comput. Aided Mol. Des. 11 (3): 209–228. doi: 10.1023/a:1007934310264.
- 141 Anonymous. DockVision home page. http://dockvision.sness.net (accessed 16 February 2020).
- 142Hart, T.N. and Read, R.J. (1992). Proteins Struct. Funct. Bioinform. 13 (3): 206–222. doi: 10.1002/prot.340130304.
- 143Hart, T.N., Ness, S.R., and Read, R.J. (1997). Proteins 29 (Suppl 1): 205–209. doi: 10.1002/(sici)1097-0134(1997)1+<205::aid-prot27>3.3.co;2-p.
10.1002/(sici)1097‐0134(1997)1+<205::aid‐prot27>3.3.co;2‐p Google Scholar
- 144Dominguez, C., Boelens, R., and Bonvin, A.M.J.J. (2003). J. Am. Chem. Soc. 125 (7): 1731–1737. doi: 10.1021/ja026939x.
- 145Abagyan, R. and Totrov, M. (1994). J. Mol. Biol. 235 (3): 983–1002. doi: 10.1006/jmbi.1994.1052.
- 146Caflisch, A., Fischer, S., and Karplus, M. (1997). J. Comput. Chem. 18 (6): 723–743. doi: 10.1002/(SICI)1096-987X(19970430)18:6<723::AID-JCC1>3.0.CO;2-U.
- 147 Anonymous. Schrödinger home page. https://www.schrodinger.com (accessed 16 February 2020).
- 148Sherman, W., Day, T., Jacobson, M.P., Friesner, R.A., and Farid, R. (2006). J. Med. Chem. 49 (2): 534–553. doi: 10.1021/jm050540c.
- 149Trosset, J.Y. and Scheraga, H.A. (1998). Proc. Natl. Acad. Sci. U.S.A. 95 (14): 8011–8015. doi: 10.1073/pnas.95.14.8011.
- 150Meiler, J. and Baker, D. (2006). Proteins Struct. Funct. Bioinform. 65 (3): 538–548. doi: 10.1002/prot.21086.
- 151Spiriti, J., Subramanian, S.R., Palli, R., Wu, M., and Zuckerman, D.M. (2019). PLoS One 14 (4): e0215694. doi: 10.1371/journal.pone.0215694.
- 152Salmaso, V. and Moro, S. (2018). Front. Pharmacol. 9 (Aug): 923. doi: 10.3389/fphar.2018.00923.
- 153Santos, L.H.S., Ferreira, R.S., and Caffarena, E.R. (2019). Integrating molecular docking and molecular dynamics simulations. In: Methods in Molecular Biology (ed. de Azevedo, W., Jr.), vol. 2053, 13–34. Humana Press Inc.
- 154Yadav, I.S., Nandekar, P.P., Shrivastava, S., Sangamwar, A., Chaudhury, A., and Agarwal, S.M. (2014). Gene 539 (1): 82–90. doi: 10.1016/j.gene.2014.01.056.
- 155Vieth, M., Hirst, J.D., Dominy, B.N., Daigler, H., and Brooks, C.L. (1998). J. Comput. Chem. 19 (14): 1623–1631. doi: 10.1002/(SICI)1096-987X(19981115)19:14<1623::AID-JCC8>3.0.CO;2-L.
- 156Miranker, A. and Karplus, M. (1991). Proteins Struct. Funct. Bioinform. 11 (1): 29–34. doi: 10.1002/prot.340110104.
- 157Caflisch, A., Miranker, A., and Karplus, M. (1993). J. Med. Chem. 36 (15): 2142–2167. doi: 10.1021/jm00067a013.
- 158Di Nola, A., Roccatano, D., and Berendsen, H.J.C. (1994). Proteins Struct. Funct. Bioinform. 19 (3): 174–182. doi: 10.1002/prot.340190303.
- 159Mangoni, M., Roccatano, D., and Di Nola, A. (1999). Proteins Struct. Funct. Genet. 35 (2): 153–162. doi: 10.1002/(SICI)1097-0134(19990501)35:2<153::AID-PROT2>3.0.CO;2-E.
10.1002/(SICI)1097-0134(19990501)35:2<153::AID-PROT2>3.0.CO;2-E CAS PubMed Web of Science® Google Scholar
- 160Given, J.A. and Gilson, M.K. (1998). Proteins 33 (4): 475–495. doi: 10.1002/(sici)1097-0134(19981201)33:4<475::aid-prot3>3.0.co;2-b.
10.1002/(sici)1097‐0134(19981201)33:4<475::aid‐prot3>3.0.co;2‐b CAS PubMed Web of Science® Google Scholar
- 161Van Gunsteren, W.F. and Berendsen, H.J.C. (1988). Mol. Simul. 1 (3): 173–185. doi: 10.1080/08927028808080941.
- 162Wang, J., Kollman, P.A., and Kuntz, I.D. (1999). Proteins 36 (1): 1–19.
10.1002/(SICI)1097-0134(19990701)36:1<1::AID-PROT1>3.0.CO;2-T CAS PubMed Web of Science® Google Scholar
- 163Weiner, S.J., Kollman, P.A., Singh, U.C., Case, D.A., Ghio, C., Alagona, G., Profeta, S., and Weiner, P. (1984). J. Am. Chem. Soc. 106 (3): 765–784. doi: 10.1021/ja00315a051.
- 164Pak, Y. and Wang, S. (2000). J. Phys. Chem. B 104 (2): 354–359. doi: 10.1021/jp993073h.
- 165Tsallis, C. (1988). J. Stat. Phys. 52 (1–2): 479–487. doi: 10.1007/BF01016429.
- 166Curado, E.M.F. and Tsallis, C. (1991). J. Phys. A Math. Gen. 24 (2): L69. doi: 10.1088/0305-4470/24/2/004.
- 167Pak, Y. and Wang, S. (1999). J. Chem. Phys. 111 (10): 4359–4361. doi: 10.1063/1.480270.
- 168Pak, Y., Enyedy, I.J., Varady, J., Kung, J.W., Lorenzo, P.S., Blumberg, P.M., and Wang, S. (2001). J. Med. Chem. 44 (11): 1690–1701. doi: 10.1021/jm000488e.
- 169Bonabeau, E., Dorigo, M., and Theraulaz, G. (1999). Swarm Intelligence: From Natural to Artificial Systems, vol. 4. New York: Oxford University Press, Santa Fe Institute Studies in the Sciences of Complexity.
10.1093/oso/9780195131581.001.0001 Google Scholar
- 170Ab Wahab, M.N., Nefti-Meziani, S., and Atyabi, A. (2015). PLoS One 10 (5): e0122827. doi: 10.1371/journal.pone.0122827.
- 171Jones, G., Willett, P., Glen, R.C., Leach, A.R., and Taylor, R. (1997). J. Mol. Biol. 267 (3): 727–748. doi: 10.1006/jmbi.1996.0897.
- 172Jones, G., Willett, P., and Glen, R.C. (1995). J. Comput. Aided Mol. Des. 9 (6): 532–549. doi: 10.1007/BF00124324.
- 173Jones, G., Willett, P., and Glen, R.C. (1995). J. Mol. Biol. 245 (1): 43–53. doi: 10.1016/S0022-2836(95)80037-9.
- 174Goldberg, D.E. (1989). In: Genetic Algorithms in Search, Optimization, and Machine Learning (ed. M. Reading). Addison-Wesley.
- 175Judson, R. (1996). Genetic algorithms and their use in chemistry. In: Reviews in Computational Chemistry, vol. 10 (ed. K.B. Lipkowitz and D.B. Boyd), 73. VCH Publishers Inc.
10.1002/9780470125878.ch1 Google Scholar
- 176Davis, L. (1991). Handbook of Genetic Algorithms. Van Nostrand Reinhold.
- 177Clark, D.E. and Westhead, D.R. (1996). J. Comput. Aided Mol. Des. 10 (4): 337–358. doi: 10.1007/BF00124503.
- 178Eshelman, L. and Schaffer, J. (1993). Real-ooded genetic algorithms and interval-schemata. In: Foundation of Genetic Algorithms 2 (ed. L. Darrell Whitley), 187–202. San Mateo, CA: Morgan Kaufmann Publishers.
- 179Raghuraman, A., Mosier, P.D., and Desai, U.R. (2010). ACS Med. Chem. Lett. 1 (6): 281–285. doi: 10.1021/ml100048y.
- 180Raghuraman, A., Mosier, P.D., and Desai, U.R. (2006). J. Med. Chem. 49 (12): 3553–3562. doi: 10.1021/jm060092o.
- 181Sankaranarayanan, N.V., Sarkar, A., Desai, U.R., and Mosier, P.D. (2015). Methods Mol. Biol. 1229: 289–314. doi: 10.1007/978-1-4939-1714-3_24.
- 182Morris, G.M., Ruth, H., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., and Olson, A.J. (2009). J. Comput. Chem. 30 (16): 2785–2791. doi: 10.1002/jcc.21256.
- 183Clark, K.P. and Ajay (1995). J. Comput. Chem. 16 (10): 1210–1226. doi: 10.1002/jcc.540161004.
- 184Oshiro, C.M., Kuntz, I.D., and Dixon, J.S. (1995). J. Comput. Aided Mol. Des. 9 (2): 113–130. doi: 10.1007/BF00124402.
- 185Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S., and Karplus, M. (1983). J. Comput. Chem. 4 (2): 187–217. doi: 10.1002/jcc.540040211.
- 186Nicholls, A. and Honig, B. (1991). J. Comput. Chem. 12 (4): 435–445. doi: 10.1002/jcc.540120405.
- 187Thormann, M. and Pons, M. (2001). J. Comput. Chem. 22 (16): 1971–1982. doi: 10.1002/jcc.1146.
- 188Charifson, P.S., Corkery, J.J., Murcko, M.A., and Walters, W.P. (1999). J. Med. Chem. 42 (25): 5100–5109. doi: 10.1021/jm990352k.
- 189Li, H., Li, C., Gui, C., Luo, X., Chen, K., Shen, J., Wang, X., and Jiang, H. (2004). Bioorg. Med. Chem. Lett. 14 (18): 4671–4676. doi: 10.1016/j.bmcl.2004.06.091.
- 190Corbeil, C.R., Englebienne, P., and Moitessier, N. (2007). J. Chem. Inf. Model. 47 (2): 435–449. doi: 10.1021/ci6002637.
- 191Corbeil, C.R., Englebienne, P., Yannopoulos, C.G., Chan, L., Das, S.K., Bilimoria, D., L'heureux, L., and Moitessier, N. (2008). J. Chem. Inf. Model. 48 (4): 902–909. doi: 10.1021/ci700398h.
- 192Zhao, Y. and Sanner, M.F. (2007). Proteins Struct. Funct. Bioinform. 68 (3): 726–737. doi: 10.1002/prot.21423.
- 193Guan, B., Zhang, C., and Zhao, Y. (2017). Molecules 22 (12): 2233. doi: 10.3390/molecules22122233.
- 194 Marco Dorigo (1992). Optimization, learning and natural algorithms. Ph.D. thesis. Politecnico di Milano, Italy.
- 195Selvi, V. and Umarani, R. (2010). Comparative analysis of ant colony and particle swarm optimization techniques. Int. J. Comput. Appl. 5: 1–6.
10.5120/908-1286 Google Scholar
- 196Gehlhaar, D.K., Verkhivker, G.M., Rejto, P.A., Sherman, C.J., Fogel, D.R., Fogel, L.J., and Freer, S.T. (1995). Chem. Biol. 2 (5): 317–324. doi: 10.1016/1074-5521(95)90050-0.
- 197Verkhivker, G.M., Bouzida, D., Gehlhaar, D.K., Rejto, P.A., Freer, S.T., and Rose, P.W. (2002). Proteins Struct. Funct. Genet. 48 (3): 539–557. doi: 10.1002/prot.10164.
- 198Verkhivker, G.M., Bouzida, D., Gehlhaar, D.K., Rejto, P.A., Freer, S.T., and Rose, P.W. (2003). Proteins Struct. Funct. Genet. 53 (2): 201–219. doi: 10.1002/prot.10456.
- 199Verkhivker, G.M. (2004). J. Mol. Graph. Model. 22 (5): 335–348. doi: 10.1016/j.jmgm.2003.12.001.
- 200Verdonk, M.L., Cole, J.C., Hartshorn, M.J., Murray, C.W., and Taylor, R.D. (2003). Proteins Struct. Funct. Genet. 52 (4): 609–623. doi: 10.1002/prot.10465.
- 201Korb, O., Stützle, T., and Exner, T.E. (2009). J. Chem. Inf. Model. 49 (1): 84–96. doi: 10.1021/ci800298z.
- 202Dorigo, M. and Gambardella, L.M. (1997). IEEE Trans. Evol. Comput. 1 (1): 53–66. doi: 10.1109/4235.585892.
10.1109/4235.585892 Google Scholar
- 203Stützle, T. and Hoos, H.H. (2000). Futur. Gener. Comput. Syst. 16 (8): 889–914. doi: 10.1016/S0167-739X(00)00043-1.
- 204Jones, G. (1998). Graph theory in chemistry. In: The Encyclopedia of Computational Chemistry (ed. P.R. Schleyer, N.L. Allinger, T. Clark, J. Gasteiger, P.A. Kollman, H.F. Schaefer and J. Schreiner), 1169–1190. Wiley.
- 205Fogel, L.J., Owens, A.J., and Walsh, M.J. (1966). Artificial Intelligence through Simulated Evolution. New York: Wiley.
- 206Fogel, D.B. (1995). Evolutionary Computation: Toward a New Philosophy of Machine Intelligence. Piscataway, NJ: Wiley.
- 207Gehlhaar, D.K., Bouzida, D., and Rejto, P.A. (1999). Reduced dimensionality in ligand-protein structure prediction: covalent inhibitors of serine protease and design of site-directed combinatorial libraries. In: Rational Drug Design: Novel Methodology and Practical Applications (ed. A. Parrill and M. Reddy), 292–311. Washington, DC: American Chemical Society.
10.1021/bk-1999-0719.ch019 Google Scholar
- 208Yang, J.M. and Kao, C.Y. (2000). J. Comput. Chem. 21 (11): 988–998. doi: 10.1002/1096-987X(200008)21:11<988::AID-JCC8>3.0.CO;2-H.
- 209Yang, J., Chen, Y., Horng, J., and Kao, C. (1997). Proceedings of the 6th International Conference on Evolutionary Programming (ed. Angeline, P.J., Reynolds, R.G., McDonnell, J.R. and Eberhart, R.), 201–211.
- 210Yang, J.-M., Horng, J.-T., and Kao, C.-Y. (1998). A new evolutionary approach to developing neural autonomous agents. Proc. IEEE Int. Conf. Robot. Autom. IEEE 2: 1411–1416.
10.1109/ROBOT.1998.677302 Google Scholar
- 211Yang, J.-M. and Chen, C.-C. (2004). Proteins Struct. Funct. Bioinform. 55 (2): 288–304. doi: 10.1002/prot.20035.
- 212Yang, J.M. and Shen, T.W. (2005). Proteins Struct. Funct. Genet. 59 (2): 205–220. doi: 10.1002/prot.20387.
- 213Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization. Proceedings of ICNN'95 - International Conference on Neural Networks, Vol. 4, 1942–1948.
- 214Poli, R., Kennedy, J., and Blackwell, T. (2007). Swarm Intell. 1 (1): 33–57. doi: 10.1007/s11721-007-0002-0.
10.1007/s11721-007-0002-0 Google Scholar
- 215Bai, Q. (2010). Comput. Inf. Sci. 3 (1): 180–184. doi: 10.5539/cis.v3n1p180.
10.5539/cis.v3n1p180 Google Scholar
- 216Namasivayam, V. and Günther, R. (2007). Chem. Biol. Drug Des. 70 (6): 475–484. doi: 10.1111/j.1747-0285.2007.00588.x.
- 217Janson, S., Merkle, D., and Middendorf, M. (2008). Appl. Soft Comput. J. 8 (1): 666–675. doi: 10.1016/j.asoc.2007.05.005.
- 218Tai, H.K., Jusoh, S.A., and Siu, S.W.I. (2018). J. Cheminform. 10 (1): 62. doi: 10.1186/s13321-018-0320-9.
- 219Storn, R. and Price, K. (1997). J. Glob. Optim. 11 (4): 341–359. doi: 10.1023/A:1008202821328.
- 220Wu, Y.-C., Lee, W.-P., and Chien, C.-W. (2009). International Conference on Machince Learning and Computing, 2011. Vol. 3, 57–63.
- 221Thomsen, R. (2003). Flexible ligand docking using differential evolution. Proceedins of the 2003 Congress on Evolutionary Computation CEC 2003 – Proceedings of the IEEE Computer Society. Vol. 4, 2354–2361.
- 222Koohi-Moghadam, M. and Rahmani, A.T. (2012). Molecular docking with opposition-based differential evolution. Proceedings of the ACM Symposium on Applied Computing. 1387–1392. New York: ACM Press.
- 223Chung, H.W., Cho, S.J., Lee, K.R., and Lee, K.H. (2013). Self-adaptive differential evolution algorithm incorporating local search for protein–ligand docking. Proc. J. Phys. Conf. Ser. Institute of Physics Publishing 410: 012030.
- 224Sudha, S., Baskar, S., and Krishnaswamy, S. (2019). Soft. Comput. 23 (22): 11651–11669. doi: 10.1007/s00500-018-03717-2.
10.1007/s00500‐018‐03717‐2 Google Scholar
- 225Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization. Technical Report-TR06, Erciyes University. http://mf.erciyes.edu.tr/abc/pub/tr06_2005.pdf (accessed 16 February 2020).
- 226Karaboga, D. and Basturk, B. (2007). J. Glob. Optim. 39 (3): 459–471. doi: 10.1007/s10898-007-9149-x.
- 227Uehara, S., Fujimoto, K.J., and Tanaka, S. (2014). J. Comput. Chem. Japan 13 (3): 163–164. doi: 10.2477/jccj.2014-0020.
- 228Uehara, S., Fujimoto, K.J., and Tanaka, S. (2015). Phys. Chem. Chem. Phys. 17 (25): 16412–16417. doi: 10.1039/c5cp01394a.
- 229Guan, B., Zhang, C., and Zhao, Y. (2018). Int. J. Mol. Sci. 19 (4): 1181. doi: 10.3390/ijms19041181.
- 230Krishnanand, K.N. and Ghose, D. (2009). Swarm Intell. 3 (2): 87–124. doi: 10.1007/s11721-008-0021-5.
10.1007/s11721‐008‐0021‐5 Google Scholar
- 231Krishnanand, K.N. and Ghose, D. (2009). Int. J. Comput. Intell. Stud. 1 (1): 93–119. doi: 10.1504/IJCIStudies.2009.02534.
