Polymyxins as Antibacterials and Antibiotic Potentiators
Mike Dawson
Antimicrobial Research Consultancy Ltd., Hitchin, UK
Search for more papers by this authorMike Dawson
Antimicrobial Research Consultancy Ltd., Hitchin, UK
Search for more papers by this authorAbstract
Antibiotic resistance in Gram-negative pathogenic bacteria has reached alarming levels and these drug-resistant bacteria pose an urgent global threat. All of the major classes of antibiotics with activity against Gram-negative bacteria, including penicillins, cephalosporins, carbapenems, aminoglycosides, quinolones, and tetracyclines, have over time succumbed to widespread resistance. Fortunately, medicinal chemistry has been very successful at iteratively addressing the emergence of resistance (and other limitations) with second and third (or more) generation products. The polymyxin class has broad Gram-negative antimicrobial activity, including against bacteria resistant to the antibiotic classes listed above. It is because of such activity that polymyxins have witnessed a resurgence in clinical use, but toxicity is concerning and commonly limits dosing. And, unlike other classes of antibiotics, the polymyxin class has been recalcitrant to clinically meaningful optimization and only the initially discovered, natural polymyxins are available for clinical use. This article explores recent developments in polymyxin-based drug discovery and development and the extensive effort invested in trying to identify clinically viable second-generation variants.
References
- 1Vasoo, S., Baretto, J.N., and Tosh, P.K. (2015). Emerging issues in Gram-negative bacteria resistance: an update for the practising clinician. Mayo Clin. Proc. 90 (3): 395–403.
- 2Kadar, B., Kocsis, B., Nagy, K., and Szabo, D. (2013). The renaissance of polymyxins. Curr. Med. Chem. 20 (30): 3759–3773.
- 3Abdelraouf, K., He, J., Ledesma, K.R., Hu, M., and Tam, V. (2012). Pharmacokinetics and disposition of polymyxin B in an animal model. Antimicrob. Agents Chemother. 56 (11): 5724–5727.
- 4Justo, J.A. and Bosso, J.A. (2015). Adverse reactions associated with systemic polymyxin therapy. Pharmacotherapy 35 (1): 28–33.
- 5Velkov, T., Thompson, P.E., Nation, R.L., and Li, J. (2010). Structure-activity relationships of polymyxin antibiotics. J. Med. Chem. 53 (5): 1898–1916.
- 6Velkov, T., Roberts, K.D., Nation, R.L., Thompson, P.E., and Li, J. (2013). Pharmacology of polymyxins: new insights into an ‘old’ class of antibiotics. Future Microbiol. 8 (6): 711–724.
- 7Tran, T.T., Velkov, T., Nation, R.L., Forrest, A., Tsuji, B.T., Bergen, P.J., and Li, J. (2016). Pharmacokinetics/pharmacodynamics of colistin and polymyxin B: are we there yet? Int. J. Antimicrob. Agents 48 (6): 592–597.
- 8Nation, R.L., Velkov, T., and Li, J. (2014). Colistin and polymyxin B: peas in a pod, or chalk and cheese? Clin. Infect. Dis. 59 (1): 88–94.
- 9Cheah, S.-E., Wang, J., Nguyen, V.T.T., Turnidge, J.D., Li, J., and Nation, R.L. (2015). New pharmacokinetic/pharmacodynamic studies of systemically administered colistin against Pseudomonas aeruginosa and Acinetobacter baumannii in mouse thigh and lung infection models: smaller response in lung infection. J. Antimicrob. Chemother. 70 (12): 3291–3297.
- 10Yapa, S.W.S., Li, J., Patel, K., Wilson, J.W., Dooley, M.J., George, J., Clark, D., Poole, S., Williams, E., Porter, C.J.H., Nation, R.L., and McIntosh, M.P. (2014). Pulmonary and systemic pharmacokinetics of inhaled and intravenous colistin methanesulfonate in cystic fibrosis patients: targeting advantage of inhalational administration. Antimicrob. Agents Chemother. 58 (5): 2570–2579.
- 11Vardakas, K.Z., Vulgaris, G.L., Samonis, G., and Falagas, M.E. (2018). Inhaled colistin monotherapy for respiratory tract infections in adults without cystic fibrosis: a systematic review and meta-analysis. Int. J. Amtimicrob. Agents 51 (1): 1–9.
- 12Elias, L.S., Konzen, D., Krebs, J.M., and Zavascki, A.P. (2010). The impact of polymyxin B dosage on in-hospital mortality of patients treated with this antibiotic. J. Antimicrob. Chemother. 65: 2231–2237.
- 13Zavascki, A.P. and Nation, R.L. (2017). Nephrotoxicity of polymyxins. Is there any difference between colistimethate and polymyxin B? Antimicrob. Agents Chemother. 61 (3): e02319-16. doi: 10.1128/AAC.02319-16.
- 14Aggarwal, R. and Dewan, A. (2018). Comparison of nephrotoxicity of colistin with polymyxin B administered in currently recommended doses: a prospective study. Ann. Clin. Microbiol. Antimicrob. 17: 15. doi: 10.1186/s12941-018-0262-0.
- 15van Duin, D., Lok, J.J., Earley, M., Cober, E., Richter, S.S., Perez, F., Salata, R.A., Kalayjian, R.C., Watkins, R.R., Doi, Y., Kaye, K.S., Fowler, V.G., Paterson, D.L., and Bonomo, R.A. (2018). Colistin versus ceftazidime-avibactam in the treatment of infections due to carbapenem-resistant Enterobacteriaceae. Clin. Infect. Dis. 66 (2): 163–171.
- 16Shields, R.K., Nguyen, M.H., Chen, L., Press, E.G., Potoski, B.A., Marini, R.V., Doi, Y., Kreisworth, B.N., and Clancy, C.J. (2017). Ceftazidime-avibactam is superior to other treatment regimens against carbapenem-resistant Klebsiella pneumoniae bacteremia. Antimicrob. Agents Chemother. 61: e00883-17. doi: 10.1128/AAC.00883-17.
- 17Sharma, S.K., Wu, A.D., Chandramouli, N., Fotsch, C., Kardash, G., and Blair, K.W. (1999). Solid-phase total synthesis of polymyxin B1. J. Pept. Res. 53 (5): 501–506.
- 18Xu, W.-L. and Zheng, J.-S. (2015). A new strategy for total solid-phase synthesis of polymyxins. Tetrahedron Lett. 56 (33): 4796–4799.
- 19Gallardo-Godoy, A., Muldoon, C., Becker, B., Elliott, A.G., Lash, L.H., Huang, J.X., Butler, M.S., Pelingon, R., Kavanagh, A.M., Ramu, S., Phetsang, W., Blaskovich, M.A.T., and Cooper, M.A. (2016). Activity and predicted nephrotoxicity of synthetic antibiotics based on polymyxin B. J. Med. Chem. 59 (3): 1068–1077.
- 20Chihara, S., Tobita, T., Yahata, M., Ito, A., and Koyama, Y. (1973). Enzymatic degradation of colistin. Isolation and identification of α-N-fattyacyl α,χ-diaminobutyric acid and colistin nonapeptide. Agric. Biol. Chem. 37 (11): 2455–2463.
- 21Kimura, Y., Matsunaga, H., and Vaara, M. (1992). Polymyxin B octapeptide and polymyxin B heptapeptide are potent outer membrane permeability-increasing agents. J. Antibiot. 45 (5): 742–749.
- 22Li, B., Akin, A., Magee, T.V., Martinez, C., Szeliga, J., and Vuong, D.V. (2015). Synthesis of Dap-3 polymyxin analogues via a Tris-Boc-protected polymyxin B heptapeptide. Synthesis 47 (14): 2088–2092.
- 23Mares, J., Kumaran, S., Gobbo, M., and Zerbe, O. (2009). Interactions of lipopolysaccharide and polymyxin studied by NMR spectroscopy. J. Biol. Chem. 284 (17): 11498–11506.
- 24Martin, N.I., Hu, H., Moake, M.M., Churey, J.J., Whittal, R., Worobo, R.W., and Vederas, J.C. (2003). Isolation, structural characterization, and properties of mattacin (polymyxin M), a cyclic peptide antibiotic produced by Paenibacillus kobensis M. J. Biol. Chem. 278: 13124–13132.