10.1504/IJCIStudies.2009.02534 Google Scholar
- 232 Anonymous. LightDock | LightDock. https://lightdock.org (accessed 16 February 2020).
- 233Jiménez-García, B., Roel-Touris, J., Romero-Durana, M., Vidal, M., Jiménez-González, D., and Fernández-Recio, J. (2018). Bioinformatics 34 (1): 49–55. doi: 10.1093/bioinformatics/btx555.
- 234Yang, X.S. and Deb, S. (2009). Cuckoo search via Lévy flights. Proceedings of the 2009 World Congress on Nature and Biologically Inspired Computing NABIC 2009 - Proceedings. 210–214.
- 235Lin, H. and Siu, S. (2018). Int. J. Mol. Sci. 19 (10): 3181. doi: 10.3390/ijms19103181.
- 236Mukhopadhyay, M. (2014). Int. J. Adv. Eng. Technol. 7 (3): 868–878.
- 237Jordan, A.M. (2018). ACS Med. Chem. Lett. 9 (12): 1150–1152. doi: 10.1021/acsmedchemlett.8b00500.
- 238Truchon, J.F. and Bayly, C.I. (2007). J. Chem. Inf. Model. 47 (2): 488–508. doi: 10.1021/ci600426e.
- 239Englebienne, P., Fiaux, H., Kuntz, D.A., Corbeil, C.R., Gerber-Lemaire, S., Rose, D.R., and Moitessier, N. (2007). Proteins Struct. Funct. Genet. 69 (1): 160–176. doi: 10.1002/prot.21479.
- 240Marcou, G. and Rognan, D. (2007). J. Chem. Inf. Model. 47 (1): 195–207. doi: 10.1021/ci600342e.
- 241Foreman, K.W., Phillips, A.T., Rosen, J.B., and Dill, K.A. (1999). J. Comput. Chem. 20 (14): 1527–1532. doi: 10.1002/(SICI)1096-987X(19991115)20:14<1527::AID-JCC5>3.0.CO;2-W.
- 242Moitessier, N., Englebienne, P., Lee, D., Lawandi, J., and Corbeil, C.R. (2008). Br. J. Pharmacol. 153 (Suppl 1): S7–S26. doi: 10.1038/sj.bjp.0707515.
- 243Taylor, R.D., Jewsbury, P.J., and Essex, J.W. (2003). J. Comput. Chem. 24 (13): 1637–1656. doi: 10.1002/jcc.10295.
- 244Leach, A.R. and Smellie, A.S. (1992). J. Chem. Inf. Model. 32 (4): 379–385. doi: 10.1021/ci00008a019.
- 245Still, W.C., Tempczyk, A., Hawley, R.C., and Hendrickson, T. (1990). J. Am. Chem. Soc. 112 (16): 6127–6129. doi: 10.1021/ja00172a038.
- 246Leach, A.R. (1994). J. Mol. Biol. 235: 345–356. doi: 10.1016/S0022-2836(05)80038-5.
- 247Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., and Kollman, P.A. (1995). J. Am. Chem. Soc. 117 (19): 5179–5197. doi: 10.1021/ja00124a002.
- 248Plount Price, M.L. and Jorgensen, W.L. (2000). J. Am. Chem. Soc. 122 (39): 9455–9466. doi: 10.1021/ja001018c.
- 249Hoffmann, D., Kramer, B., Washio, T., Steinmetzer, T., Rarey, M., and Lengauer, T. (1999). J. Med. Chem. 42 (21): 4422–4433. doi: 10.1021/jm991090p.
- 250Åqvist, J., Medina, C., and Samuelsson, J.E. (1994). Protein Eng. Des. Sel. 7 (3): 385–391. doi: 10.1093/protein/7.3.385.
- 251Carlsson, J., Boukharta, L., and Aqvist, J. (2008). J. Med. Chem. 51 (9): 2648–2656. doi: 10.1021/jm7012198.
- 252Huang, S.Y., Li, M., Wang, J., and Pan, Y. (2016). J. Chem. Inf. Model. 56 (6): 1078–1087. doi: 10.1021/acs.jcim.5b00275.
- 253Huang, S.-Y. and Zou, X. (2006). Proteins Struct. Funct. Bioinform. 66 (2): 399–421. doi: 10.1002/prot.21214.
- 254Paul, N. and Rognan, D. (2002). Proteins 47 (4): 521–533. doi: 10.1002/prot.10119.
- 255Wolf, A., Zimmermann, M., and Hofmann-Apitius, M. (2007). J. Chem. Inf. Model. 47 (3): 1036–1044. doi: 10.1021/ci6004965.
- 256Su, M., Yang, Q., Du, Y., Feng, G., Liu, Z., Li, Y., and Wang, R. (2019). J. Chem. Inf. Model. 59 (2): 895–913. doi: 10.1021/acs.jcim.8b00545.
- 257Schulz-Gasch, T. and Stahl, M. (2004). Drug Discov. Today Technol. 1 (3): 231–239. doi: 10.1016/j.ddtec.2004.08.004.
- 258Leach, A.R., Shoichet, B.K., and Peishoff, C.E. (2006). J. Med. Chem. 49 (20): 5851–5855. doi: 10.1021/jm060999m.
- 259Rajamani, R. and Good, A.C. (2007). Curr. Opin. Drug Discov. Dev. 10 (3): 308–315.
- 260Liu, J. and Wang, R. (2015). J. Chem. Inf. Model. 55 (3): 475–482. doi: 10.1021/ci500731a.
- 261Huang, S.Y., Grinter, S.Z., and Zou, X. (2010). Phys. Chem. Chem. Phys. 12 (40): 12899–12908. doi: 10.1039/c0cp00151a.
- 262Karplus, M. and Weaver, D.L. (1976). Nature 260 (5550): 404–406. doi: 10.1038/260404a0.
- 263Huang, N., Kalyanaraman, C., Irwin, J.J., and Jacobson, M.P. (2006). J. Chem. Inf. Model. 46 (1): 243–253. doi: 10.1021/ci0502855.
- 264Weiner, S.J., Kollman, P.A., Nguyen, D.T., and Case, D.A. (1986). J. Comput. Chem. 7 (2): 230–252. doi: 10.1002/jcc.540070216.
- 265Zou, X., Sun, Y., and Kuntz, I.D. (1999). J. Am. Chem. Soc. 121 (35): 8033–8043. doi: 10.1021/ja984102p.
- 266Rocchia, W., Sridharan, S., Nicholls, A., Alexov, E., Chiabrera, A., and Honig, B. (2002). J. Comput. Chem. 23 (1): 128–137. doi: 10.1002/jcc.1161.
- 267Grant, J.A., Pickup, B.T., and Nicholls, A. (2001). J. Comput. Chem. 22 (6): 608–640. doi: 10.1002/jcc.1032.
- 268Baker, N.A., Sept, D., Joseph, S., Holst, M.J., and McCammon, J.A. (2001). Proc. Natl. Acad. Sci. U. S. A. 98 (18): 10037–10041. doi: 10.1073/pnas.181342398.
- 269Hawkins, G.D., Cramer, C.J., and Truhlar, D.G. (1995). Chem. Phys. Lett. 246 (1–2, 122): –129. doi: 10.1016/0009-2614(95)01082-K.
10.1016/0009‐2614(95)01082‐K Google Scholar
- 270Qiu, D., Shenkin, P.S., Hollinger, F.P., and Still, W.C. (1997). J. Phys. Chem. A 101 (16): 3005–3014. doi: 10.1021/jp961992r.
- 271Shoichet, B.K., Leach, A.R., and Kuntz, I.D. (1999). Proteins Struct. Funct. Genet. 34 (1): 4–16. doi: 10.1002/(SICI)1097-0134(19990101)34:1<4::AID-PROT2>3.0.CO;2-6.
10.1002/(SICI)1097-0134(19990101)34:1<4::AID-PROT2>3.0.CO;2-6 CAS PubMed Web of Science® Google Scholar
- 272Wei, B.Q., Baase, W.A., Weaver, L.H., Matthews, B.W., and Shoichet, B.K. (2002). J. Mol. Biol. 322 (2): 339–355. doi: 10.1016/S0022-2836(02)00777-5.
- 273Liu, H.-Y., Kuntz, I.D., and Zou, X. (2004). J. Phys. Chem. B 108 (17): 5453–5462. doi: 10.1021/jp0312518.
- 274Liu, H.-Y. and Zou, X. (2006). J. Phys. Chem. B 110 (18): 9304–9313. doi: 10.1021/jp060334w.
- 275Honig, B. and Nicholls, A. (1995). Science 268 (5214): 1144–1149. doi: 10.1126/science.7761829.
- 276Gasteiger, J. and Marsili, M. (1980). Tetrahedron 36 (22): 3219–3228. doi: 10.1016/0040-4020(80)80168-2.
- 277Li, J., Zhu, T., Cramer, C.J., and Truhlar, D.G. (1998). J. Phys. Chem. A 102 (10): 1820–1831. doi: 10.1021/jp972682r.
- 278Almlöf, M., Brandsdal, B.O., and Åqvist, J. (2004). J. Comput. Chem. 25 (10): 1242–1254. doi: 10.1002/jcc.20047.
- 279Carlson, H.A. and Jorgensen, W.L. (1995). J. Phys. Chem. 99 (26): 10667–10673. doi: 10.1021/j100026a034.
- 280Jones-Hertzog, D.K. and Jorgensen, W.L. (1997). J. Med. Chem. 40 (10): 1539–1549. doi: 10.1021/jm960684e.
- 281Van Dijk, M., Ter Laak, A.M., Wichard, J.D., Capoferri, L., Vermeulen, N.P.E., and Geerke, D.P. (2017). J. Chem. Inf. Model. 57 (9): 2294–2308. doi: 10.1021/acs.jcim.7b00222.
- 282Su, Y., Gallicchio, E., Das, K., Arnold, E., and Levy, R.M. (2007). J. Chem. Theory Comput. 3 (1): 256–277. doi: 10.1021/ct600258e.
- 283Goodsell, D.S., Morris, G.M., and Olson, A.J. (1996). J. Mol. Recognit. 9 (1): 1–5. doi: 10.1002/(SICI)1099-1352(199601)9:1<1::AID-JMR241>3.0.CO;2-6.
10.1002/(SICI)1099-1352(199601)9:1<1::AID-JMR241>3.0.CO;2-6 CAS PubMed Web of Science® Google Scholar
- 284Huey, R., Morris, G.M., Olson, A.J., and Goodsell, D.S. (2007). J. Comput. Chem. 28 (6): 1145–1152. doi: 10.1002/jcc.20634.
- 285Ortiz, A.R., Pisabarro, M.T., Gago, F., and Wade, R.C. (1995). J. Med. Chem. 38 (14): 2681–2691. doi: 10.1021/jm00014a020.
- 286Yin, S., Biedermannova, L., Vondrasek, J., and Dokholyan, N.V. (2008). J. Chem. Inf. Model. 48 (8): 1656–1662. doi: 10.1021/ci8001167.
- 287Forli, S. and Olson, A.J. (2012). J. Med. Chem. 55 (2): 623–638. doi: 10.1021/jm2005145.
- 288Pharma, D., Sapundzhi, F., Dzimbova, T., Pencheva, N., and Milanov, P. (2016). Der. Pharma Chem. 8 (11): 118–124.
- 289Lazaridis, T. and Karplus, M. (1999). Proteins Struct. Funct. Genet. 35 (2): 133–152. doi: 10.1002/(SICI)1097-0134(19990501)35:2<133::AID-PROT1>3.0.CO;2-N.
10.1002/(SICI)1097-0134(19990501)35:2<133::AID-PROT1>3.0.CO;2-N CAS PubMed Web of Science® Google Scholar
- 290Kortemme, T. and Baker, D. (2002). Proc. Natl. Acad. Sci. U.S.A. 99 (22): 14116–14121. doi: 10.1073/pnas.202485799.
- 291Ding, F. and Dokholyan, N.V. (2006). PLoS Comput. Biol. 2 (7): e85. doi: 10.1371/journal.pcbi.0020085.
- 292Yin, S., Ding, F., and Dokholyan, N.V. (2007). Nat. Methods 4 (6): 466–467. doi: 10.1038/nmeth0607-466.
- 293Ding, F., Tsao, D., Nie, H., and Dokholyan, N.V. (2008). Structure 16 (7): 1010–1018. doi: 10.1016/j.str.2008.03.013.
- 294Guedes, I.A., Barreto, A.M.S., Miteva, M.A., and Dardenne, L.E. (2016). Development of empirical scoring functions for predicting protein-ligand binding affinity. Proceedings of the Sociedade Brasileira de Bioquímica e Biologia Molecular. 1–174.
- 295Hensen, C., Hermann, J.C., Nam, K., Ma, S., Gao, J., and Höltje, H.D. (2004). J. Med. Chem. 47 (27): 6673–6680. doi: 10.1021/jm0497343.
- 296Raha, K. and Merz, K.M. (2005). J. Med. Chem. 48 (14): 4558–4575. doi: 10.1021/jm048973n.
- 297van der Vaart, A., Gogonea, V., Dixon, S.L., and Merz, K.M. (2000). J. Comput. Chem. 21 (16): 1494–1504. doi: 10.1002/1096-987X(200012)21:16<1494::AID-JCC6>3.0.CO;2-4.
- 298Chaskar, P., Zoete, V., and Röhrig, U.F. (2014). J. Chem. Inf. Model. 54 (11): 3137–3152. doi: 10.1021/ci5004152.
- 299Zoete, V., Schuepbach, T., Bovigny, C., Chaskar, P., Daina, A., Röhrig, U.F., and Michielin, O. (2016). J. Comput. Chem. 37 (4): 437–447. doi: 10.1002/JCC.24249.
- 300Chaskar, P., Zoete, V., and Röhrig, U.F. (2017). J. Chem. Inf. Model. 57 (1): 73–84. doi: 10.1021/acs.jcim.6b00406.
- 301Pecina, A., Meier, R., Fanfrlík, J., Lepšík, M., Řezáč, J., Hobza, P., and Baldauf, C. (2016). Chem. Commun. 52 (16): 3312–3315. doi: 10.1039/c5cc09499b.
- 302Pecina, A., Brynda, J., Vrzal, L., Gnanasekaran, R., Hořejší, M., Eyrilmez, S.M., Řezáč, J., Lepšík, M., Řezáčová, P., Hobza, P., Majer, P., Veverka, V., and Fanfrlík, J. (2018). ChemPhysChem 19 (7): 873–879. doi: 10.1002/cphc.201701104.
- 303Yang, Z., Liu, Y., Chen, Z., Xu, Z., Shi, J., Chen, K., and Zhu, W. (2015). J. Mol. Model. 21 (6): 138. doi: 10.1007/s00894-015-2681-6.
- 304Gao, Y.D., Hu, Y., Crespo, A., Wang, D., Armacost, K.A., Fells, J.I., Fradera, X., Wang, H., Wang, H., Sherborne, B., Verras, A., and Peng, Z. (2018). J. Comput. Aided Mol. Des. 32 (1): 129–142. doi: 10.1007/s10822-017-0072-z.
- 305Crespo, A., Rodriguez-Granillo, A., and Lim, V.T. (2017). Curr. Top. Med. Chem. 17 (23): 2663–2680. doi: 10.2174/1568026617666170707120609.
- 306Cavasotto, C.N., Adler, N.S., and Aucar, M.G. (2018). Front. Chem. 6 (May): 188. doi: 10.3389/fchem.2018.00188.
- 307Adeniyi, A.A. and Soliman, M.E.S. (2017). Drug Discov. Today 22 (8): 1216–1223. doi: 10.1016/j.drudis.2017.06.012.
- 308Ryde, U. and Söderhjelm, P. (2016). Chem. Rev. 116 (9): 5520–5566. doi: 10.1021/acs.chemrev.5b00630.
- 309Christensen, A.S., Kubař, T., Cui, Q., and Elstner, M. (2016). Chem. Rev. 116 (9): 5301–5337. doi: 10.1021/acs.chemrev.5b00584.
- 310Duygu Yilmazer, N. and Korth, M. (2016). Curr. Med. Chem. 23 (20): 2101–2111.
- 311Pason, L.P. and Sotriffer, C.A. (2016). Mol. Inform. 35 (11−12): 541–548. doi: 10.1002/minf.201600048.
- 312Böhm, H.J. (1992). J. Comput. Aided Mol. Des. 6 (1): 61–78. doi: 10.1007/BF00124387.
- 313Fornabaio, M., Spyrakis, F., Mozzarelli, A., Cozzini, P., Abraham, D.J., and Kellogg, G.E. (2004). J. Med. Chem. 47 (18): 4507–4516. doi: 10.1021/jm030596b.
- 314Kerzmann, A., Neumann, D., and Kohlbacher, O. (2006). J. Chem. Inf. Model. 46 (4): 1635–1642. doi: 10.1021/ci050422y.
- 315Catana, C. and Stouten, P.F.W. (2007). J. Chem. Inf. Model. 47 (1): 85–91. doi: 10.1021/ci600357t.
- 316Cheng, T., Li, X., Li, Y., Liu, Z., and Wang, R. (2009). J. Chem. Inf. Model. 49 (4): 1079–1093. doi: 10.1021/ci9000053.
- 317Li, Y., Han, L., Liu, Z., and Wang, R. (2014). J. Chem. Inf. Model. 54 (6): 1717–1736. doi: 10.1021/ci500081m.
- 318Li, Y., Liu, Z., Li, J., Han, L., Liu, J., Zhao, Z., and Wang, R. (2014). J. Chem. Inf. Model. 54 (6): 1700–1716. doi: 10.1021/ci500080q.
- 319Kramer, C., Kalliokoski, T., Gedeck, P., and Vulpetti, A. (2012). J. Med. Chem. 55 (11): 5165–5173. doi: 10.1021/jm300131x.
- 320Böhm, H.-J. (1994). J. Comput. Aided Mol. Des. 8 (5): 623–632. doi: 10.1007/BF00123669.
- 321Kämper, A., Apostolakis, J., Rarey, M., Marian, C.M., and Lengauer, T. (2006). J. Chem. Inf. Model. 46 (2): 903–911. doi: 10.1021/ci050467z.
- 322Kramer, B., Rarey, M., and Lengauer, T. (1999). Proteins Struct. Funct. Genet. 37 (2): 228–241. doi: 10.1002/(SICI)1097-0134(19991101)37:2<228::AID-PROT8>3.0.CO;2-8.
10.1002/(SICI)1097-0134(19991101)37:2<228::AID-PROT8>3.0.CO;2-8 CAS PubMed Web of Science® Google Scholar
- 323Stahl, M. (2000). Perspect. Drug Discov. Des. 20 (1): 83–98. doi: 10.1023/A:1008724921888.