- 25Deris, Z.Z., Swarbrick, J.D., Roberts, K.D., Azad, M.A.K., Akter, J., Horne, A.S., Nation, R.L., Rogers, K.L., Thompson, P.E., Velkov, T., and Li, J. (2014). Probing the penetration of antimicrobial polymyxin lipopeptides into Gram-negative bacteria. Bioconjug. Chem. 25: 750–760.
- 26Deris, Z.Z., Akter, J., Sivanesan, S., Roberts, K.D., Thompson, P.E., Nation, R.L., Li, J., and Velkov, T. (2014). A secondary mode of action of polymyxins against Gram-negative bacteria involves the inhibition of NADH-quinone oxidoreductase activity. J. Antibiot. 67 (2): 147–151.
- 27Sampson, T.R., Liu, X., Schroeder, M.R., Kraft, C.S., Burd, E.M., and Weiss, D.S. (2012). Rapid killing of Acinetobacter baumannii by polymyxins is mediated by a hydroxyl radical death pathway. Antimicrob. Agents Chemother. 56 (11): 5642–5649.
- 28Vaara, M. and Vaara, T. (1983). Sensitization of Gram-negative bacteria to antibiotics and complement by a nontoxic oligopeptide. Nature 303: 526–528.
- 29Naghmouchi, K., Baah, J., Hober, D., Jouy, E., Rubrecht, C., Sané, F., and Drider, D. (2013). Synergistic effect between colistin and bacteriocins in controlling Gram-negative pathogens and their potential to reduce antibiotic toxicity in mammalian epithelial cells. Antimicrob. Agents Chemother. 57 (6): 2719–2725.
- 30Moestrup, S.K., Cui, S., Vorum, H., Bregengard, C., Bjorn, S.E., Norris, K., Gliemann, J., and Christensen, E.I. (1995). Evidence that epithelial glycoprotein 330/megalin mediates uptake of polybasic drugs. J. Clin. Invest. 96: 1404–1413.
- 31Lu, X., Chan, T., Xu, C., Zhu, L., Zhou, Q.T., Roberts, K.D., Chan, H.-K., Li, J., and Zhou, F. (2016). Human oligopeptide transporter 2 (PEPT2) mediates cellular uptake of polymyxins. J. Antimicrob. Chemother. 71: 403–412.
- 32Visentin, M., Gai, Z., Torozi, A., Hiller, C., and Kullak-Ublick, G.A. (2017). Colistin is substrate of the carnitine/organic cation transporter 2 (OCTN2, SLC22A5). Drug Metab. Dispos. 45: 1240–1244.
- 33Nilsson, A., Goodwin, R.J.A., Swales, J.G., Gallagher, R., Shankaran, H., Sathe, A., Pradeepan, S., Xue, A., Keirstead, N., Sasaki, J.C., Andren, P.E., and Gupta, A. (2015). Investigating nephrotoxicity of polymyxin derivatives by mapping renal distribution using mass spectroscopy imaging. Chem. Res. Toxicol. 28 (9): 1823–1830.
- 34Yun, B., Azad, M.A.K., Nowell, C.J., Nation, R.L., Thompson, P.E., Roberts, K.D., Velkov, T., and Li, J. (2015). Cellular uptake and localization of polymyxins in renal tubular cells using rationally designed fluorescent probes. Antimicrob. Agents Chemother. 59 (12): 7489–7496.
- 35Azad, M.A.K., Akter, J., Rogers, K.L., Nation, R.L., Velkov, T., and Li, J. (2015). Major pathways of polymyxin-induced apoptosis in rat kidney proximal tubular cells. Antimicrob. Agents Chemother. 59 (4): 2136–2143.
- 36de Fátima Fernandes Vattimo, M., Watanabe, M., da Fonseca, C.D., de Moura Neiva, L.B., Pessoa, E.A., and Borges, F.T. (2016). Polymyxin B nephrotoxicity: from organ to cell damage. PLoS One 11 (8): e0161057. doi: 10.1371/jourmal.pone.0161057.
- 37Liu, Y.-Y., Wang, Y., Walsh, T.R., Yi, L.-X., Zhang, R., Spencer, J., Doi, Y., Tian, G., Dong, B., Huang, X., Yu, L.-F., Gu, D., Ren, H., Chen, X., Lv, L., He, D., Zhou, H., Liang, Z., Liu, J.-H., and Shen, J. (2016). Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect. Dis. 16 (2): 161–168.
- 38Baron, S., Hadjadj, L., Rolain, J.-M., and Olaitan, A.O. (2016). Molecular mechanisms of polymyxin resistance: knowns and unknowns. Int. J. Antimicrob. Agents 48 (6): 583–591.
- 39Poirel, L., Jayol, A., and Nordmann, P. (2017). Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin. Microbiol. Rev. 30 (2): 557–596.
- 40Hainrichson, M., Nudelman, I., and Baasov, T. (2008). Designer aminoglycosides; the race to develop improved antibiotics and compounds for the treatment of human genetic diseases. Org. Biomol. Chem. 6: 227–239.
- 41Vaara, M., Fox, J., Loidl, G., Siikanen, O., Apajalahti, J., Hansen, F., Frimodt-Moller, N., Nagai, J., Takano, M., and Vaara, T. (2008). Novel polymyxin derivatives carrying only three positive charges are effective antibacterial agents. Amtimicrob. Agents Chemother. 52 (9): 3229–3236.
- 42Vaara, M. and Vaara, T. (2013). The novel polymyxin derivative NAB739 is remarkably less cytotoxic than polymyxin B and colistin to human kidney proximal tubular cells. Int. J. Antimicrob. Agents 41: 292–293.
- 43Vaara, M., Vaara, T., and Tyrell, J.M. (2017). Structure-activity studies on polymyxin derivatives carrying three positive charges only reveal a new class of compounds with strong antibacterial activity. Peptides 91: 8–12.
- 44Gallardo-Godoy, A., Muldoon, C., Becker, B., Elliott, A.G., Lash, L.H., Huang, J.X., Butler, M.S., Pelingon, R., Cavanagh, A.M., Ramu, S., Phetsang, W., Blaskovich, M.A.T., and Cooper, M.A. (2016). Activity and predicted nephrotoxicity of systemic antibiotics based on polymyxin B. J. Med. Chem. 59: 1068–1077.
- 45Vaara, M., Sader, H.S., Rhomberh, P.R., Jones, R.N., and Vaara, T. (2013). Antimicrobial activity of the novel polymyxin derivative NAB739 tested against Gram-negative pathogens. J. Antimicrob. Chemother. 68: 636–639.
- 46Coleman, S., Deats, T., Rawliuk, P., Chavan, A., and Oleson, F.B., Jr. (2010). CB-182,804 is less nephrotoxic as compared to Polymyxin B in monkeys following seven days of repeated intravenous dosing. Poster F1-1630. 50th Interscience Conference on Antimicrobial Agents and Chemotherapy, Boston, MA, USA.
- 47Coleman, S., Bleavins, M., Lister, T., Vaara, M., and Parr, T.R., Jr. (2016). The assessment of SPR741 for nephrotoxicity in cynomolgus monkeys and Sprague-Dawley rats. Poster-523. ASM Microbe, Boston, MA, USA.
- 48Vaara, M. and Vaara, T. (2016). PCT Patent Application WO2016113470. Northern Antibiotics Oy.
- 49Arya, A., Li, T., Chuong, L., Kang, C., Zhang, X., and Mortin, L.I. (2010). Efficacy of CB-182,804, a novel polymyxin analog, in rat and mouse models of Gram-negative bacterial infections. Poster F1-1627. 50th Interscience Conference on Antimicrobial Agents and Chemotherapy, Boston, MA, USA.
- 50Grosser, L., Heang, K., and Rubio, A. (2018). In vivo efficacy of SPR206 in an immunocompetent murine ascending urinary tract infection model caused by Escherichia coli. Poster-144. ASM ESCMID, Lisbon, Portugal.
- 51Coleman, S., Zabawa, T., and Utley, L. (2017). Polymyxin B nonapeptide is nephrotoxic in male cynomolgus monkeys following 7-days of repeated intravenous dosing. Poster-EV0304. ECCMID, Vienna, Austria.