- 324Jain, A.N. (1996). J. Comput. Aided Mol. Des. 10 (5): 427–440. doi: 10.1007/BF00124474.
- 325Welch, W., Ruppert, J., and Jain, A.N. (1996). Chem. Biol. 3: 449–462.
- 326Venkatachalam, C.M., Jiang, X., Oldfield, T., and Waldman, M. (2003). J. Mol. Graph. Model. 21 (4): 289–307. doi: 10.1016/S1093-3263(02)00164-X.
- 327Wang, R., Lai, L., and Wang, S. (2002). J. Comput. Aided Mol. Des. 16 (1): 11–26. doi: 10.1023/A:1016357811882.
- 328Eldridge, M.D., Murray, C.W., Auton, T.R., Paolini, G.V., and Mee, R.P. (1997). J. Comput. Aided Mol. Des. 11 (5): 425–445. doi: 10.1023/A:1007996124545.
- 329Murray, C.W., Auton, T.R., and Eldridge, M.D. (1998). J. Comput. Aided Mol. Des. 12 (5): 503–519. doi: 10.1023/A:1008040323669.
- 330Kabsch, W. (1976). Acta Crystallogr. A 32 (5): 922–923. doi: 10.1107/S0567739476001873.
- 331Kabsch, W. (1978). Acta Crystallogr. A 34 (5): 827–828. doi: 10.1107/S0567739478001680.
- 332Friesner, R.A., Murphy, R.B., Repasky, M.P., Frye, L.L., Greenwood, J.R., Halgren, T.A., Sanschagrin, P.C., and Mainz, D.T. (2006). J. Med. Chem. 49 (21): 6177–6196. doi: 10.1021/jm051256o.
- 333Li, G.B., Yang, L.L., Wang, W.J., Li, L.L., and Yang, S.Y. (2013). J. Chem. Inf. Model. 53 (3): 592–600. doi: 10.1021/ci300493w.
- 334Krammer, A., Kirchhoff, P.D., Jiang, X., Venkatachalam, C.M., and Waldman, M. (2005). J. Mol. Graph. Model. 23 (5): 395–407. doi: 10.1016/j.jmgm.2004.11.007.
- 335 Anonymous. Molecular operating environment (MOE). https://www.chemcomp.com/Products.htm
- 336Raub, S., Steffen, A., Kämper, A., and Marian, C.M. (2008). J. Chem. Inf. Model. 48 (7): 1492–1510. doi: 10.1021/ci7004669.
- 337Sotriffer, C.A., Sanschagrin, P., Matter, H., and Klebe, G. (2008). Proteins Struct. Funct. Bioinform. 73 (2): 395–419. doi: 10.1002/prot.22058.
- 338Wireko, F.C., Kellogg, G.E., and Abraham, D.J. (1991). J. Med. Chem. 34 (2): 758–767. doi: 10.1021/jm00106a042.
- 339Hansch, C. and Leo, A. (1979). Substituent Constants for Correlation Analysis in Chemistry and Biology. Wiley.
- 340Eugene Kellogg, G. and Abraham, D.J. (2000). Eur. J. Med. Chem. 35 (7–8): 651–661. doi: 10.1016/S0223-5234(00)00167-7.
- 341Sarkar, A. and Kellogg, G. (2010). Curr. Top. Med. Chem. 10 (1): 67–83. doi: 10.2174/156802610790232233.
- 342Burnett, J.C., Botti, P., Abraham, D.J., and Kellogg, G.E. (2001). Proteins Struct. Funct. Genet. 42 (3): 355–377. doi: 10.1002/1097-0134(20010215)42:3<355::AID-PROT60>3.0.CO;2-F.
10.1002/1097-0134(20010215)42:3<355::AID-PROT60>3.0.CO;2-F CAS PubMed Web of Science® Google Scholar
- 343Ahmed, M.H., Spyrakis, F., Cozzini, P., Tripathi, P.K., Mozzarelli, A., Scarsdale, J.N., Safo, M.A., and Kellogg, G.E. (2011). PLoS One 6 (9): doi: 10.1371/journal.pone.0024712.
- 344Parikh, H.I. and Kellogg, G.E. (2014). Proteins Struct. Funct. Bioinform. 82 (6): 916–932. doi: 10.1002/prot.24466.
- 345Cashman, D.J. and Kellogg, G.E. (2004). J. Med. Chem. 47 (6): 1360–1374. doi: 10.1021/jm030529h.
- 346Marabotti, A., Spyrakis, F., Facchiano, A., Cozzini, P., Alberti, S., Kellogg, G.E., and Mozzarelli, A. (2008). J. Comput. Chem. 29 (12): 1955–1969. doi: 10.1002/jcc.20954.
- 347Cashman, D.J., Rife, J.P., and Kellogg, G.E. (2001). Bioorg. Med. Chem. Lett. 11 (2): 119–122. doi: 10.1016/S0960-894X(00)00615-6.
- 348Cozzini, P., Fornabaio, M., Marabotti, A., Abraham, D.J., Kellogg, G.E., and Mozzarelli, A. (2002). J. Med. Chem. 45 (12): 2469–2483. doi: 10.1021/jm0200299.
- 349Spyrakis, F., Fornabaio, M., Cozzini, P., Mozzarelli, A., Abraham, D.J., and Kellogg, G.E. (2004). J. Am. Chem. Soc. 126 (38): 11764–11765. doi: 10.1021/ja0465754.
- 350Amadasi, A., Spyrakis, F., Cozzini, P., Abraham, D.J., Kellogg, G.E., and Mozzarelli, A. (2006). J. Mol. Biol. 358 (1): 289–309. doi: 10.1016/j.jmb.2006.01.053.
- 351Da, C., Telang, N., Barelli, P., Jia, X., Gupton, J.T., Mooberry, S.L., and Kellogg, G.E. (2012). ACS Med. Chem. Lett. 3 (1): 53–57. doi: 10.1021/ml200217u.
- 352Da, C., Telang, N., Hall, K., Kluball, E., Barelli, P., Finzel, K., Jia, X., Gupton, J.T., Mooberry, S.L., and Kellogg, G.E. (2013). Medchemcomm 4 (2): 417–421. doi: 10.1039/c2md20320k.
- 353Da, C., Mooberry, S.L., Gupton, J.T., and Kellogg, G.E. (2013). J. Med. Chem. 56 (18): 7382–7395. doi: 10.1021/jm400954h.
- 354Fornabaio, M., Cozzini, P., Mozzarelli, A., Abraham, D.J., and Kellogg, G.E. (2003). J. Med. Chem. 46 (21): 4487–4500. doi: 10.1021/jm0302593.
- 355Kellogg, G.E., Fornabaio, M., Chen, D.L., Abraham, D.J., Spyrakis, F., Cozzini, P., and Mozzarelli, A. (2006). J. Mol. Graph. Model. 24 (6): 434–439. doi: 10.1016/j.jmgm.2005.09.001.
- 356Cozzini, P., Fornabaio, M., Marabotti, A., Abraham, D., Kellogg, G., and Mozzarelli, A. (2004). Curr. Med. Chem. 11 (23): 3093–3118. doi: 10.2174/0929867043363929.
- 357Kellogg, G.E.E. and Chen, D.L.L. (2004). Chem. Biodivers. 1 (1): 98–105. doi: 10.1002/cbdv.200490016.
- 358Amadasi, A., Surface, J.A., Spyrakis, F., Cozzini, P., Mozzarelli, A., and Kellogg, G.E. (2008). J. Med. Chem. 51 (4): 1063–1067. doi: 10.1021/jm701023h.
- 359Debroise, T., Shakhnovich, E.I., and Chéron, N. (2017). J. Chem. Inf. Model. 57 (3): 584–593. doi: 10.1021/acs.jcim.6b00610.
- 360Baek, M., Shin, W.-H., Chung, H.W., and Seok, C. (2017). J. Comput. Mol. Des. 31 (7): 653–666. doi: 10.1007/S10822-017-0030-9.
- 361Trott, O. and Olson, A.J. (2010). J. Comput. Chem. 31 (2): 455–461. doi: 10.1002/jcc.21334.
- 362Jain, T. and Jayaram, B. (2005). FEBS Lett. 579 (29): 6659–6666. doi: 10.1016/j.febslet.2005.10.031.
- 363Pires, D.E.V. and Ascher, D.B. (2016). Nucleic Acids Res. 44 (W1): W557–W561. doi: 10.1093/nar/gkw390.
- 364Jiménez, J., Škalič, M., Martínez-Rosell, G., and De Fabritiis, G. (2018). J. Chem. Inf. Model. 58 (2): 287–296. doi: 10.1021/acs.jcim.7b00650.
- 365Thomas, P.D. and Dill, K.A. (1996). Proc. Natl. Acad. Sci. U.S.A. 93 (21): 11628–11633. doi: 10.1073/pnas.93.21.11628.
- 366DeWitte, R.S. and Shakhnovich, E.I. (1996). J. Am. Chem. Soc. 118 (47): 11733–11744. doi: 10.1021/ja960751u.
- 367DeWitte, R.S., Ishchenko, A.V., and Shakhnovich, E.I. (1997). J. Am. Chem. Soc. 119 (20): 4608–4617. doi: 10.1021/ja963689+.
- 368Ishchenko, A.V. and Shakhnovich, E.I. (2002). J. Med. Chem. 45 (13): 2770–2780. doi: 10.1021/jm0105833.
- 369Mitchell, J.B.O., Laskowski, R.A., Alex, A., and Thornton, J.M. (1999). J. Comput. Chem. 20 (11): 1165–1176. doi: 10.1002/(SICI)1096-987X(199908)20:11<1165::AID-JCC7>3.0.CO;2-A.
- 370Mitchell, J.B.O., Laskowski, R.A., Alex, A., Forster, M.J., and Thornton, J.M. (1999). J. Comput. Chem. 20 (11): 1177–1185. doi: 10.1002/(SICI)1096-987X(199908)20:11<1177::AID-JCC8>3.0.CO;2-0.
- 371Muegge, I. and Martin, Y.C. (1999). J. Med. Chem. 42 (5): 791–804. doi: 10.1021/jm980536j.
- 372Muegge, I. (1999). Med. Chem. Res. 9 (7–8): 490–500.
- 373Ha, S., Andreani, R., Robbins, A., and Muegge, I. (2000). J. Comput. Aided Mol. Des. 14 (5): 435–448. doi: 10.1023/A:1008137707965.
- 374Muegge, I. (2006). J. Med. Chem. 49 (20): 5895–5902. doi: 10.1021/jm050038s.
- 375Zhang, S., Golbraikh, A., and Tropsha, A. (2006). J. Med. Chem. 49 (9): 2713–2724. doi: 10.1021/jm050260x.
- 376Liu, S., Zhang, C., Zhou, H., and Zhou, Y. (2004). Proteins Struct. Funct. Bioinform. 56 (1): 93–101. doi: 10.1002/prot.20019.
- 377Gohlke, H., Hendlich, M., and Klebe, G. (2000). J. Mol. Biol. 295 (2): 337–356. doi: 10.1006/jmbi.1999.3371.
- 378Sotriffer, C.A., Gohlke, H., and Klebe, G. (2002). J. Med. Chem. 45 (10): 1967–1970. doi: 10.1021/jm025507u.
- 379Gohlke, H. and Klebe, G. (2002). J. Med. Chem. 45 (19): 4153–4170. doi: 10.1021/jm020808p.
- 380Velec, H.F.G., Gohlke, H., and Klebe, G. (2005). J. Med. Chem. 48 (20): 6296–6303. doi: 10.1021/jm050436v.
- 381Groom, C.R., Bruno, I.J., Lightfoot, M.P., and Ward, S.C. (2016). Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 72 (2): 171–179. doi: 10.1107/S2052520616003954.
- 382Dittrich, J., Schmidt, D., Pfleger, C., and Gohlke, H. (2019). J. Chem. Inf. Model. 59 (1): 509–521. doi: 10.1021/acs.jcim.8b00582.
- 383Huang, S.-Y. and Zou, X. (2006). J. Comput. Chem. 27 (15): 1866–1875. doi: 10.1002/jcc.20504.
- 384Huang, S.-Y. and Zou, X. (2006). J. Comput. Chem. 27 (15): 1876–1882. doi: 10.1002/jcc.20505.
- 385Huang, S.Y. and Zou, X. (2010). J. Chem. Inf. Model. 50 (2): 262–273. doi: 10.1021/ci9002987.
- 386Zheng, Z., Ucisik, M.N., and Merz, K.M. (2013). J. Chem. Theory Comput. 9 (12): 5526–5538. doi: 10.1021/ct4005992.
- 387Mooij, W.T.M. and Verdonk, M.L. (2005). Proteins Struct. Funct. Bioinform. 61 (2): 272–287. doi: 10.1002/prot.20588.
- 388Deng, W., Breneman, C., and Embrechts, M.J. (2004). J. Chem. Inf. Comput. Sci. 44 (2): 699–703. doi: 10.1021/ci034246+.
- 389Hsieh, J.-H., Yin, S., Liu, S., Sedykh, A., Dokholyan, N.V., and Tropsha, A. (2011). J. Chem. Inf. Model. 51 (9): 2027–2035. doi: 10.1021/ci200146e.
- 390Durrant, J.D. and McCammon, J.A. (2011). J. Chem. Inf. Model. 51 (11): 2897–2903. doi: 10.1021/ci2003889.
- 391Durrant, J.D. and McCammon, J.A. (2010). J. Chem. Inf. Model. 50 (10): 1865–1871. doi: 10.1021/ci100244v.
- 392Kinnings, S.L., Liu, N., Tonge, P.J., Jackson, R.M., Xie, L., and Bourne, P.E. (2011). J. Chem. Inf. Model. 51 (2): 408–419. doi: 10.1021/ci100369f.
- 393Ballester, P.J. and Mitchell, J.B.O. (2010). Bioinformatics 26 (9): 1169–1175. doi: 10.1093/bioinformatics/btq112.
- 394Breiman, L. (2001). Mach. Learn. 45 (1): 5–32. doi: 10.1023/A:1010933404324.
- 395Ballester, P.J., Schreyer, A., and Blundell, T.L. (2014). J. Chem. Inf. Model. 54 (3): 944–955. doi: 10.1021/ci500091r.
- 396Zilian, D. and Sotriffer, C.A. (2013). J. Chem. Inf. Model. 53 (8): 1923–1933. doi: 10.1021/ci400120b.
- 397Vapnik, V.N. (1998). Statistical Learning Theory. New York, NY: Wiley.
- 398Gabel, J., Desaphy, J., and Rognan, D. (2014). J. Chem. Inf. Model. 54 (10): 2807–2815. doi: 10.1021/ci500406k.
- 399Khamis, M.A. and Gomaa, W. (2015). Eng. Appl. Artif. Intell. 45: 136–151. doi: 10.1016/j.engappai.2015.06.021.
- 400Desaphy, J., Raimbaud, E., Ducrot, P., and Rognan, D. (2013). J. Chem. Inf. Model. 53 (3): 623–637. doi: 10.1021/ci300566n.
- 401Wang, C. and Zhang, Y. (2017). J. Comput. Chem. 38 (3): 169–177. doi: 10.1002/jcc.24667.
- 402Hildebrandt, A., Dehof, A.K., Rurainski, A., Bertsch, A., Schumann, M., Toussaint, N.C., Moll, A., Stöckel, D., Nickels, S., Mueller, S.C., Lenhof, H.P., and Kohlbacher, O. (2010). BMC Bioinformatics 11 (1): 531. doi: 10.1186/1471-2105-11-531.
- 403Zavodsky, M.I., Sanschagrin, P.C., Korde, R.S., and Kuhn, L.A. (2002). J. Comput. Aided Mol. Des. 16 (12): 883–902. doi: 10.1023/A:1023866311551.
- 404Ashtawy, H.M. and Mahapatra, N.R. (2012). IEEE/ACM Trans. Comput. Biol. Bioinform. 9 (5): 1301–1313. doi: 10.1109/TCBB.2012.36.
- 405Li, L., Wang, B., and Meroueh, S.O. (2011). J. Chem. Inf. Model. 51 (9): 2132–2138. doi: 10.1021/ci200078f.
- 406Ding, B., Wang, J., Li, N., and Wang, W. (2013). J. Chem. Inf. Model. 53 (1): 114–122. doi: 10.1021/ci300508m.
- 407Hartshorn, M.J., Verdonk, M.L., Chessari, G., Brewerton, S.C., Mooij, W.T.M., Mortenson, P.N., and Murray, C.W. (2007). J. Med. Chem. 50 (4): 726–741. doi: 10.1021/jm061277y.
- 408Muegge, I. and Oloff, S. (2006). Drug Discov. Today Technol. 3 (4): 405–411. doi: 10.1016/j.ddtec.2006.12.002.
10.1016/j.ddtec.2006.12.002 Google Scholar
- 409Oda, A., Tsuchida, K., Takakura, T., Yamaotsu, N., and Hirono, S. (2006). J. Chem. Inf. Model. 46 (1): 380–391. doi: 10.1021/ci050283k.
- 410Terp, G.E., Johansen, B.N., Christensen, I.T., and Jørgensen, F.S. (2001). J. Med. Chem. 44 (14): 2333–2343. doi: 10.1021/jm001090l.
- 411Betzi, S., Suhre, K., Chétrit, B., Guerlesquin, F., and Morelli, X. (2006). J. Chem. Inf. Model. 46 (4): 1704–1712. doi: 10.1021/ci0600758.
- 412Teramoto, R. and Fukunishi, H. (2007). J. Chem. Inf. Model. 47 (2): 526–534. doi: 10.1021/ci6004993.
- 413Bar-Haim, S., Aharon, A., Ben-Moshe, T., Marantz, Y., and Senderowitz, H. (2009). J. Chem. Inf. Model. 49 (3): 623–633. doi: 10.1021/ci800335j.
- 414Wang, R. and Wang, S. (2001). J. Chem. Inf. Comput. Sci. 41 (3–6): 1422–1426. doi: 10.1021/ci010025x.
- 415Clark, R.D., Strizhev, A., Leonard, J.M., Blake, J.F., and Matthew, J.B. (2002). J. Mol. Graph. Model. 20 (4): 281–295. doi: 10.1016/S1093-3263(01)00125-5.
- 416Cummings, M.D., DesJarlais, R.L., Gibbs, A.C., Mohan, V., and Jaeger, E.P. (2005). J. Med. Chem. 48 (4): 962–976. doi: 10.1021/jm049798d.
- 417Ericksen, S.S., Wu, H., Zhang, H., Michael, L.A., Newton, M.A., Hoffmann, F.M., and Wildman, S.A. (2017). J. Chem. Inf. Model. 57 (7): 1579–1590. doi: 10.1021/acs.jcim.7b00153.
- 418Schneider, G. (2010). Nat. Rev. Drug Discov. 9 (4): 273–276. doi: 10.1038/nrd3139.
- 419Cheng, T., Li, Q., Zhou, Z., Wang, Y., and Bryant, S.H. (2012). AAPS J. 14 (1): 133–141. doi: 10.1208/s12248-012-9322-0.
- 420Damm-Ganamet, K.L., Arora, N., Becart, S., Edwards, J.P., Lebsack, A.D., McAllister, H.M., Nelen, M.I., Rao, N.L., Westover, L., Wiener, J.J.M., and Mirzadegan, T. (2019). J. Chem. Inf. Model. 59 (5): 2046–2062. doi: 10.1021/acs.jcim.8b00941.
- 421Scior, T., Bender, A., Tresadern, G., Medina-Franco, J.L., Martínez-Mayorga, K., Langer, T., Cuanalo-Contreras, K., and Agrafiotis, D.K. (2012). J. Chem. Inf. Model. 52 (4): 867–881. doi: 10.1021/ci200528d.
- 422Banegas-Luna, A.-J., Cerón-Carrasco, J.P., and Pérez-Sánchez, H. (2018). Future Med. Chem. 10 (22): 2641–2658. doi: 10.4155/fmc-2018-0076.
- 423Metcalf, B. and Dillon, S. (2007). Target Validation in Drug Discovery. Elsevier.
- 424Sotriffer, C. (2011). In: Virtual Screening: Principles, Challenges, and Practical Guidelines (ed. C. Sotriffer, R. Mannhold, H. Kubinyi and G. Folkers). Wiley-VCH.
10.1002/9783527633326 Google Scholar
- 425Srivastava, A., Ahmad, S., and Gromiha, M. (2018). Int. J. Mol. Sci. 19 (6): 1595. doi: 10.3390/ijms19061595.
- 426Loo, J.S.E., Emtage, A.L., Ng, K.W., Yong, A.S.J., and Doughty, S.W. (2018). J. Mol. Graph. Model. 80: 38–47. doi: 10.1016/j.jmgm.2017.12.017.
- 427Laskowski, R.A., MacArthur, M.W., Moss, D.S., and Thornton, J.M. (1993). J. Appl. Crystallogr. 26 (2): 283–291. doi: 10.1107/s0021889892009944.
- 428Vriend, G. (1990). J. Mol. Graph. 8 (1): 52–56. doi: 10.1016/0263-7855(90)80070-V.
- 429Joosten, R.P., Joosten, K., Murshudov, G.N., and Perrakis, A. (2012). Acta Crystallogr. D Biol. Crystallogr. 68 (4): 484–496. doi: 10.1107/S0907444911054515.
- 430Hooft, R.W.W., Vriend, G., Sander, C., and Abola, E.E. (1996). Nature 381 (6580): 272–272. doi: 10.1038/381272a0.
- 431Davis, I.W., Leaver-Fay, A., Chen, V.B., Block, J.N., Kapral, G.J., Wang, X., Murray, L.W., Arendall, W.B., Snoeyink, J., Richardson, J.S., and Richardson, D.C. (2007). Nucleic Acids Res. 35 (SUPPL.2): W375–W383. doi: 10.1093/nar/gkm216.
- 432Davis, I.W., Murray, L.W., Richardson, J.S., and Richardson, D.C. (2004). Nucleic Acids Res. 32 (Web Server): W615–W619. doi: 10.1093/nar/gkh398.
- 433Chen, V.B., Arendall, W.B., Headd, J.J., Keedy, D.A., Immormino, R.M., Kapral, G.J., Murray, L.W., Richardson, J.S., and Richardson, D.C. (2010). Acta Crystallogr. D Biol. Crystallogr. 66 (1): 12–21. doi: 10.1107/S0907444909042073.
- 434Williams, C.J., Headd, J.J., Moriarty, N.W., Prisant, M.G., Videau, L.L., Deis, L.N., Verma, V., Keedy, D.A., Hintze, B.J., Chen, V.B., Jain, S., Lewis, S.M., Arendall, W.B., Snoeyink, J., Adams, P.D., Lovell, S.C., Richardson, J.S., and Richardson, D.C. (2018). Protein Sci. 27 (1): 293–315. doi: 10.1002/pro.3330.
- 435Guex, N., Peitsch, M.C., and Schwede, T. (2009). Electrophoresis 30 (S1): S162–S173. doi: 10.1002/elps.200900140.
- 436Pérot, S., Sperandio, O., Miteva, M.A., Camproux, A.-C., and Villoutreix, B.O. (2010). Drug Discov. Today 15 (15–16): 656–667. doi: 10.1016/j.drudis.2010.05.015.
- 437Spyrakis, F., Benedetti, P., Decherchi, S., Rocchia, W., Cavalli, A., Alcaro, S., Ortuso, F., Baroni, M., and Cruciani, G. (2015). J. Chem. Inf. Model. 55 (10): 2256–2274. doi: 10.1021/acs.jcim.5b00169.
- 438Cereto-Massagué, A., Ojeda, M.J., Valls, C., Mulero, M., Garcia-Vallvé, S., and Pujadas, G. (2015). Methods 71 (C): 58–63. doi: 10.1016/j.ymeth.2014.08.005.
- 439Willett, P. (2006). Drug Discov. Today 11 (23–24): 1046–1053. doi: 10.1016/j.drudis.2006.10.005.
- 440Willett, P., Barnard, J.M., and Downs, G.M. (1998). J. Chem. Inf. Comput. Sci. 38 (6): 983–996. doi: 10.1021/ci9800211.
- 441Birchall, K. and Gillet, V.J. (2010). Reduced graphs and their applications in chemoinformatics. In: Methods in Molecular Biology, vol. 672, 197–212. Clifton, NJ: Humana Press.
- 442Koch, M., Duigou, T., Carbonell, P., and Faulon, J.-L. (2017). J. Cheminform. 9 (1): 64. doi: 10.1186/s13321-017-0252-9.
- 443Van Drie, J.H., Weininger, D., and Martin, Y.C. (1989). J. Comput. Aided Mol. Des. 3 (3): 225–251. doi: 10.1007/BF01533070.
- 444Hurst, T. (1994). J. Chem. Inf. Comput. Sci. 34 (1): 190–196. doi: 10.1021/ci00017a025.
- 445Koes, D.R. and Camacho, C.J. (2011). J. Chem. Inf. Model. 51 (6): 1307–1314. doi: 10.1021/ci200097m.
- 446Koes, D.R. and Camacho, C.J. (2012). Nucleic Acids Res. 40 (W1): W409–W414. doi: 10.1093/nar/gks378.
- 447Sunseri, J. and Koes, D.R. (2016). Nucleic Acids Res. 44 (W1): W442–W448. doi: 10.1093/nar/gkw287.
- 448Matter, H. and Pötter, T. (1999). J. Chem. Inf. Comput. Sci. 39 (6): 1211–1225. doi: 10.1021/ci980185h.
- 449Beno, B.R. and Mason, J.S. (2001). Drug Discov. Today 6 (5): 251–258. doi: 10.1016/S1359-6446(00)01665-2.
- 450Muegge, I. and Mukherjee, P. (2016). Expert Opin. Drug Discov. 11 (2): 137–148. doi: 10.1517/17460441.2016.1117070.
- 451Kutlushina, A., Khakimova, A., Madzhidov, T., and Polishchuk, P. (2018). Molecules 23 (12): 3094. doi: 10.3390/molecules23123094.
- 452Lo, Y.-C., Senese, S., Damoiseaux, R., and Torres, J.Z. (2016). ACS Chem. Biol. 11 (8): 2244–2253. doi: 10.1021/acschembio.6b00253.
- 453Awale, M. and Reymond, J.L. (2014). J. Chem. Inf. Model. 54 (7): 1892–1907. doi: 10.1021/ci500232g.
- 454Haigh, J.A., Pickup, B.T., Grant, J.A., and Nicholls, A. (2005). J. Chem. Inf. Model. 45 (3): 673–684. doi: 10.1021/ci049651v.
- 455Kearnes, S. and Pande, V. (2016). J. Comput. Aided Mol. Des. 30 (8): 609–617. doi: 10.1007/s10822-016-9959-3.
- 456Kumar, A. and Zhang, K.Y.J. (2018). Front. Chem. 6 (Jul): 315. doi: 10.3389/fchem.2018.00315.
- 457Sastry, G.M., Inakollu, V.S.S., and Sherman, W. (2013). J. Chem. Inf. Model. 53 (7): 1531–1542. doi: 10.1021/ci300463g.
- 458Cross, S., Baroni, M., Carosati, E., Benedetti, P., and Clementi, S. (2010). J. Chem. Inf. Model. 50 (8): 1442–1450. doi: 10.1021/ci100221g.
- 459Sciabola, S., Benedetti, P., D'Arrigo, G., Torella, R., Baroni, M., Cruciani, G., and Spyrakis, F. (2019). ACS Med. Chem. Lett. 10 (4): 487–492. doi: 10.1021/acsmedchemlett.8b00523.
- 460Baroni, M., Cruciani, G., Sciabola, S., Perruccio, F., and Mason, J.S. (2007). J. Chem. Inf. Model. 47 (2): 279–294. doi: 10.1021/ci600253e.
- 461Cruciani, G., Milani, N., Benedetti, P., Lepri, S., Cesarini, L., Baroni, M., Spyrakis, F., Tortorella, S., Mosconi, E., and Goracci, L. (2018). J. Med. Chem. 61 (1): 360–371. doi: 10.1021/acs.jmedchem.7b01552.
- 462Lipinski, C.A., Lombardo, F., Dominy, B.W., and Feeney, P.J. (2001). Adv. Drug Deliv. Rev. 46 (1–3): 3–26. doi: 10.1016/S0169-409X(00)00129-0.
- 463Ghose, A.K., Viswanadhan, V.N., and Wendoloski, J.J. (1999). J. Comb. Chem. 1 (1): 55–68. doi: 10.1021/cc9800071.
- 464Veber, D.F., Johnson, S.R., Cheng, H.Y., Smith, B.R., Ward, K.W., and Kopple, K.D. (2002). J. Med. Chem. 45 (12): 2615–2623. doi: 10.1021/jm020017n.
- 465Benet, L.Z., Hosey, C.M., Ursu, O., and Oprea, T.I. (2016). Adv. Drug Deliv. Rev. 101: 89–98. doi: 10.1016/j.addr.2016.05.007.
- 466Oprea, T.I., Davis, A.M., Teague, S.J., and Leeson, P.D. (2001). J. Chem. Inf. Comput. Sci. 41 (3–6): 1308–1315. doi: 10.1021/ci010366a.
- 467DeGoey, D.A., Chen, H.-J., Cox, P.B., and Wendt, M.D. (2018). Beyond the rule of 5: lessons learned from AbbVie's drugs and compound collection. J. Med. Chem. 61: 2636–2651.
- 468Stone, J.E., Hardy, D.J., Ufimtsev, I.S., and Schulten, K. (2010). J. Mol. Graph. Model. 29 (2): 116–125. doi: 10.1016/j.jmgm.2010.06.010.
- 469Tanchuk, V., Tanin, V., and Vovk, A. (2013). Multithreaded version of AutoDock 4.2 suitable for massive virtual screening of potential biologically active compounds (enzyme inhibitors). Proceedings of the 3rd International Conference on “High Performance Computing”. HPC-UA. 400–401.
- 470Kannan, S. and Ganji, R. (2010). Porting autodock to CUDA. Proceedings of the IEEE Congress on Evolutionary Computation. IEEE. 1–8.
- 471Ellingson, S.R., Smith, J.C., and Baudry, J. (2014). Mol. Simul. 40 (10−11): 848–854. doi: 10.1080/08927022.2014.899699.
- 472Houk, K.N. and Liu, F. (2017). Acc. Chem. Res. 50 (3): 539–543. doi: 10.1021/acs.accounts.6b00532.
- 473Glaab, E. (2016). Brief. Bioinform. 17 (2): 352–366. doi: 10.1093/bib/bbv037.
- 474Berman, H.M. (2000). Presentation 28 (1): 235–242. doi: 10.1093/nar/28.1.235.
- 475Vyas, V.K., Ukawala, R.D., Ghate, M., and Chintha, C. (2012). Indian J. Pharm. Sci. 74 (1): 1–17. doi: 10.4103/0250-474X.102537.
- 476Pieper, U., Webb, B.M., Dong, G.Q., Schneidman-Duhovny, D., Fan, H., Kim, S.J., Khuri, N., Spill, Y.G., Weinkam, P., Hammel, M., Tainer, J.A., Nilges, M., and Sali, A. (2014). Nucleic Acids Res. 42 (D1): D336–D346. doi: 10.1093/nar/gkt1144.
- 477Bienert, S., Waterhouse, A., de Beer, T.A.P., Tauriello, G., Studer, G., Bordoli, L., and Schwede, T. (2017). Nucleic Acids Res. 45 (D1): D313–D319. doi: 10.1093/nar/gkw1132.
- 478Haas, J., Roth, S., Arnold, K., Kiefer, F., Schmidt, T., Bordoli, L., and Schwede, T. (2013). Database 2013: bat031. doi: 10.1093/database/bat031.
- 479Gabanyi, M.J., Adams, P.D., Arnold, K., Bordoli, L., Carter, L.G., Flippen-Andersen, J., Gifford, L., Haas, J., Kouranov, A., McLaughlin, W.A., Micallef, D.I., Minor, W., Shah, R., Schwede, T., Tao, Y.-P., Westbrook, J.D., Zimmerman, M., and Berman, H.M. (2011). J. Struct. Funct. Genom. 12 (2): 45–54. doi: 10.1007/s10969-011-9106-2.
- 480Irwin, J.J. and Shoichet, B.K. (2005). J. Chem. Inf. Model. 45 (1): 177–182. doi: 10.1021/ci049714+.
- 481Bolton, E.E., Wang, Y., Thiessen, P.A., and Bryant, S.H. (2008). PubChem: integrated platform of small molecules and biological activities. In: Annual Reports in Computational Chemistry (ed. Wheeler, R.A. and Spellmeyer, D.C.), vol. 4, 217–241. Elsevier.
- 482Pence, H.E. and Williams, A. (2010). J. Chem. Educ. 87 (11): 1123–1124. doi: 10.1021/ed100697w.
- 483Gaulton, A., Hersey, A., Nowotka, M., Bento, A.P., Chambers, J., Mendez, D., Mutowo, P., Atkinson, F., Bellis, L.J., Cibrián-Uhalte, E., Davies, M., Dedman, N., Karlsson, A., Magariños, M.P., Overington, J.P., Papadatos, G., Smit, I., and Leach, A.R. (2017). Nucleic Acids Res. 45 (D1): D945–D954. doi: 10.1093/nar/gkw1074.
- 484Tsai, T.-Y., Chang, K.-W., and Chen, C.Y.-C. (2011). J. Comput. Aided Mol. Des. 25 (6): 525–531. doi: 10.1007/s10822-011-9438-9.
- 485Wishart, D.S., Feunang, Y.D., Guo, A.C., Lo, E.J., Marcu, A., Grant, J.R., Sajed, T., Johnson, D., Li, C., Sayeeda, Z., Assempour, N., Iynkkaran, I., Liu, Y., Maciejewski, A., Gale, N., Wilson, A., Chin, L., Cummings, R., Le, D., Pon, A., Knox, C., and Wilson, M. (2018). Nucleic Acids Res. 46 (D1): D1074–D1082. doi: 10.1093/nar/gkx1037.
- 486Roider, H.G., Pavlova, N., Kirov, I., Slavov, S., Slavov, T., Uzunov, Z., and Weiss, B. (2014). BMC Bioinformatics 15 (1): 68. doi: 10.1186/1471-2105-15-68.
- 487Liu, T., Lin, Y., Wen, X., Jorissen, R.N., and Gilson, M.K. (2007). Nucleic Acids Res. 35 (SUPPL. 1): D198–D201. doi: 10.1093/nar/gkl999.
- 488Gunther, S., Kuhn, M., Dunkel, M., Campillos, M., Senger, C., Petsalaki, E., Ahmed, J., Urdiales, E.G., Gewiess, A., Jensen, L.J., Schneider, R., Skoblo, R., Russell, R.B., Bourne, P.E., Bork, P., and Preissner, R. (2007). Nucleic Acids Res. 36 (Database): D919–D922. doi: 10.1093/nar/gkm862.
- 489Roth, B.L., Lopez, E., Patel, S., and Kroeze, W.K. (2000). Neuroscience 6 (4): 252–262. doi: 10.1177/107385840000600408.
- 490Rother, K. (2005). Methods Mol. Biol. 635: 1–32.
- 491Humphrey, W., Dalke, A., and Schulten, K. (1996). J. Mol. Graph. 14 (1): 33–38. doi: 10.1016/0263-7855(96)00018-5.
- 492Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E. (2004). J. Comput. Chem. 25 (13): 1605–1612. doi: 10.1002/jcc.20084.
- 493Schmidtke, P., Bidon-chanal, A., Luque, F.J., and Barril, X. (2011). Bioinformatics 27 (23): 3276–3285. doi: 10.1093/bioinformatics/btr550.
- 494Tseng, Y.Y., Dupree, C., Chen, Z.J., and Li, W.H. (2009). Nucleic Acids Res. 37 (SUPPL. 2): W384–W389. doi: 10.1093/nar/gkp308.
- 495Huang, B. and Omi, A.J. (2009). Integr. Biol. 13 (4): 325–330. doi: 10.1089/omi.2009.0045.
- 496Petřek, M., Otyepka, M., Banáš, P., Košinová, P., Koča, J., and Damborský, J. (2006). BMC Bioinformatics 7: 316. doi: 10.1186/1471-2105-7-316.
- 497Xu, Y., Wang, S., Hu, Q., Gao, S., Ma, X., Zhang, W., Shen, Y., Chen, F., Lai, L., and Pei, J. (2018). Nucleic Acids Res. 46 (W1): W374–W379. doi: 10.1093/nar/gky380.
- 498Weichenberger, C.X. and Sippl, M.J. (2007). Nucleic Acids Res. 35 (Web Server issue): W403–W406. doi: 10.1093/nar/gkm263.
- 499Sterling, T. and Irwin, J.J. (2015). J. Chem. Inf. Model. 55 (11): 2324–2337. doi: 10.1021/acs.jcim.5b00559.
- 500Wishart, D.S. (2006). Nucleic Acids Res. 34 (90001): D668–D672. doi: 10.1093/nar/gkj067.
- 501 Anonymous. MolPort Easy compound ordering service. https://www.molport.com/shop/index (accessed 18 February 2020).
- 502ten Brink, T. and Exner, T.E. (2009). J. Chem. Inf. Model. 49 (6): 1535–1546. doi: 10.1021/ci800420z.
- 503Oehme, D.P., Brownlee, R.T.C., and Wilson, D.J.D. (2012). J. Comput. Chem. 33 (32): 2566–2580. doi: 10.1002/jcc.23095.