- 52Vaara, M., Vaara, T., and Vingsbo Lundberg, C. (2018). Polymyxin derivatives NAB739 and NAB815 are more effective than polymyxin B in murine Escherichia coli pyelonephritis. J. Antimicrob. Chemother. 73 (2): 452–455.
- 53Leese, R.A., Francis, N., Curran, W.V., Borders, D.B., and Jarolmen, H. (2006). PCT Patent Application WO2006083317. Biosource Pharm Inc.
- 54Leese, R.A. (2010). PCT Patent Application WO2010075416. Biosource Pharm Inc.
- 55Ghose, A.K., Viswanadhan, V.N., and Wenddoloski, J.J. (1998). Prediction of hydrophobic (lipophilic) properties of small organic molecules using fragmental methods: an analysis of ALogP and CLogP methods. J. Phys. Chem. 102: 3762–3772.
- 56Quale, J., Shah, N., Kelly, P., Babu, E., Backer, M., Rosas-Garcia, G., Salamera, J., George, A., Bratu, S., and Landman, D. (2012). Activity of Polymyxin B and the novel polymyxin analogue CB-182,804 against contemporary Gram-negative pathogens in New York City. Microb. Drug Resist. 18 (2): 132–136.
- 57Magee, T.V., Brown, M.F., Starr, J.T., Ackley, D.C., Abramite, J.A., Aubrecht, J., Butler, A., Crandon, J.L., Dib-Hajj, F., Flanagan, M.E., Granskog, K., Hardink, J.R., Huband, M.D., Irvine, R., Kuhn, M., Leach, K.L., Li, B., Lin, J., Luke, D.R., MacVane, S.H., Miller, A.A., McCurdy, S., McKim, J.M. Jr., Nicolau, D.P., Nguyen, T.-T., Noe, M.C., O'Donnell, J.P., Seibel, S.B., Shen, Y., Stepan, A.F., Tomaras, A.P., Wilga, P.C., Zhang, L., Xu, J., and Chen, J.M. (2013). Discovery of Dap-3 polymyxin analogues for the treatment of multidrug-resistant Gram-negative nosocomial infections. J. Med. Chem. 56: 5079–5093.
- 58Roberts, K.D. et al. (2016). Developing safer polymyxins: structure-activity (SAR) and structure-toxicity (STR) relationships of modifications to positions 6 and 7. Poster 434, ASM Microbe, Boston, MA, USA.
- 59Li, J., Nation, R., Velkov, T., Thompson, P., and Roberts, K.D. (2015). PCT Patent Application WO2015149131. Monash University.
- 60Rubio-Aparicio, D. et al. (2016). In vitro activity of FADDI-287, a representative of a novel series of polymyxins (PM) with reduced nephrotoxic potential. Poster 495, ASM Microbe. Boston, MA, USA.
- 61Sabet, M. et al. (2016). Pharmaology of the novel polymyxin FADDI-287 in preclinical models. Poster 495, ASM Microbe, Boston, MA, USA.
- 62Brown, P., Boakes, S., Duperchy, E., Simonovic, M., Abdulle, O., Divall, N., Stanway, S.J., Wilson, A., Moss, A.F., and Dawson, M.J. (2015). Synthesis and structure-activity relationships of polymyxin nonapeptide derivatives with N-terminal aminoacyl moieties. Poster F-739. 55th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Diego, CA, USA.
- 63Brown, P., Abbott, E., Abdulle, O., Boakes, S., Coleman, S., Divall, N., Duperchy, E., Moss, S., Rivers, D., Simonovoc, M., Singh, J., Stanway, S., Wilson, A., and Dawson, M.J. (2019). Design of next generation polymyxins with lower toxicity: the discovery of SPR206. ACS Infect. Dis. 5: 1645–1656.
- 64Arends, S.J.R., Rhomberg, P.R., Lister, T., Cotreono, N., Rubio, A., Flamm, R.K., and Mendes, R.E. (2018). Activity of an investigational Polymyxin-B-like compound (SPR206) against a set of Enterobacteriaceae organisms responsible for human infections. Poster-81. ASM ESCMID, Lisbon, Portugal.
- 65Arends, S.J.R., Rhomberg, P.R., Lister, T., Cotreono, N., Rubio, A., Flamm, R.K., and Mendes, R.E. (2018). In vitro activity evaluation of a next generation polymyxin, SPR206, against non-fermentative Gram-negative bacilli responsible for human infections. Poster-80. ASM ESCMID, Lisbon, Portugal.
- 66Grosser, L., Heang, K., Teague, J., Warn, P., Corbett, D., Dawson, M.J., and Rubio, A. (2018). In vivo efficacy of SPR206 in murine lung and thigh infection models caused by multidrug resistant pathogens Pseudomonas aeruginosa and Acinetobacter baumannii. Poster-143. ASM ESCMID, Lisbon, Portugal.
- 67Lister, T., Utley, L., and Bleavins, M. (2018). A GLP 14 day repeat dose toxicology study of SPR206 in monkeys. Poster-146. ASM ESCMID, Lisbon, Portugal.
- 68Bergen, P.J., Landersdorfer, C.B., Zhang, J., Zhao, M., Lee, H.J., Nation, R.L., and Li, J. (2012). Pharmacokinetics and pharmacodynamics of ‘old’ polymyxins: what is new? Diagn. Microbiol. Infect. Dis. 74 (3): 213–223.
- 69Gordeev, M.F., Liu, J., Wang, X., and Yuan, Z. (2016). PCT Patent Application WO2016100578. (MicuRx Pharmaceuticals.
- 70Rabanal, F., Grau-Campistany, A., Vila-Farrés, X., Gonzalez-Linares, J., Borràs, M., Vila, J., Manresa, A., and Cajal, Y. (2015). A bioinspired peptide scaffold with high antibiotic activity and low in vivo toxicity. Sci. Rep. 5: 10558.
- 71Vaara, M. (2013). Novel derivatives of polymyxins. J. Antimicrob. Chemother. 68: 1213.
- 72Vaara, M. (2010). Polymyxins and their novel derivatives. Curr. Opin. Microbiol. 13: 574.
- 73Vaara, M. (1992). Agents that increase the permeability of the outer membrane. Microbiol. Rev. 56: 395.
- 74Vaara, M. and Vaara, T. (1983). Sensitization of Gram-negative bacteria to antibiotics and complement by a non-toxic oligopeptide. Nature (London) 303: 526.
- 75Ofek, I., Cohen, S., Rahmani, R., Kabha, K., Tamarkin, D., Herzig, Y., and Rubinstein, E. (1994). Antibacterial synergism of polymyxin B nonapeptide and hydrophobic antibiotics in experimental Gram-negative infections in mice. Antimicrob. Agents Chemother. 38: 374.
- 76Viljanen, P. and Vaara, M. (1984). Susceptibility of gram-negative bacteria to polymyxin B nonapeptide. Antimicrob. Agents Chemother. 25: 701.
- 77Duwe, A.K., Rupar, C.A., Horsman, G.B., and Vas, S.I. (1986). In vitro cytotoxicity and antibiotic activity of polymyxin B nonapeptide. Antimicrob. Agents Chemother. 30: 340.
- 78Keirstead, N.D., Wagoner, M.P., Bentley, P., Blais, M., Brown, C., Cheatham, L., Ciaccio, P., Dragan, Y., Ferguson, D., Fikes, J., Galvin, M., Gupta, A., Hale, M., Johnson, N., Luo, W., McGrath, F., Pietras, M., Price, S., Sathe, A.G., Sasaki, J.C., Snow, D., Walsky, R.L., and Kern, G. (2014). Toxicol. Sci. 137: 278.
- 79Chihara, S., Ito, A., Yahata, M., Tobita, T., and Koyama, Y. (1974). Chemical synthesis, isolation and characterization of a-N-fattyacyl colistin nonapeptide with special reference to the correlation between antimicrobial activity and carbon number of fattyacyl moiety. Agric. Biol. Chem. 38: 521.
- 80MacDonald, E. (1988). Screening for drugsblocking acetylcholine- activated ion channels and local anaesthetics with the isolated chick biventer cervicis preparation. Pharmacol. Toxicol. 63: 193.