- 504Tang, J., Szwajda, A., Shakyawar, S., Xu, T., Hintsanen, P., Wennerberg, K., and Aittokallio, T. (2014). J. Chem. Inf. Model. 54 (3): 735–743. doi: 10.1021/ci400709d.
- 505Koparde, V.N., Scarsdale, J.N., and Kellogg, G.E. (2011). PLoS One 6 (1): e15920. doi: 10.1371/journal.pone.0015920.
- 506 Anonymous. PDB-101 Learn: guide to understanding PDB data: introduction. https://pdb101.rcsb.org/learn/guide-to-understanding-pdb-data/introduction (accessed 18 February 2020).
- 507Djinovic-Carugo, K. and Carugo, O. (2015). Intrinsically Disord. Proteins 3 (1): e1095697. doi: 10.1080/21690707.2015.1095697.
- 508Shimizu, N., Hirata, K., Hasegawa, K., Ueno, G., and Yamamoto, M. (2007). Dose dependence of radiation damage for protein crystals studied at various X-ray energies. Proc. J. Synchrotron Radiat. International Union of Crystallography 14: 4–10.
- 509Miller, R.J.D. (2014). Femtosecond crystallography with ultrabright electrons and X-rays: capturing chemistry in action. Science 343: 1108–1116.
- 510Sun, Z., Fan, J., Li, H., and Jiang, H. (2018). Appl. Sci. 8 (1): 132. doi: 10.3390/app8010132.
- 511Opella, S.J. and Marassi, F.M. (2017). Arch. Biochem. Biophys. 628: 92–101. doi: 10.1016/j.abb.2017.05.011.
- 512Leitner, A., Faini, M., Stengel, F., and Aebersold, R. (2016). Trends Biochem. Sci. 41 (1): 20–32. doi: 10.1016/j.tibs.2015.10.008.
- 513Meisburger, S.P., Thomas, W.C., Watkins, M.B., and Ando, N. (2017). Chem. Rev. 117 (12): 7615–7672. doi: 10.1021/acs.chemrev.6b00790.
- 514Trabuco, L.G., Villa, E., Mitra, K., Frank, J., and Schulten, K. (2008). Structure 16 (5): 673–683. doi: 10.1016/j.str.2008.03.005.
- 515Grubisic, I., Shokhirev, M.N., Orzechowski, M., Miyashita, O., and Tama, F. (2010). J. Struct. Biol. 169 (1): 95–105. doi: 10.1016/j.jsb.2009.09.010.
- 516DiMaio, F., Yu, X., Rensen, E., Krupovic, M., Prangishvili, D., and Egelman, E.H. (2015). Science 348 (6237): 914–917. doi: 10.1126/science.aaa4181.
- 517Sali, A., Berman, H.M., Schwede, T., Trewhella, J., Kleywegt, G., Burley, S.K., Markley, J., Nakamura, H., Adams, P., Bonvin, A.M.J.J., Chiu, W., Peraro, M.D., Di Maio, F., Ferrin, T.E., Grünewald, K., Gutmanas, A., Henderson, R., Hummer, G., Iwasaki, K., Johnson, G., Lawson, C.L., Meiler, J., Marti-Renom, M.A., Montelione, G.T., Nilges, M., Nussinov, R., Patwardhan, A., Rappsilber, J., Read, R.J., Saibil, H., Schröder, G.F., Schwieters, C.D., Seidel, C.A.M., Svergun, D., Topf, M., Ulrich, E.L., Velankar, S., and Westbrook, J.D. (2015). Outcome of the first WwPDB hybrid/integrative methods task force workshop. Proc. Struct. Cell Press 23: 1156–1167.
- 518Nittinger, E., Schneider, N., Lange, G., and Rarey, M. (2015). J. Chem. Inf. Model. 55 (4): 771–783. doi: 10.1021/ci500662d.
- 519Carugo, O. and Bordo, D. (1999). Acta Crystallogr. D Biol. Crystallogr. 55 (2): 479–483. doi: 10.1107/S0907444998012086.
- 520Yang, J., Wang, Y., Wang, T., Jiang, J., Botting, C.H., Liu, H., Chen, Q., Yang, J., Naismith, J.H., Zhu, X., and Chen, L. (2016). Nat. Commun. 7 (1): 1–9. doi: 10.1038/ncomms12103.
- 521Prota, A.E., Bargsten, K., Zurwerra, D., Field, J.J., Díaz, J.F., Altmann, K.H., and Steinmetz, M.O. (2013). Science 339 (6119): 587–590. doi: 10.1126/science.1230582.
- 522Prota, A.E., Danel, F., Bachmann, F., Bargsten, K., Buey, R.M., Pohlmann, J., Reinelt, S., Lane, H., and Steinmetz, M.O. (2014). J. Mol. Biol. 426 (8): 1848–1860. doi: 10.1016/j.jmb.2014.02.005.
- 523Nogales, E., Wolf, S.G., and Downing, K.H. (1998). Nature 391 (6663): 199–203. doi: 10.1038/34465.
- 524Tripathi, A., Fornabaio, M., Kellogg, G.E., Gupton, J.T., Gewirtz, D.A., Yeudall, W.A., Vega, N.E., and Mooberry, S.L. (2008). Bioorg. Med. Chem. 16 (5): 2235–2242. doi: 10.1016/j.bmc.2007.11.076.
- 525Rohena, C.C., Telang, N.S., Da, C., Risinger, A.L., Sikorski, J.A., Kellogg, G.E., Gupton, J.T., and Mooberry, S.L. (2016). Mol. Pharmacol. 89 (2): 287–296. doi: 10.1124/mol.115.101592.
- 526Gupton, J.T., Yeudall, S., Telang, N., Hoerrner, M., Huff, E., Crawford, E., Lounsbury, K., Kimmel, M., Curry, W., Harrison, A., Juekun, W., Shimozono, A., Ortolani, J., Lescalleet, K., Patteson, J., Moore-Stoll, V., Rohena, C.C., Mooberry, S.L., Obaidullah, A.J., Kellogg, G.E., and Sikorski, J.A. (2017). Bioorg. Med. Chem. 25 (12): 3206–3214. doi: 10.1016/j.bmc.2017.04.012.
- 527Nguyen, T.L., McGrath, C., Hermone, A.R., Burnett, J.C., Zaharevitz, D.W., Day, B.W., Wipf, P., Hamel, E., and Gussio, R. (2005). J. Med. Chem. 48 (19): 6107–6116. doi: 10.1021/jm050502t.
- 528El-Nakkady, S.S., Hanna, M.M., Roaiah, H.M., and Ghannam, I.A.Y. (2012). Eur. J. Med. Chem. 47: 387–398. doi: 10.1016/j.ejmech.2011.11.007.
- 529Sarkar, T., Nguyen, T.L., Su, Z.-W., Hao, J., Bai, R., Gussio, R., Qiu, S.X., and Hamel, E. (2012). Biochem. Pharmacol. 84 (4): 444–450. doi: 10.1016/j.bcp.2012.05.014.
- 530Li, D.-D., Qin, Y.-J., Zhang, X., Yin, Y., Zhu, H.-L., and Zhao, L.-G. (2015). Chem. Biol. Drug Des. 86 (4): 731–745. doi: 10.1111/cbdd.12545.
- 531Mooberry, S.L., Weiderhold, K.N., Dakshanamurthy, S., Hamel, E., Banner, E.J., Kharlamova, A., Hempel, J., Gupton, J.T., and Brown, M.L. (2007). Mol. Pharmacol. 72 (1): 132–140. doi: 10.1124/mol.107.034876.
- 532Smith, R., Brereton, I.M., Chai, R.Y., and Kent, S.B.H. (1996). Nat. Struct. Biol. 3 (11): 946–950. doi: 10.1038/nsb1196-946.
- 533Bashford, D. and Karplus, M. (1990). Biochemistry 29 (44): 10219–10225. doi: 10.1021/bi00496a010.
- 534Warshel, A. (1981). Acc. Chem. Res. 14 (9): 284–290. doi: 10.1021/ar00069a004.
- 535Wisz, M.S. and Hellinga, H.W. (2003). Proteins Struct. Funct. Genet. 51 (3): 360–377. doi: 10.1002/prot.10332.
- 536Li, H., Robertson, A.D., and Jensen, J.H. (2005). Proteins Struct. Funct. Bioinform. 61 (4): 704–721. doi: 10.1002/prot.20660.
- 537Anandakrishnan, R., Aguilar, B., and Onufriev, A.V. (2012). Nucleic Acids Res. 40 (W1): W537–W541. doi: 10.1093/nar/gks375.
- 538Todorov, N.P., Monthoux, P.H., and Alberts, I.L. (2006). J. Chem. Inf. Model. 46 (3): 1134–1142. doi: 10.1021/ci050071n.
- 539Martin, Y.C. (2009). J. Comput. Aided Mol. Des. 23 (10): 693–704. doi: 10.1007/s10822-009-9303-2.
- 540Goodford, P.J. (1985). J. Med. Chem. 28 (7): 849–857. doi: 10.1021/jm00145a002.
- 541Abel, R., Young, T., Farid, R., Berne, B.J., and Friesner, R.A. (2008). J. Am. Chem. Soc. 130 (9): 2817–2831. doi: 10.1021/ja0771033.
- 542Mason, J.S., Bortolato, A., Weiss, D.R., Deflorian, F., Tehan, B., and Marshall, F.H. (2013). Silico Pharmacol. 1 (1): 23. doi: 10.1186/2193-9616-1-23.
10.1186/2193‐9616‐1‐23 Google Scholar
- 543Verdonk, M.L., Chessari, G., Cole, J.C., Hartshorn, M.J., Murray, C.W., Nissink, J.W.M., Taylor, R.D., and Taylor, R. (2005). J. Med. Chem. 48 (20): 6504–6515. doi: 10.1021/jm050543p.
- 544Raymer, M.L., Sanschagrin, P.C., Punch, W.F., Venkataraman, S., Goodman, E.D., and Kuhn, L.A. (1997). J. Mol. Biol. 265 (4): 445–464. doi: 10.1006/jmbi.1996.0746.
- 545Verdonk, M.L., Cole, J.C., Watson, P., Gillet, V., and Willett, P. (2001). J. Mol. Biol. 307 (3): 841–859. doi: 10.1006/jmbi.2001.4452.
- 546García-Sosa, A.T., Mancera, R.L., and Dean, P.M. (2003). J. Mol. Model. 9 (3): 172–182. doi: 10.1007/s00894-003-0129-x.
- 547Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., and Shindyalov, I.N. (2000). Nucleic Acids Res. 28: 235–242. doi: 10.1093/nar/28.1.235.
- 548Pardridge, W.M. (2015). Expert Opin. Ther. Targets 19 (8): 1059–1072. doi: 10.1517/14728222.2015.1042364.
- 549Levitt, D.G. and Banaszak, L.J. (1992). J. Mol. Graph. 10 (4): 229–234. doi: 10.1016/0263-7855(92)80074-N.
- 550Hendlich, M., Rippmann, F., and Barnickel, G. (1997). J. Mol. Graph. Model. 15 (6): 359–363. doi: 10.1016/S1093-3263(98)00002-3.
- 551Le Guilloux, V., Schmidtke, P., and Tuffery, P. (2009). BMC Bioinformatics 10 (1): 168. doi: 10.1186/1471-2105-10-168.
- 552Laurie, A.T.R. and Jackson, R.M. (2005). Bioinformatics 21 (9): 1908–1916. doi: 10.1093/bioinformatics/bti315.
- 553An, J., Totrov, M., and Abagyan, R. (2005). Mol. Cell. Proteomics 4 (6): 752–761. doi: 10.1074/mcp.M400159-MCP200.
- 554Halgren, T. (2007). Chem. Biol. Drug Des. 69 (2): 146–148. doi: 10.1111/j.1747-0285.2007.00483.x.
- 555Tripathi, A. and Kellogg, G.E. (2010). Proteins Struct. Funct. Bioinform. 78 (4): 825–842. doi: 10.1002/prot.22608.
- 556Schmidtke, P., Souaille, C., Estienne, F., Baurin, N., and Kroemer, R.T. (2010). J. Chem. Inf. Model. 50 (12): 2191–2200. doi: 10.1021/ci1000289.
- 557Sheridan, R.P., Maiorov, V.N., Holloway, M.K., Cornell, W.D., and Gao, Y.-D. (2010). J. Chem. Inf. Model. 50 (11): 2029–2040. doi: 10.1021/ci100312t.
- 558Moynie, L., Schnell, R., McMahon, S.A., Sandalova, T., Boulkerou, W.A., Schmidberger, J.W., Alphey, M., Cukier, C., Duthie, F., Kopec, J., Liu, H., Jacewicz, A., Hunter, W.N., Naismith, J.H., and Schneider, G. (2013). Acta Crystallogr. F Struct. Biol. Cryst. Commun. 69 (1): 25–34. doi: 10.1107/S1744309112044739.
- 559Alphey, M.S., Pirrie, L., Torrie, L.S., Boulkeroua, W.A., Gardiner, M., Sarkar, A., Maringer, M., Oehlmann, W., Brenk, R., Scherman, M.S., McNeil, M., Rejzek, M., Field, R.A., Singh, M., Gray, D., Westwood, N.J., and Naismith, J.H. (2013). ACS Chem. Biol. 8 (2): 387–396. doi: 10.1021/cb300426u.
- 560Hajduk, P.J., Huth, J.R., and Fesik, S.W. (2005). J. Med. Chem. 48 (7): 2518–2525. doi: 10.1021/jm049131r.
- 561Cheng, A.C., Coleman, R.G., Smyth, K.T., Cao, Q., Soulard, P., Caffrey, D.R., Salzberg, A.C., and Huang, E.S. (2007). Nat. Biotechnol. 25 (1): 71–75. doi: 10.1038/nbt1273.
- 562Halgren, T.A. (2009). J. Chem. Inf. Model. 49 (2): 377–389. doi: 10.1021/ci800324m.
- 563Soga, S., Shirai, H., Kobori, M., and Hirayama, N. (2007). J. Chem. Inf. Model. 47 (2): 400–406. doi: 10.1021/ci6002202.
- 564Krasowski, A., Muthas, D., Sarkar, A., Schmitt, S., and Brenk, R. (2011). J. Chem. Inf. Model. 51 (11): 2829–2842. doi: 10.1021/ci200266d.
- 565Barril, X. (2013). Wiley Interdiscip. Rev. Comput. Mol. Sci. 3 (4): 327–338. doi: 10.1002/wcms.1134.
- 566Volkamer, A., Kuhn, D., Grombacher, T., Rippmann, F., and Rarey, M. (2012). J. Chem. Inf. Model. 52 (2): 360–372. doi: 10.1021/ci200454v.
- 567Volkamer, A., Kuhn, D., Rippmann, F., and Rarey, M. (2012). Bioinformatics 28 (15): 2074–2075. doi: 10.1093/bioinformatics/bts310.
- 568Desaphy, J., Azdimousa, K., Kellenberger, E., and Rognan, D. (2012). J. Chem. Inf. Model. 52 (8): 2287–2299. doi: 10.1021/ci300184x.
- 569Schmidtke, P. and Barril, X. (2010). J. Med. Chem. 53 (15): 5858–5867. doi: 10.1021/jm100574m.
- 570Knowles, J. and Gromo, G. (2003). Nat. Rev. Drug Discov. 2 (1): 63–69. doi: 10.1038/nrd986.
- 571Sarkar, A. and Brenk, R. (2015). PLoS One 10 (9): e0137279. doi: 10.1371/journal.pone.0137279.
- 572Froes, T.Q., Baldini, R.L., Vajda, S., and Castilho, M.S. (2019). Curr. Protein Pept. Sci. 20 (12): 1189–1203. doi: 10.2174/1389203720666190417120758.
- 573Keiser, M.J., Irwin, J.J., and Shoichet, B.K. (2010). Biochemistry 49 (48): 10267–10276. doi: 10.1021/bi101540g.
- 574Barelier, S., Sterling, T., O'Meara, M.J., and Shoichet, B.K. (2015). ACS Chem. Biol. 10 (12): 2772–2784. doi: 10.1021/acschembio.5b00683.
- 575Chen, Y.-C., Tolbert, R., Aronov, A.M., McGaughey, G., Walters, W.P., and Meireles, L. (2016). J. Chem. Inf. Model. 56 (9): 1734–1745. doi: 10.1021/acs.jcim.6b00118.
- 576Jalencas, X. and Mestres, J. (2013). Med. Chem. Commun. 4 (1): 80–87. doi: 10.1039/C2MD20242E.
- 577Byrne, R. and Schneider, G. (2019). In silico target prediction for small molecules. In: Methods in Molecular Biology (ed. Zeigler, S. and Waldmann, H.), vol. 1888, 273–309. Humana Press Inc.
- 578Ehrlich, P. (1911). Folia Serol. 7: 697–714.
- 579Capra, J.A., Laskowski, R.A., Thornton, J.M., Singh, M., and Funkhouser, T.A. (2009). PLoS Comput. Biol. 5 (12): e1000585. doi: 10.1371/journal.pcbi.1000585.
- 580Brylinski, M., Naderi, M., Govindaraj, R.G., and Lemoine, J. (2018). J. Mol. Biol. 430 (15): 2266–2273. doi: 10.1016/j.jmb.2017.12.001.
- 581Ghosh, A., Corbett, G.T., Gonzalez, F.J., and Pahan, K. (2012). J. Biol. Chem. 287 (46): 38922–38935. doi: 10.1074/jbc.M112.365148.
- 582Keiser, M.J., Setola, V., Irwin, J.J., Laggner, C., Abbas, A.I., Hufeisen, S.J., Jensen, N.H., Kuijer, M.B., Matos, R.C., Tran, T.B., Whaley, R., Glennon, R.A., Hert, J., Thomas, K.L.H., Edwards, D.D., Shoichet, B.K., and Roth, B.L. (2009). Nature 462 (7270): 175–181. doi: 10.1038/nature08506.
- 583Gregori-Puigjané, E., Setola, V., Hert, J., Crews, B.A., Irwin, J.J., Lounkine, E., Marnett, L., Roth, B.L., and Shoichet, B.K. (2012). Proc. Natl. Acad. Sci. U.S.A. 109 (28): 11178–11183. doi: 10.1073/pnas.1204524109.
- 584Abdulhameed, M.D.M., Chaudhury, S., Singh, N., Sun, H., Wallqvist, A., and Tawa, G.J. (2012). J. Chem. Inf. Model. 52 (2): 492–505. doi: 10.1021/ci2003544.
- 585Zhang, Y. and Skolnick, J. (2005). Nucleic Acids Res. 33 (7): 2302–2309. doi: 10.1093/nar/gki524.