- 81Danner, R.L., Joiner, K.A., Rubin, M., Patterson, W.H., Johnson, N., Ayers, K.M., and Parrillo, J.E. (1989). Antimicrob. Agents Chemother. 33: 1428.
- 82Vaara, M., Fox, J., Loid, G., Siikanen, O., Apajalahti, J., Hansen, F., Frimodt-Moeller, N., Nagai, J., Takano, M., and Vaara, T. (2008). Antimicrob. Agents Chemother. 52: 3229.
- 83Vaara, M., Siikanen, O., Apajalahti, J., Fox, J., Frimodt-Moeller, N., He, H., Poydyal, A., Li, J., Nation, R.L., and Vaara, T. (2010). Antimicrob. Agents Chemother. 54: 3341.
- 84Sader, H.S., Rhomberg, P.R., Farrell, D.J., and Jones, R.N. (2015). Diagn. Microbiol. Infect. Dis. 83: 379.
- 85Giani, T., Arena, F., Vaggelli, G., Conte, V., Chiarelli, A., Henrici De Angelis, L., Fornaini, R., Grazzini, M., Niccolini, F., Pecile, P., and Rossolini, G.M. (2015). J. Clin. Microbiol. 53: 3341.
- 86French, S., Farha, M., Ellis, M., Sameer, Z., Cote, J.-P., Cotroneo, N., Lister, T., Rubio, A., and Brown, E. (2019). Polymyxin B analog SPR741 potentiates antibiotics against Gram-negative bacteria and uniquely perturbs the outer membrane. ACS Infect. Dis. 6: 1405–1412. doi: 10.1021/acsinfecdis.9b00159.
- 87Corbett, D., Wise, A., Langley, T., Skinner, K., Trimby, E., Birchall, S., Dorali, A., Sandiford, S., Williams, J., Warn, P., Vaara, M., and Lister, T. (2017). Potentiation of antibiotic activity by a novel cationic peptide: potency and spectrum of activity of SPR741. Antimicrob. Agents Chemother. 61: e00200-17. doi: 10.1128/AAC.00200-17.
- 88Mendes, R., Rhomberg, P., Lister, T., Cotroneo, N., Rubio, A., and Flamm, R.K. (2019). Evaluation of antimicrobial effects of a new Polymyxin molecule (SPR741) when tested in combination with a series of β-lactam agents against a challenge set of gram-negative pathogens. Microb. Drug Resist. 26: 319–328. doi: 10.1089/mdr.2019.0198.
- 89VanScoy, B.D., Rubio, A., Fikes, S., Conde, H., Lakota, E.A., George, D.R., Utley, L.J., Lister, T., Bhavnani, S.M., Parr, T.R., Jr., and Ambrose, P.G. (2018). Poster-594. ASM Microbe, Atlanta, GA, USA.
- 90Coleman, S. and Bleavins, M. (2017). A GLP 14 day repeat dose toxicology study of SPR741 in monkeys. Poster-251. ASM Microbe, New Orleans, LA, USA.
- 91Coleman, S. and Bleavins, M. (2017). SPR741 GLP safety pharmacology studies across cardiac, pulmonary and central nervous systems. Poster-252. ASM Microbe, New Orleans, LA, USA.
- 92Coleman, S. and Bleavins, M. (2017). SPR741 is non-genotoxic in the ICH battery of GLP Ames, chromosomal aberration, and in vivo. Poster-253. ASM Microbe, New Orleans, LA, USA.
- 93Utley, L. and Coleman, S. (2017). In vitro ADME properties of SPR741 support progression into clinical development. Poster-253. ASM Microbe, New Orleans, LA, USA.
- 94Eckburg, P., Lister, T., Walpole, S., Keutzer, T., Utley, L., Tomayko, J., Kopp, E., Farinola, N., and Coleman, S. (2019). Safety, tolerability, pharmacokinetics, and drug interaction potential of SPR741, an intravenous potentiator, after single and multiple ascending doses and when combined with β-lactam antibiotics in healthy subjects. Antimicrob. Agents Chemother. 63: e00892-19. doi: 10.1128/AAC.00892-19.