- 586Shindyalov, I.N. and Bourne, P.E. (1998). Protein Eng. 11 (9): 739–747. doi: 10.1093/protein/11.9.739.
- 587Holm, L. and Sander, C. (1996). Science 273 (5275): 595–602. doi: 10.1126/science.273.5275.595.
- 588Batista, J., Hawkins, P.C., Tolbert, R., and Geballe, M.T. (2014). J. Cheminform. 6 (S1): P57. doi: 10.1186/1758-2946-6-s1-p57.
10.1186/1758‐2946‐6‐s1‐p57 Google Scholar
- 589Hawkins, P.C.D., Skillman, A.G., and Nicholls, A. (2007). J. Med. Chem. 50 (1): 74–82. doi: 10.1021/jm0603365.
- 590Kruger, F.A. and Overington, J.P. (2012). PLoS Comput. Biol. 8 (1): e1002333. doi: 10.1371/journal.pcbi.1002333.
- 591Chaudhari, R., Tan, Z., and Zhang, S. (2017). Overview of drug polypharmacology and multitargeted molecular design. In: Comprehensive Medicinal Chemistry III (ed. Kihara D.), vol. 2–8, 258–275. New York, NY: Humana/Elsevier.
10.1016/B978-0-12-409547-2.12323-6 Google Scholar
- 592Shulman-Peleg, A., Nussinov, R., and Wolfson, H.J. (2005). Nucleic Acids Res. 33 (SUPPL. 2): W337–W341. doi: 10.1093/nar/gki482.
- 593Gao, M. and Skolnick, J. (2013). Bioinformatics 29 (5): 597–604. doi: 10.1093/bioinformatics/btt024.
- 594Xie, L. and Bourne, P.E. (2008). Proc. Natl. Acad. Sci. U.S.A. 105 (14): 5441–5446. doi: 10.1073/pnas.0704422105.
- 595Lee, H.S. and Im, W. (2017). G-LoSA for prediction of protein-ligand binding sites and structures. In: Methods in Molecular Biology (ed. Chackalamannil, S., Rotella, D. and Ward, S.E.), vol. 1611, 97–108.
- 596Govindaraj, R.G. and Brylinski, M. (2018). BMC Bioinformatics 19 (1): 91. doi: 10.1186/s12859-018-2109-2.
- 597Nakamura, T. and Tomii, K. (2016). Biophys. Physicobiol. 13 (0): 139–147. doi: 10.2142/biophysico.13.0_139.
- 598Schmitt, S., Kuhn, D., and Klebe, G. (2002). J. Mol. Biol. 323 (2): 387–406. doi: 10.1016/S0022-2836(02)00811-2.
- 599Chartier, M., Adriansen, E., and Najmanovich, R. (2016). Bioinformatics 32 (4): 621–623. doi: 10.1093/bioinformatics/btv616.
- 600Yeturu, K. and Chandra, N. (2008). BMC Bioinformatics 9 (1): 543. doi: 10.1186/1471-2105-9-543.
- 601Kinoshita, K., Murakami, Y., and Nakamura, H. (2007). Nucleic Acids Res. 35 (SUPPL.2): W398–W402. doi: 10.1093/nar/gkm351.
- 602Kinoshita, K., Furui, J., and Nakamura, H. (2002). J. Struct. Funct. Genom. 2 (1): 9–22. doi: 10.1023/A:1011318527094.
- 603Sael, L. and Kihara, D. (2012). Proteins Struct. Funct. Bioinform. 80 (4): 1177–1195. doi: 10.1002/prot.24018.
- 604Hoffmann, B., Zaslavskiy, M., Vert, J.P., and Stoven, V. (2010). BMC Bioinformatics 11 (1): 99. doi: 10.1186/1471-2105-11-99.
- 605Duran-Frigola, M., Siragusa, L., Ruppin, E., Barril, X., Cruciani, G., and Aloy, P. (2017). PLoS Comput. Biol. 13 (6): e1005522. doi: 10.1371/journal.pcbi.1005522.
- 606Siragusa, L., Spyrakis, F., Goracci, L., Cross, S., and Cruciani, G. (2014). Mol. Inform. 33 (6–7): 446–453. doi: 10.1002/minf.201400028.
- 607Siragusa, L., Cross, S., Baroni, M., Goracci, L., and Cruciani, G. (2015). Proteins Struct. Funct. Bioinform. 83 (3): 517–532. doi: 10.1002/prot.24753.
- 608Sirci, F., Goracci, L., Rodríguez, D., van Muijlwijk-Koezen, J., Gutiérrez-de-Terán, H., and Mannhold, R. (2012). Comput. Aided Mol. Des. 26 (11): 1247–1266. doi: 10.1007/s10822-012-9612-8.
- 609Siragusa, L., Luciani, R., Borsari, C., Ferrari, S., Costi, M.P., Cruciani, G., and Spyrakis, F. (2016). ChemMedChem 11 (15): 1653–1666. doi: 10.1002/cmdc.201600121.
- 610Ekins, S., Puhl, A.C., Zorn, K.M., Lane, T.R., Russo, D.P., Klein, J.J., Hickey, A.J., and Clark, A.M. (2019). Nat. Mater. 18 (5): 435–441. doi: 10.1038/s41563-019-0338-z.
- 611Baker, N.C., Ekins, S., Williams, A.J., and Tropsha, A. (2018). Drug Discov. Today 23 (3): 661–672. doi: 10.1016/j.drudis.2018.01.018.
- 612Cruz, S., Gomes, S., Borralho, P., Rodrigues, C., Gaudêncio, S., and Pereira, F. (2018). Biomol. Ther. 8 (3): 56. doi: 10.3390/biom8030056.
- 613Napolitano, F., Zhao, Y., Moreira, V.M., Tagliaferri, R., Kere, J., D'Amato, M., and Greco, D. (2013). J. Cheminform. 5 (6): 30. doi: 10.1186/1758-2946-5-30.
- 614Jones, D., Bopaiah, J., Alghamedy, F., Jacobs, N., Weiss, H.L., de Jong, W.A., and Ellingson, S.R. (2018). AMIA Jt. Summits Transl. Sci. Proc. 2017: 98–107.
- 615Zhao, K. and So, H.C. (2019). Methods Mol. Biol. 1903: 219–237. doi: 10.1007/978-1-4939-8955-3_13.
- 616Aliper, A., Plis, S., Artemov, A., Ulloa, A., Mamoshina, P., and Zhavoronkov, A. (2016). Mol. Pharm. 13 (7): 2524–2530. doi: 10.1021/acs.molpharmaceut.6b00248.
- 617Cannon, D.A., Shan, L., Du, Q., Shirinian, L., Rickert, K.W., Rosenthal, K.L., Korade, M., van Vlerken-Ysla, L.E., Buchanan, A., Vaughan, T.J., Damschroder, M.M., and Popovic, B. (2019). PLoS Comput. Biol. 15 (5): e1006980. doi: 10.1371/journal.pcbi.1006980.
- 618Ambrosetti, F., Jiménez-García, B., Roel-Touris, J., and Bonvin, A.M.J.J. (2020). Structure 28 (1): 119–129.e2. doi: 10.1016/j.str.2019.10.011.
- 619Kilambi, K.P. and Gray, J.J. (2017). Sci. Rep. 7 (1): 1–15. doi: 10.1038/s41598-017-08414-y.
- 620Baral, P., Pavadai, E., Gerstman, B.S., and Chapagain, P.P. (2020). Sci. Rep. 10 (1): 1–11. doi: 10.1038/s41598-020-63640-1.
- 621Portnoff, A.D., Patel, N., Massare, M.J., Zhou, H., Tian, J.-H., Zhou, B., Shinde, V., Glenn, G.M., and Smith, G. (2020). Vaccine 8 (1): 99. doi: 10.3390/vaccines8010099.
- 622Carter, P.J. and Lazar, G.A. (2018). Next generation antibody drugs: pursuit of the “high-hanging fruit.”. Nat. Rev. Drug Discov. 17: 197–223.
- 623Shin, W.H., Christoffer, C.W., and Kihara, D. (2017). Methods 131: 22–32. doi: 10.1016/j.ymeth.2017.08.006.
- 624Gray, J.J. (2006). Curr. Opin. Struct. Biol. 16 (2): 183–193. doi: 10.1016/j.sbi.2006.03.003.
- 625Rodrigues, J.P.G.L.M. and Bonvin, A.M.J.J. (2014). FEBS J. 281 (8): 1988–2003. doi: 10.1111/febs.12771.
- 626Gromiha, M.M., Yugandhar, K., and Jemimah, S. (2017). Curr. Opin. Struct. Biol. 44: 31–38. doi: 10.1016/j.sbi.2016.10.016.
- 627Zhang, Q., Feng, T., Xu, L., Sun, H., Pan, P., Li, Y., Li, D., and Hou, T. (2016). Curr. Drug Targets 17 (14): 1586–1594.
- 628Gettins, P.G.W. (2002). Chem. Rev. 102 (12): 4751–4804. doi: 10.1021/CR010170+.
- 629Katchalski-Katzir, E., Shariv, I., Eisenstein, M., Friesem, A.A., Aflalo, C., and Vakser, I.A. (1992). Proc. Natl. Acad. Sci. U. S. A. 89 (6): 2195–2199. doi: 10.1073/pnas.89.6.2195.
- 630Macindoe, G., Mavridis, L., Venkatraman, V., Devignes, M.D., and Ritchie, D.W. (2010). Nucleic Acids Res. 38 (SUPPL. 2): W445–W449. doi: 10.1093/nar/gkq311.
- 631Chen, R., Li, L., and Weng, Z. (2003). Proteins Struct. Funct. Genet. 52 (1): 80–87. doi: 10.1002/prot.10389.
- 632Bachar, O., Fischer, D., Nussinov, R., and Wolfson, H. (1993). Protein Eng. Des. Sel. 6 (3): 279–287. doi: 10.1093/protein/6.3.279.
- 633Lyskov, S. and Gray, J.J. (2008). Nucleic Acids Res. 36 (Web Server issue): W233–W238. doi: 10.1093/nar/gkn216.
- 634Moal, I.H. and Bates, P.A. (2010). Int. J. Mol. Sci. 11 (10): 3623–3648. doi: 10.3390/ijms11103623.
- 635Venkatraman, V. and Ritchie, D.W. (2012). Proteins Struct. Funct. Bioinform. 80 (9): 2262–2274. doi: 10.1002/prot.24115.
- 636Gray, J.J., Moughon, S., Wang, C., Schueler-Furman, O., Kuhlman, B., Rohl, C.A., and Baker, D. (2003). J. Mol. Biol. 331 (1): 281–299. doi: 10.1016/S0022-2836(03)00670-3.
- 637Shen, Y., Paschalidis, I.C., Vakili, P., and Vajda, S. (2008). PLoS Comput. Biol. 4 (10): e1000191. doi: 10.1371/journal.pcbi.1000191.
- 638Lensink, M.F., Velankar, S., and Wodak, S.J. (2017). Proteins Struct. Funct. Bioinform. 85 (3): 359–377. doi: 10.1002/prot.25215.
- 639Lensink, M.F., Moal, I.H., Bates, P.A., Kastritis, P.L., Melquiond, A.S.J., Karaca, E., Schmitz, C., van Dijk, M., Bonvin, A.M.J.J., Eisenstein, M., Jiménez-García, B., Grosdidier, S., Solernou, A., Pérez-Cano, L., Pallara, C., Fernández-Recio, J., Xu, J., Muthu, P., Praneeth Kilambi, K., Gray, J.J., Grudinin, S., Derevyanko, G., Mitchell, J.C., Wieting, J., Kanamori, E., Tsuchiya, Y., Murakami, Y., Sarmiento, J., Standley, D.M., Shirota, M., Kinoshita, K., Nakamura, H., Chavent, M., Ritchie, D.W., Park, H., Ko, J., Lee, H., Seok, C., Shen, Y., Kozakov, D., Vajda, S., Kundrotas, P.J., Vakser, I.A., Pierce, B.G., Hwang, H., Vreven, T., Weng, Z., Buch, I., Farkash, E., Wolfson, H.J., Zacharias, M., Qin, S., Zhou, H.X., Huang, S.Y., Zou, X., Wojdyla, J.A., Kleanthous, C., and Wodak, S.J. (2014). Proteins Struct. Funct. Bioinform. 82 (4): 620–632. doi: 10.1002/prot.24439.
- 640Lensink, M.F. and Wodak, S.J. (2010). Proteins Struct. Funct. Bioinform. 78 (15): 3073–3084. doi: 10.1002/prot.22818.
- 641Lensink, M.F., Nadzirin, N., Velankar, S., and Wodak, S.J. (2019). Proteins Struct. Funct. Bioinform. prot.25870. doi: 10.1002/prot.25870.
- 642Mizera, M., Szymanowska, D., Stasiłowicz, A., Siąkowska, D., Lewandowska, K., Miklaszewski, A., Plech, T., Tykarska, E., and Cielecka-Piontek, J. (2019). Biomol. Ther. 10 (1): 24. doi: 10.3390/biom10010024.
- 643Han, D., Han, Z., Liu, L., Wang, Y., Xin, S., Zhang, H., and Int, Z.Y. (2020). J. Mol. Sci. 21 (3): 766. doi: 10.3390/ijms21030766.
- 644Tom, L., Nirmal, C.R., Dusthackeer, A., Magizhaveni, B., and Kurup, M.R.P. (2020). New J. Chem. 44 (11): 4467–4477. doi: 10.1039/c9nj06351j.
- 645Lorenz, D.A. and Garner, A.L. (2018). Approaches for the discovery of small molecule ligands targeting microRNAs. In: Topics in Medicinal Chemistry (ed. Garner, A.), vol. 27, 79–110. Springer Verlag.
- 646Wehler, T. and Brenk, R. (2018). Structure-based discovery of small molecules binding to RNA. In: Topics in Medicinal Chemistry (ed. Garner, A.), vol. 27, 47–77. Springer Verlag.
- 647Miller, B.L. (2018). A modular approach to the discovery and affinity maturation of sequence-selective RNA-binding compounds. In: Topics in Medicinal Chemistry (ed. Garner, A.), vol. 27, 17–45. Springer Verlag.
- 648Costales, M.G., Childs-Disney, J.L., and Disney, M.D. (2018). Computational tools for design of selective small molecules targeting RNA: from small molecule microarrays to chemical similarity searching. In: Topics in Medicinal Chemistry (ed. Garner, A.), vol. 27, 1–16. Springer Verlag.
- 649Hermann, T. (2018). Viral RNA targets and their small molecule ligands. In: Topics in Medicinal Chemistry (ed. Garner, A.), vol. 27, 111–134. Springer Verlag.
- 650Sarkar, A. and Garneau-Tsodikova, S. (2019). Medchemcomm 10 (9): 1512–1516. doi: 10.1039/c9md00330d.
- 651Blankenfeldt, W., Asuncion, M., Lam, J.S., and Naismith, J.H. (2000). EMBO J. 19 (24): 6652–6663. doi: 10.1093/emboj/19.24.6652.
- 652Melo, A. and Glaser, L. (1965). J. Biol. Chem. 240 (1): 398–405.
- 653Marshall, G.R. (2012). J. Comput. Aided Mol. Des. 26 (1): 3–8. doi: 10.1007/s10822-011-9494-1.
- 654Irwin, J.J. (2008). J. Comput. Aided Mol. Des. 22 (3–4): 193–199. doi: 10.1007/s10822-008-9189-4.
- 655Tommasi, R., Brown, D.G., Walkup, G.K., Manchester, J.I., and Miller, A.A. (2015). Nat. Rev. Drug Discov. 14 (8): 529–542. doi: 10.1038/nrd4572.
- 656O'Shea, R. and Moser, H.E. (2008). J. Med. Chem. 51 (10): 2871–2878. doi: 10.1021/jm700967e.
- 657Brown, E.D. and Wright, G.D. (2016). Nature 529 (7586): 336–343. doi: 10.1038/nature17042.
- 658Kim, D.-S., Kim, C.-M., Won, C.-I., Kim, J.-K., Ryu, J., Cho, Y., Lee, C., and Bhak, J. (2011). J. Biomol. Struct. Dyn. 29 (1): 219–242. doi: 10.1080/07391102.2011.10507384.
- 659Coleman, R.G., Carchia, M., Sterling, T., Irwin, J.J., and Shoichet, B.K. (2013). PLoS One 8 (10): e75992. doi: 10.1371/journal.pone.0075992.
- 660Tietze, S. and Apostolakis, J. (2007). J. Chem. Inf. Model. 47 (4): 1657–1672. doi: 10.1021/ci7001236.
- 661Hsu, K.-C., Chen, Y.-F., Lin, S.-R., and Yang, J.-M. (2011). BMC Bioinformatics 12 (Suppl 1): S33. doi: 10.1186/1471-2105-12-S1-S33.
- 662Ruiz-Carmona, S., Alvarez-Garcia, D., Foloppe, N., Garmendia-Doval, A.B., Juhos, S., Schmidtke, P., Barril, X., Hubbard, R.E., and Morley, S.D. (2014). PLoS Comput. Biol. 10 (4): e1003571. doi: 10.1371/journal.pcbi.1003571.
- 663Kurcinski, M., Jamroz, M., Blaszczyk, M., Kolinski, A., and Kmiecik, S. (2015). Nucleic Acids Res. 43 (W1): W419–W424. doi: 10.1093/nar/gkv456.
- 664Kurcinski, M., Badaczewska-Dawid, A., Kolinski, M., Kolinski, A., and Kmiecik, S. (2020). Protein Sci. 29 (1): 211–222. doi: 10.1002/pro.3771.
- 665Irwin, J.J., Shoichet, B.K., Mysinger, M.M., Huang, N., Colizzi, F., Wassam, P., and Cao, Y. (2009). J. Med. Chem. 52 (18): 5712–5720. doi: 10.1021/jm9006966.
- 666Santos, K.B., Guedes, I.A., Karl, A.L.M., and Dardenne, L.E. (2020). J. Chem. Inf. Model. 60 (2): 667–683. doi: 10.1021/acs.jcim.9b00905.
- 667Mashiach, E., Schneidman-Duhovny, D., Andrusier, N., Nussinov, R., and Wolfson, H.J. (2008). Nucleic Acids Res. 36 (Web Server): W229–W232. doi: 10.1093/nar/gkn186.
- 668Mashiach, E., Nussinov, R., and Wolfson, H.J. (2010). Nucleic Acids Res. 38 (SUPPL. 2): doi: 10.1093/nar/gkq373.
- 669Tovchigrechko, A. and Vakser, I.A. (2006). Nucleic Acids Res. 34 (Web Server): W310–W314. doi: 10.1093/nar/gkl206.
- 670Wang, J.-C., Chu, P.-Y., Chen, C.-M., and Lin, J.-H. (2012). Nucleic Acids Res. 40 (W1): W393–W399. doi: 10.1093/nar/gks496.
- 671Li, H., Leung, K.-S., Ballester, P.J., and Wong, M.-H. (2014). PLoS One 9 (1): e85678. doi: 10.1371/journal.pone.0085678.
- 672Chang, D.T.H., Oyang, Y.J., and Lin, J.H. (2005). Nucleic Acids Res. 33 (SUPPL. 2): doi: 10.1093/nar/gki586.
- 673Labbé, C.M., Rey, J., Lagorce, D., Vavruša, M., Becot, J., Sperandio, O., Villoutreix, B.O., Tufféry, P., and Miteva, M.A. (2015). Nucleic Acids Res. 43 (W1): W448–W454. doi: 10.1093/nar/gkv306.
- 674Gupta, A., Sharma, P., and Jayaram, B. (2007). Protein Pept. Lett. 14 (7): 632–646. doi: 10.2174/092986607781483831.
- 675Schneidman-Duhovny, D., Inbar, Y., Polak, V., Shatsky, M., Halperin, I., Benyamini, H., Barzilai, A., Dror, O., Haspel, N., Nussinov, R., and Wolfson, H.J. (2003). Proteins Struct. Funct. Genet. 52 (1): 107–112. doi: 10.1002/prot.10397.
- 676Grosdidier, A., Zoete, V., and Michielin, O. (2011). Nucleic Acids Res. 39 (suppl): W270–W277. doi: 10.1093/nar/gkr366.
- 677Li, H., Gao, Z., Kang, L., Zhang, H., Yang, K., Yu, K., Luo, X., Zhu, W., Chen, K., Shen, J., Wang, X., and Jiang, H. (2006). Nucleic Acids Res. 34 (Web Server): W219–W224. doi: 10.1093/nar/gkl114.
- 678Pierce, B.G., Wiehe, K., Hwang, H., Kim, B.-H., Vreven, T., and Weng, Z. (2014). Bioinformatics 30 (12): 1771–1773. doi: 10.1093/bioinformatics/btu097.
- 679Pinzi, L. and Rastelli, G. (2019). Int. J. Mol. Sci. 20 (18): 4331. doi: 10.3390/ijms20184331.
- 680Pinzi, L., Lherbet, C., Baltas, M., Pellati, F., and Rastelli, G. (2019). Molecules 24 (14): 2567. doi: 10.3390/molecules24142567.
- 681Lee, A., Lee, K., and Kim, D. (2016). Expert Opin. Drug Discov. 11 (7): 707–715. doi: 10.1080/17460441.2016.1190706.
- 682Ramsay, R.R., Popovic-Nikolic, M.R., Nikolic, K., Uliassi, E., and Bolognesi, M.L. (2018). Clin. Transl. Med. 7 (1): 3. doi: 10.1186/s40169-017-0181-2.
- 683Anighoro, A., Bajorath, J., and Rastelli, G. (2014). J. Med. Chem. 57 (19): 7874–7887. doi: 10.1021/jm5006463.
- 684Irwin, J.J. and Shoichet, B.K. (2016). J. Med. Chem. 59 (9): 4103–4120. doi: 10.1021/acs.jmedchem.5b02008.
- 685Huang, S.Y. (2018). Brief. Bioinform. 19 (5): 982–994. doi: 10.1093/bib/bbx030.
- 686De Vivo, M. and Cavalli, A. (2017). Wiley Interdiscip. Rev. Comput. Mol. Sci. 7 (6): e1320. doi: 10.1002/wcms.1320.
- 687Rastelli, G. and Pinzi, L. (2019). Front. Chem. 7: 498. doi: 10.3389/fchem.2019.00498.
- 688Broccatelli, F. and Brown, N. (2014). J. Chem. Inf. Model. 54 (6): 1634–1641. doi: 10.1021/ci5001604.
- 689Kumar, A. and Zhang, K.Y.J. (2018). J. Comput. Aided Mol. Des. 32 (1): 163–173. doi: 10.1007/s10822-017-0048-z.
- 690Anighoro, A. and Bajorath, J. (2016). J. Chem. Inf. Model. 56 (3): 580–587. doi: 10.1021/acs.jcim.5b00745.
- 691Liu, J., Su, M., Liu, Z., Li, J., Li, Y., and Wang, R. (2017). BMC Bioinformatics 18 (1): 343. doi: 10.1186/s12859-017-1750-5.
- 692Caporuscio, F. and Rastelli, G. (2016). Future Med. Chem. 8 (15): 1887–1897. doi: 10.4155/fmc-2016-0098.
- 693Comitani, F. and Gervasio, F.L. (2018). J. Chem. Theory Comput. 14 (6): 3321–3331. doi: 10.1021/acs.jctc.8b00263.
- 694Gioia, D., Bertazzo, M., Recanatini, M., Masetti, M., and Cavalli, A. (2017). Molecules 22 (11): 2029. doi: 10.3390/molecules22112029.
- 695Wójcikowski, M., Ballester, P.J., and Siedlecki, P. (2017). Sci. Rep. 7 (1): 46710. doi: 10.1038/srep46710.
- 696Pereira, J.C., Caffarena, E.R., and Dos Santos, C.N. (2016). J. Chem. Inf. Model. 56 (12): 2495–2506. doi: 10.1021/acs.jcim.6b00355.
- 697Shoichet, B.K. and Kobilka, B.K. (2012). Trends Pharmacol. Sci. 33 (5): 268–272. doi: 10.1016/j.tips.2012.03.007.
- 698Mittl, P.R. and Grütter, M.G. (2006). Curr. Opin. Struct. Biol. 16 (6): 769–775. doi: 10.1016/j.sbi.2006.10.014.
- 699von Itzstein, M., Wu, W.-Y., Kok, G.B., Pegg, M.S., Dyason, J.C., Jin, B., Van Phan, T., Smythe, M.L., White, H.F., Oliver, S.W., Colman, P.M., Varghese, J.N., Ryan, D.M., Woods, J.M., Bethell, R.C., Hotham, V.J., Cameron, J.M., and Penn, C.R. (1993). Nature 363 (6428): 418–423. doi: 10.1038/363418a0.
- 700Batool, M., Ahmad, B., and Choi, S. (2019). Int. J. Mol. Sci. 20 (11): 2783. doi: 10.3390/ijms20112783.
- 701Roughley, S.D. and Hubbard, R.E. (2011). J. Med. Chem. 54 (12): 3989–4005. doi: 10.1021/jm200350g.
- 702Babaoglu, K., Simeonov, A., Irwin, J.J., Nelson, M.E., Feng, B., Thomas, C.J., Cancian, L., Costi, M.P., Maltby, D.A., Jadhav, A., Inglese, J., Austin, C.P., and Shoichet, B.K. (2008). J. Med. Chem. 51 (8): 2502–2511. doi: 10.1021/jm701500e.
- 703Feng, B.Y., Simeonov, A., Jadhav, A., Babaoglu, K., Inglese, J., Shoichet, B.K., and Austin, C.P. (2007). J. Med. Chem. 50 (10): 2385–2390. doi: 10.1021/jm061317y.
- 704Hecker, S.J., Reddy, K.R., Totrov, M., Hirst, G.C., Lomovskaya, O., Griffith, D.C., King, P., Tsivkovski, R., Sun, D., Sabet, M., Tarazi, Z., Clifton, M.C., Atkins, K., Raymond, A., Potts, K.T., Abendroth, J., Boyer, S.H., Loutit, J.S., Morgan, E.E., Durso, S., and Dudley, M.N. (2015). J. Med. Chem. 58 (9): 3682–3692. doi: 10.1021/acs.jmedchem.5b00127.
- 705Roberts, N.A., Martin, J.A., Kinchington, D., Broadhurst, A.V., Craig, J.C., Duncan, I.B., Galpin, S.A., Handa, B.K., Kay, J., Kröhn, A., Lambert, R.W., Merrett, J.H., Mills, J.S., Parkes, K.E.B., Redshaw, S., Ritchie, A.J., Taylor, D.L., Thomas, G.J., and Machin, P.J. (1990). Science 248 (4953): 358–361. doi: 10.1126/science.2183354.
- 706Kempf, D.J., Sham, H.L., Marsh, K.C., Flentge, C.A., Betebenner, D., Green, B.E., McDonald, E., Vasavanonda, S., Saldivar, A., Wideburg, N.E., Kati, W.M., Ruiz, L., Zhao, C., Fino, L., Patterson, J., Molla, A., Plattner, J.J., and Norbeck, D.W. (1998). J. Med. Chem. 41 (4): 602–617. doi: 10.1021/jm970636+.
- 707Ferreira, R.S., Simeonov, A., Jadhav, A., Eidam, O., Mott, B.T., Keiser, M.J., McKerrow, J.H., Maloney, D.J., Irwin, J.J., and Shoichet, B.K. (2010). J. Med. Chem. 53 (13): 4891–4905. doi: 10.1021/jm100488w.
- 708Jadhav, A., Ferreira, R.S., Klumpp, C., Mott, B.T., Austin, C.P., Inglese, J., Thomas, C.J., Maloney, D.J., Shoichet, B.K., and Simeonov, A. (2010). J. Med. Chem. 53 (1): 37–51. doi: 10.1021/jm901070c.
- 709Anderson, A.C. (2003). Chem. Biol. 10 (9): 787–797. doi: 10.1016/j.chembiol.2003.09.002.
- 710Wlodawer, A. and Vondrasek, J. (1998). Annu. Rev. Biophys. Biomol. Struct. 27 (1): 249–284. doi: 10.1146/annurev.biophys.27.1.249.
- 711Marrakchi, H., Lanéelle, G., and Quémard, A. (2000). Microbiology 146 (2): 289–296. doi: 10.1099/00221287-146-2-289.
- 712Ren, J.-X., Li, L.-L., Zheng, R.-L., Xie, H.-Z., Cao, Z.-X., Feng, S., Pan, Y.-L., Chen, X., Wei, Y.-Q., and Yang, S.-Y. (2011). J. Chem. Inf. Model. 51 (6): 1364–1375. doi: 10.1021/ci100464b.
- 713Wang, L., Gu, Q., Zheng, X., Ye, J., Liu, Z., Li, J., Hu, X., Hagler, A., and Xu, J. (2013). J. Chem. Inf. Model. 53 (9): 2409–2422. doi: 10.1021/ci400322j.
- 714Dadashpour, S., Kucukkilinc, T.T., Tan, O.U., Ozadali, K., Irannejad, H., and Emami, S. (2015). Arch. Pharm. (Weinheim). 348 (3): 179–187. doi: 10.1002/ardp.201400400.
- 715Matsuno, K., Masuda, Y., Uehara, Y., Sato, H., Muroya, A., Takahashi, O., Yokotagawa, T., Furuya, T., Okawara, T., Otsuka, M., Ogo, N., Ashizawa, T., Oshita, C., Tai, S., Ishii, H., Akiyama, Y., and Asai, A. (2010). ACS Med. Chem. Lett. 1 (8): 371–375. doi: 10.1021/ml1000273.
- 716Grover, S., Apushkin, M.A., and Fishman, G.A. (2006). Am J. Ophthalmol. 141 (5): 850–858. doi: 10.1016/j.ajo.2005.12.030.
- 717Anea, C.B., Lyon, M., Lee, I.A., Gonzales, J.N., Adeyemi, A., Falls, G., Kutlar, A., and Brittain, J.E. (2016). Am. J. Hematol. 91 (2): 173–178. doi: 10.1002/ajh.24224.
- 718Cui, J.J., Tran-Dubé, M., Shen, H., Nambu, M., Kung, P.-P., Pairish, M., Jia, L., Meng, J., Funk, L., Botrous, I., McTigue, M., Grodsky, N., Ryan, K., Padrique, E., Alton, G., Timofeevski, S., Yamazaki, S., Li, Q., Zou, H., Christensen, J., Mroczkowski, B., Bender, S., Kania, R.S., and Edwards, M.P. (2011). J. Med. Chem. 54 (18): 6342–6363. doi: 10.1021/jm2007613.
- 719Huang, W.-S., Liu, S., Zou, D., Thomas, M., Wang, Y., Zhou, T., Romero, J., Kohlmann, A., Li, F., Qi, J., Cai, L., Dwight, T.A., Xu, Y., Xu, R., Dodd, R., Toms, A., Parillon, L., Lu, X., Anjum, R., Zhang, S., Wang, F., Keats, J., Wardwell, S.D., Ning, Y., Xu, Q., Moran, L.E., Mohemmad, Q.K., Jang, H.G., Clackson, T., Narasimhan, N.I., Rivera, V.M., Zhu, X., Dalgarno, D., and Shakespeare, W.C. (2016). J. Med. Chem. 59 (10): 4948–4964. doi: 10.1021/acs.jmedchem.6b00306.
- 720Ban, F., Dalal, K., Li, H., LeBlanc, E., Rennie, P.S., and Cherkasov, A. (2017). J. Chem. Inf. Model. 57 (5): 1018–1028. doi: 10.1021/acs.jcim.7b00137.
- 721Park, H., Jung, H.-Y., Mah, S., and Hong, S. (2018). J. Chem. Inf. Model. 58 (3): 700–709. doi: 10.1021/acs.jcim.7b00671.
- 722Arrowsmith, C.H., Audia, J.E., Austin, C., Baell, J., Bennett, J., Blagg, J., Bountra, C., Brennan, P.E., Brown, P.J., Bunnage, M.E., Buser-Doepner, C., Campbell, R.M., Carter, A.J., Cohen, P., Copeland, R.A., Cravatt, B., Dahlin, J.L., Dhanak, D., Edwards, A.M., Frederiksen, M., Frye, S.V., Gray, N., Grimshaw, C.E., Hepworth, D., Howe, T., Huber, K.V.M., Jin, J., Knapp, S., Kotz, J.D., Kruger, R.G., Lowe, D., Mader, M.M., Marsden, B., Mueller-Fahrnow, A., Müller, S., O'Hagan, R.C., Overington, J.P., Owen, D.R., Rosenberg, S.H., Ross, R., Roth, B., Schapira, M., Schreiber, S.L., Shoichet, B., Sundström, M., Superti-Furga, G., Taunton, J., Toledo-Sherman, L., Walpole, C., Walters, M.A., Willson, T.M., Workman, P., Young, R.N., and Zuercher, W.J. (2015). Nat. Chem. Biol. 11 (8): 536–541. doi: 10.1038/nchembio.1867.
- 723Baell, J.B. and Holloway, G.A. (2010). J. Med. Chem. 53 (7): 2719–2740. doi: 10.1021/jm901137j.
- 724Shoichet, B.K. (2006). Drug Discov. Today 11 (13–14): 607–615. doi: 10.1016/j.drudis.2006.05.014.
- 725Walters, W.P. and Namchuk, M. (2003). Nat. Rev. Drug Discov. 2 (4): 259–266. doi: 10.1038/nrd1063.
- 726Rishton, G.M. (2003). Drug Discov. Today 8 (2): 86–96. doi: 10.1016/S1359644602025722.
- 727Saubern, S., Guha, R., and Baell, J.B. (2011). Mol. Inform. 30 (10): 847–850. doi: 10.1002/minf.201100076.
- 728Thorne, N., Auld, D.S., and Inglese, J. (2010). Curr. Opin. Chem. Biol. 14 (3): 315–324. doi: 10.1016/j.cbpa.2010.03.020.
- 729Coan, K.E.D. and Shoichet, B.K. (2008). J. Am. Chem. Soc. 130 (29): 9606–9612. doi: 10.1021/ja802977h.
- 730Krüger, J., Thiel, P., Merelli, I., Grunzke, R., and Gesing, S. (2016). Curr. Drug Targets 17 (14): 1649–1660. doi: 10.2174/1389450117666160201105806.
- 731da Silveira, N.J.F., Pereira, F.S.S., Elias, T.C., and Henrique, T. (2019). Web services for molecular docking simulations. In: Methods in Molecular Biology, vol. 2053, 221–229.
- 732McGann, M. (2011). J. Chem. Inf. Model. 51 (3): 578–596. doi: 10.1021/ci100436p.
- 733Zavodszky, M.I., Rohatgi, A., Van Voorst, J.R., Yan, H., and Kuhn, L.A. (2009). J. Mol. Recognit. 22 (4): 280–292. doi: 10.1002/jmr.942.
- 734van Zundert, G.C.P., Rodrigues, J.P.G.L.M., Trellet, M., Schmitz, C., Kastritis, P.L., Karaca, E., Melquiond, A.S.J., van Dijk, M., de Vries, S.J., and Bonvin, A.M.J.J. (2016). J. Mol. Biol. 428 (4): 720–725. doi: 10.1016/j.jmb.2015.09.014.
- 735Moretti, R., Lyskov, S., Das, R., Meiler, J., and Gray, J.J. (2018). Protein Sci. 27 (1): 259–268. doi: 10.1002/pro.3313.
- 736Vamathevan, J., Clark, D., Czodrowski, P., Dunham, I., Ferran, E., Lee, G., Li, B., Madabhushi, A., Shah, P., Spitzer, M., and Zhao, S. (2019). Nat. Rev. Drug Discov. 18 (6): 463–477. doi: 10.1038/s41573-019-0024-5.
- 737Costa, P.R., Acencio, M.L., and Lemke, N. (2010). BMC Genomics 11 (Suppl 5): S9. doi: 10.1186/1471-2164-11-S5-S9.
- 738Jeon, J., Nim, S., Teyra, J., Datti, A., Wrana, J.L., Sidhu, S.S., Moffat, J., and Kim, P.M. (2014). Genome Med. 6 (7): doi: 10.1186/s13073-014-0057-7.
- 739Ament, S.A., Pearl, J.R., Cantle, J.P., Bragg, R.M., Skene, P.J., Coffey, S.R., Bergey, D.E., Wheeler, V.C., MacDonald, M.E., Baliga, N.S., Rosinski, J., Hood, L.E., Carroll, J.B., and Price, N.D. (2018). Mol. Syst. Biol. 14 (3): e7435. doi: 10.15252/msb.20167435.
- 740Nayal, M. and Honig, B. (2006). Proteins Struct. Funct. Bioinform. 63 (4): 892–906. doi: 10.1002/prot.20897.
- 741Bakheet, T.M. and Doig, A.J. (2009). Bioinformatics 25 (4): 451–457. doi: 10.1093/bioinformatics/btp002.
- 742Wang, Q., Feng, Y., Huang, J., Wang, T., and Cheng, G. (2017). PLoS One 12 (4): e0176486. doi: 10.1371/journal.pone.0176486.
- 743Kandoi, G., Acencio, M.L., and Lemke, N. (2015). Front. Physiol. 6: 366. doi: 10.3389/fphys.2015.00366.
- 744Li, B., Shin, H., Gulbekyan, G., Pustovalova, O., Nikolsky, Y., Hope, A., Bessarabova, M., Schu, M., Kolpakova-Hart, E., Merberg, D., Dorner, A., and Trepicchio, W.L. (2015). PLoS One 10 (6): e0130700. doi: 10.1371/journal.pone.0130700.
- 745van Gool, A.J., Bietrix, F., Caldenhoven, E., Zatloukal, K., Scherer, A., Litton, J.-E., Meijer, G., Blomberg, N., Smith, A., Mons, B., Heringa, J., Koot, W.-J., Smit, M.J., Hajduch, M., Rijnders, T., and Ussi, A. (2017). Nat. Rev. Drug Discov. 16 (9): 587–588. doi: 10.1038/nrd.2017.72.
- 746Tasaki, S., Suzuki, K., Kassai, Y., Takeshita, M., Murota, A., Kondo, Y., Ando, T., Nakayama, Y., Okuzono, Y., Takiguchi, M., Kurisu, R., Miyazaki, T., Yoshimoto, K., Yasuoka, H., Yamaoka, K., Morita, R., Yoshimura, A., Toyoshiba, H., and Takeuchi, T. (2018). Nat. Commun. 9 (1): 2755. doi: 10.1038/s41467-018-05044-4.
- 747Veltri, R.W., Partin, A.W., and Miller, M.C. (2000). J. Cell. Biochem. 79 (S35): 151–157. doi: 10.1002/1097-4644(2000)79:35+<151::AID-JCB1139>3.0.CO;2-7.
10.1002/1097-4644(2000)79:35+<151::AID-JCB1139>3.0.CO;2-7 Google Scholar
- 748Lu, C., Lewis, J.S., Dupont, W.D., Plummer, W.D., Janowczyk, A., and Madabhushi, A. (2017). Mod. Pathol. 30 (12): 1655–1665. doi: 10.1038/modpathol.2017.98.
- 749Giraldo, N.A., Kaunitz, G.J., Cottrell, T.R., Berry, S., Sunshine, J.C., Nguyen, P., Xu, H., Orgutsova, A., Church, C.D., Miller, N.J., Yearley, J.H., Lipson, E.J., Danilova, L., Nghiem, P.T., Topalian, S.L., and Taube, J.M. (2017). Abstract 662: The differential association of PD-1, PD-L1, and CD8+ cells with response to pembrolizumab and presence of merkel cell polyomavirus (MCPyV) in patients with merkel cell carcinoma (MCC). Proceedings of the Clinical Research (Excluding Clinical Trials). American Association for Cancer Research. 662.
- 750Chen, H., Engkvist, O., Wang, Y., Olivecrona, M., and Blaschke, T. (2018). Drug Discov. Today 23 (6): 1241–1250. doi: 10.1016/j.drudis.2018.01.039.
- 751Ma, J., Sheridan, R.P., Liaw, A., Dahl, G.E., and Svetnik, V. (2015). J. Chem. Inf. Model. 55 (2): 263–274. doi: 10.1021/ci500747n.
- 752Mayr, A., Klambauer, G., Unterthiner, T., and Hochreiter, S. (2016). Front. Environ. Sci. 3: 80. doi: 10.3389/fenvs.2015.00080.
- 753Ragoza, M., Hochuli, J., Idrobo, E., Sunseri, J., and Koes, D.R. (2017). J. Chem. Inf. Model. 57 (4): 942–957. doi: 10.1021/acs.jcim.6b00740.
- 754Ramsundar, B., Liu, B., Wu, Z., Verras, A., Tudor, M., Sheridan, R.P., and Pande, V. (2017). J. Chem. Inf. Model. 57 (8): 2068–2076. doi: 10.1021/acs.jcim.7b00146.
- 755Wu, Z., Ramsundar, B., Feinberg, E.N., Gomes, J., Geniesse, C., Pappu, A.S., Leswing, K., and Pande, V. (2018). Chem. Sci. 9 (2): 513–530. doi: 10.1039/C7SC02664A.
- 756Olivecrona, M., Blaschke, T., Engkvist, O., and Chen, H. (2017). J. Cheminform. 9 (1): 48. doi: 10.1186/s13321-017-0235-x.
- 757Kadurin, A., Nikolenko, S., Khrabrov, K., Aliper, A., and Zhavoronkov, A. (2017). Mol. Pharm. 14 (9): 3098–3104. doi: 10.1021/acs.molpharmaceut.7b00346.
- 758Preuer, K., Renz, P., Unterthiner, T., Hochreiter, S., and Klambauer, G. (2018). J. Chem. Inf. Model. 58 (9): 1736–1741. doi: 10.1021/acs.jcim.8b00234.
- 759Bolton, W. and Perutz, M.F. (1970). Nature 228 (5271): 551–552. doi: 10.1038/228551a0.
- 760Fermi, G., Perutz, M.F., Shaanan, B., and Fourme, R. (1984). J. Mol. Biol. 175 (2): 159–174. doi: 10.1016/0022-2836(84)90472-8.
- 761Kendrew, J.C., Bodo, G., Dintzis, H.M., Parrish, R.G., Wyckoff, H., and Phillips, D.C. (1958). Nature 181 (4610): 662–666. doi: 10.1038/181662a0.
- 762Watson, H. and Kendrew, J.C. (1969). Prog. Stereochem. 4: 299–333.
- 763Mattevi, A., Rizzi, M., and Bolognesi, M. (1996). Curr. Opin. Struct. Biol. 6 (6): 824–829. doi: 10.1016/S0959-440X(96)80013-3.
- 764Ahmed, A. and Gohlke, H. (2006). Proteins 63 (4): 1038–1051. doi: 10.1002/prot.20907.
- 765Zentgraf, M., Fokkens, J., and Sotriffer, C.A. (2006). ChemMedChem 1 (12): 1355–1359. doi: 10.1002/cmdc.200600073.
- 766Knegtel, R.M., Kuntz, I.D., and Oshiro, C. (1997). J. Mol. Biol. 266 (2): 424–440. doi: 10.1006/jmbi.1996.0776.
- 767McCammon, J.A. (2005). Target flexibility in molecular recognition. Proc. Biochim. Biophys. Acta - Proteins Proteom. 1754: 221–224.
- 768Lin, J.H., Perryman, A.L., Schames, J.R., and McCammon, J.A. (2002). J. Am. Chem. Soc. 124 (20): 5632–5633. doi: 10.1021/ja0260162.
- 769Lin, J.-H., Perryman, A.L., Schames, J.R., and McCammon, J.A. (2003). Biopolymers 68 (1): 47–62. doi: 10.1002/bip.10218.
- 770Rueda, M., Bottegoni, G., and Abagyan, R. (2010). J. Chem. Inf. Model. 50 (1): 186–193. doi: 10.1021/ci9003943.
- 771Bottegoni, G., Rocchia, W., Rueda, M., Abagyan, R., and Cavalli, A. (2011). PLoS One 6 (5): e18845. doi: 10.1371/journal.pone.0018845.
- 772Gane, P.J. and Dean, P.M. (2000). Curr. Opin. Struct. Biol. 10 (4): 401–404. doi: 10.1016/S0959-440X(00)00105-6.
- 773Nichols, S.E., Baron, R., and McCammon, J.A. (2012). On the use of molecular dynamics receptor conformations for virtual screening. In: Methods in Molecular Biology (ed. Baron R.), vol. 819, 93–103. New York, NY: Springer.
- 774Ivetac, A. and Andrew McCammon, J. (2011). Curr. Pharm. Des. 17 (17): 1663–1671. doi: 10.2174/138161211796355056.
- 775Bottegoni, G., Kufareva, I., Totrov, M., and Abagyan, R. (2009). J. Med. Chem. 52 (2): 397–406. doi: 10.1021/jm8009958.
- 776De Vivo, M., Masetti, M., Bottegoni, G., and Cavalli, A. (2016). J. Med. Chem. 59 (9): 4035–4061. doi: 10.1021/acs.jmedchem.5b01684.
- 777Copeland, R.A., Pompliano, D.L., and Meek, T.D. (2006). Nat. Rev. Drug Discov. 5 (9): 730–739. doi: 10.1038/nrd2082.
- 778Buch, I., Giorgino, T., and De Fabritiis, G. (2011). Proc. Natl. Acad. Sci. U.S.A. 108 (25): 10184–10189. doi: 10.1073/pnas.1103547108.
- 779Dror, R.O., Pan, A.C., Arlow, D.H., Borhani, D.W., Maragakis, P., Shan, Y., Xu, H., and Shaw, D.E. (2011). Proc. Natl. Acad. Sci. 108 (32): 13118–13123. doi: 10.1073/pnas.1104614108.
- 780Shan, Y., Kim, E.T., Eastwood, M.P., Dror, R.O., Seeliger, M.A., and Shaw, D.E. (2011). J. Am. Chem. Soc. 133 (24): 9181–9183. doi: 10.1021/ja202726y.
- 781Decherchi, S., Berteotti, A., Bottegoni, G., Rocchia, W., and Cavalli, A. (2015). Nat. Commun. 6 (1): 6155. doi: 10.1038/ncomms7155.
- 782Doerr, S., Harvey, M.J., Noé, F., and De Fabritiis, G. (2016). J. Chem. Theory Comput. 12 (4): 1845–1852. doi: 10.1021/acs.jctc.6b00049.
- 783Bollini, M., Domaoal, R.A., Thakur, V.V., Gallardo-Macias, R., Spasov, K.A., Anderson, K.S., and Jorgensen, W.L. (2011). J. Med. Chem. 54 (24): 8582–8591. doi: 10.1021/jm201134m.
- 784Keränen, H., Pérez-Benito, L., Ciordia, M., Delgado, F., Steinbrecher, T.B., Oehlrich, D., Van Vlijmen, H.W.T., Trabanco, A.A., and Tresadern, G. (2017). J. Chem. Theory Comput. 13 (3): 1439–1453. doi: 10.1021/acs.jctc.6b01141.
- 785Boukharta, L., Gutiérrez-de-Terán, H., and Åqvist, J. (2014). PLoS Comput. Biol. 10 (4): e1003585. doi: 10.1371/journal.pcbi.1003585.
- 786Colizzi, F., Perozzo, R., Scapozza, L., Recanatini, M., and Cavalli, A. (2010). J. Am. Chem. Soc. 132 (21): 7361–7371. doi: 10.1021/ja100259r.
- 787Jorgensen, W.L. (2010). Nature 466 (7302): 42–43. doi: 10.1038/466042a.
- 788Pande, V.S., Beauchamp, K., and Bowman, G.R. (2010). Methods 52 (1): 99–105. doi: 10.1016/j.ymeth.2010.06.002.
- 789Mollica, L., Theret, I., Antoine, M., Perron-Sierra, F., Charton, Y., Fourquez, J.-M., Wierzbicki, M., Boutin, J.A., Ferry, G., Decherchi, S., Bottegoni, G., Ducrot, P., and Cavalli, A. (2016). J. Med. Chem. 59 (15): 7167–7176. doi: 10.1021/acs.jmedchem.6b00632.
- 790Spitaleri, A., Decherchi, S., Cavalli, A., and Rocchia, W. (2018). J. Chem. Theory Comput. 14 (3): 1727–1736. doi: 10.1021/acs.jctc.7b01088.
- 791Lam, P., Jadhav, P., Eyermann, C., Hodge, C., Ru, Y., Bacheler, L., Meek, J., Otto, M., Rayner, M., Wong, Y., and Et, A. (1994). Science 263 (5145): 380–384. doi: 10.1126/science.8278812.
- 792Grzesiek, S., Bax, A., Nicholson, L.K., Yamazaki, T., Wingfield, P., Stahl, S.J., Eyermann, C.J., Torchia, D.A., and Hodge, C.N. (1994). J. Am. Chem. Soc. 116 (4): 1581–1582. doi: 10.1021/ja00083a058.
- 793Levinson, N.M. and Boxer, S.G. (2014). Nat. Chem. Biol. 10 (2): 127–132. doi: 10.1038/nchembio.1404.
- 794Snyder, P.W., Mecinovic, J., Moustakas, D.T., Thomas, S.W., Harder, M., Mack, E.T., Lockett, M.R., Heroux, A., Sherman, W., and Whitesides, G.M. (2011). Proc. Natl. Acad. Sci. 108 (44): 17889–17894. doi: 10.1073/pnas.1114107108.
- 795Lockett, M.R., Lange, H., Breiten, B., Heroux, A., Sherman, W., Rappoport, D., Yau, P.O., Snyder, P.W., and Whitesides, G.M. (2013). Angew. Chem. Int. Ed. 52 (30): 7714–7717. doi: 10.1002/anie.201301813.
- 796Krimmer, S.G., Betz, M., Heine, A., and Klebe, G. (2014). ChemMedChem 9 (4): 833–846. doi: 10.1002/cmdc.201400013.
- 797Sanschagrin, P.C. and Kuhn, L.A. (1998). Protein Sci. 7 (10): 2054–2064. doi: 10.1002/pro.5560071002.
- 798Carugo, O. (1999). Protein Eng. 12 (12): 1021–1024. doi: 10.1093/protein/12.12.1021.
- 799Patel, H., Gruning, B.A., Gunther, S., and Merfort, I. (2014). Bioinformatics 30 (20): 2978–2980. doi: 10.1093/bioinformatics/btu424.
- 800Rossato, G., Ernst, B., Vedani, A., and Smieško, M. (2011). J. Chem. Inf. Model. 51 (8): 1867–1881. doi: 10.1021/ci200150p.
- 801Allen, F.H. (2002). Acta Crystallogr. B Struct. Sci. 58 (3): 380–388. doi: 10.1107/S0108768102003890.
- 802Zheng, M., Li, Y., Xiong, B., Jiang, H., and Shen, J. (2013). J. Comput. Chem. 34 (7): 583–592. doi: 10.1002/jcc.23170.
- 803Rarey, M., Kramer, B., and Lengauer, T. (1999). Proteins Struct. Funct. Genet. 34 (1): 17–28. doi: 10.1002/(SICI)1097-0134(19990101)34:1<17::AID-PROT3>3.0.CO;2-1.
10.1002/(SICI)1097-0134(19990101)34:1<17::AID-PROT3>3.0.CO;2-1 CAS PubMed Web of Science® Google Scholar
- 804Ross, G.A., Morris, G.M., and Biggin, P.C. (2012). PLoS One 7 (3): e32036. doi: 10.1371/journal.pone.0032036.
- 805Young, T., Abel, R., Kim, B., Berne, B.J., and Friesner, R.A. (2007). Proc. Natl. Acad. Sci. U.S.A. 104 (3): 808–813. doi: 10.1073/pnas.0610202104.
- 806Shah, F., Gut, J., Legac, J., Shivakumar, D., Sherman, W., Rosenthal, P.J., and Avery, M.A. (2012). J. Chem. Inf. Model. 52 (3): 696–710. doi: 10.1021/ci2005516.
- 807Brodney, M.A., Barreiro, G., Ogilvie, K., Hajos-Korcsok, E., Murray, J., Vajdos, F., Ambroise, C., Christoffersen, C., Fisher, K., Lanyon, L., Liu, J., Nolan, C.E., Withka, J.M., Borzilleri, K.A., Efremov, I., Oborski, C.E., Varghese, A., and O'Neill, B.T. (2012). J. Med. Chem. 55 (21): 9224–9239. doi: 10.1021/jm3009426.
- 808Horbert, R., Pinchuk, B., Johannes, E., Schlosser, J., Schmidt, D., Cappel, D., Totzke, F., Schächtele, C., and Peifer, C. (2015). J. Med. Chem. 58 (1): 170–182. doi: 10.1021/jm500373x.
- 809Guimarães, C.R.W. and Mathiowetz, A.M. (2010). J. Chem. Inf. Model. 50 (4): 547–559. doi: 10.1021/ci900497d.
- 810Beglov, D. and Roux, B. (1997). J. Phys. Chem. B 101 (39): 7821–7826. doi: 10.1021/jp971083h.
- 811Chandler, D., McCoy, J.D., and Singer, S.J. (1986). J. Chem. Phys. 85 (10): 5971–5976. doi: 10.1063/1.451510.
- 812Truchon, J.-F., Pettitt, B.M., and Labute, P. (2014). J. Chem. Theory Comput. 10 (3): 934–941. doi: 10.1021/ct4009359.
- 813Cui, G., Swails, J.M., and Manas, E.S. (2013). J. Chem. Theory Comput. 9 (12): 5539–5549. doi: 10.1021/ct400711g.
- 814Shestakov, A.I., Milovich, J.L., and Noy, A. (2002). J. Colloid Interface Sci. 247 (1): 62–79. doi: 10.1006/jcis.2001.8033.
- 815Lu, B., Zhang, D., and McCammon, J.A. (2005). J. Chem. Phys. 122 (21): 214102. doi: 10.1063/1.1924448.
- 816Lee, M.C., Yang, R., and Duan, Y. (2005). J. Mol. Model. 12 (1): 101–110. doi: 10.1007/s00894-005-0013-y.
- 817Genheden, S. and Ryde, U. (2015). Expert Opin. Drug Discov. 10 (5): 449–461. doi: 10.1517/17460441.2015.1032936.
- 818Bortolato, A., Tehan, B.G., Smith, R.T., and Mason, J.S. (2018). Methodologies for the examination of water in GPCRs. In: Methods in Molecular Biology (ed. Heifetz, A.), vol. 1705, 207–232. New York, NY: Humana.
- 819Nittinger, E., Gibbons, P., Eigenbrot, C., Davies, D.R., Maurer, B., Yu, C.L., Kiefer, J.R., Kuglstatter, A., Murray, J., Ortwine, D.F., Tang, Y., and Tsui, V. (2019). J. Comput. Aided Mol. Des. 33 (3): 307–330. doi: 10.1007/s10822-019-00187-y.
- 820Bucher, D., Stouten, P., and Triballeau, N. (2018). J. Chem. Inf. Model. 58 (3): 692–699. doi: 10.1021/acs.jcim.7b00642.
- 821AlQuraishi, M. (2019). Cell Syst. 8 (4): 292–301.e3. doi: 10.1016/j.cels.2019.03.006.
- 822Senior, A.W., Evans, R., Jumper, J., Kirkpatrick, J., Sifre, L., Green, T., Qin, C., Žídek, A., Nelson, A.W.R., Bridgland, A., Penedones, H., Petersen, S., Simonyan, K., Crossan, S., Kohli, P., Jones, D.T., Silver, D., Kavukcuoglu, K., and Hassabis, D. (2020). Nature 577 (7792): 706–710. doi: 10.1038/s41586-019-1923-7.
- 823Yang, J., Anishchenko, I., Park, H., Peng, Z., Ovchinnikov, S., and Baker, D. (2020). Proc. Natl. Acad. Sci. U.S.A. 117 (3): 1496–1503. doi: 10.1073/pnas.1914677117.