Small-molecule Effectors of DNA Repair Proteins: Applications for Development of Cancer Therapeutics and Research
Abstract
A ubiquitous aspect of cellular life is the need to repair the many deleterious DNA lesions that arise due to environmental damage and as byproducts of normal cellular metabolism. The same DNA repair processes, which are critical for life, are also employed by cancer cells in their resistance to radiation and DNA-damaging therapies. Inhibition of DNA repair or entrapment of the toxic DNA repair intermediates with the help of small molecules has both potential therapeutic and research utility. Although many proteins that maintain genome integrity and repair DNA damage appear to be attractive targets, they lack well-defined small-molecule binding determinants and clear structure–activity relationships. This article summarizes a number of studies that have led to the identification of small-molecule drug lead compounds, which may also be useful in dissecting complex DNA repair networks. Systems that are particularly noteworthy are inhibition of PARP1, as it is a paradigm case for achieving successful clinical applications, and the emerging targets RAD51 recombinase, RAD52 DNA repair protein, MRE11 nuclease, and WRN DNA helicase.
References
- 1Jeggo, P.A. and Löbrich, M. (2015). How cancer cells Hijack DNA double-strand break repair pathways to gain genomic instability. Biochem. J. 471 (1): 1–11. doi: 10.1042/BJ20150582.
- 2Dobzhansky, T. (1946). Genetics of natural populations; recombination and variability in populations of Drosophila Pseudoobscura. Genetics 31: 269–290.
- 3Hengel, S.R., Spies, M.A., and Spies, M. (2017). Small-molecule inhibitors targeting DNA repair and DNA repair deficiency in research and cancer therapy. Cell Chem. Biol. 24 (9): 1101–1119. doi: 10.1016/j.chembiol.2017.08.027.
- 4Prakash, A., Garcia-Moreno, J.F., Brown, J.A.L., and Bourke, E. (2018). Clinically applicable inhibitors impacting genome stability. Molecules 23 (5): doi: 10.3390/molecules23051166.
- 5Behan, F.M., Iorio, F., Picco, G., Gonçalves, E., Beaver, C.M., Migliardi, G., Santos, R., Rao, Y., Sassi, F., Pinnelli, M., Ansari, R., Harper, S., Jackson, D.A., McRae, R., Pooley, R., Wilkinson, P., van der Meer, D., Dow, D., Buser-Doepner, C., Bertotti, A., Trusolino, L., Stronach, E.A., Saez-Rodriguez, J., Yusa, K., and Garnett, M.J. (2019). Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens. Nature 568 (7753): 511–516. doi: 10.1038/s41586-019-1103-9.
- 6Chan, E.M., Shibue, T., McFarland, J.M., Gaeta, B., Ghandi, M., Dumont, N., Gonzalez, A., McPartlan, J.S., Li, T., Zhang, Y., Bin Liu, J., Lazaro, J.-B., Gu, P., Piett, C.G., Apffel, A., Ali, S.O., Deasy, R., Keskula, P., Ng, R.W.S., Roberts, E.A., Reznichenko, E., Leung, L., Alimova, M., Schenone, M., Islam, M., Maruvka, Y.E., Liu, Y., Roper, J., Raghavan, S., Giannakis, M., Tseng, Y.-Y., Nagel, Z.D., D'Andrea, A., Root, D.E., Boehm, J.S., Getz, G., Chang, S., Golub, T.R., Tsherniak, A., Vazquez, F., and Bass, A.J. (2019). WRN helicase is a synthetic lethal target in microsatellite unstable cancers. Nature 568 (7753): 551–556. doi: 10.1038/s41586-019-1102-x.
- 7Zinovyev, A., Kuperstein, I., Barillot, E., and Heyer, W.-D. (2013). Synthetic lethality between gene defects affecting a single non-essential molecular pathway with reversible steps. PLoS Comput. Biol. 9 (4): e1003016. doi: 10.1371/journal.pcbi.1003016.
- 8Taleb, N. (2014). Antifragile: Things That Gain from Disorder (Incerto). Random House Trade Paperbacks.
- 9Janku, F. (2014). Tumor heterogeneity in the clinic: is it a real problem? Ther. Adv. Med. Oncol. 6 (2): 43–51. doi: 10.1177/1758834013517414.
- 10Saunders, N.A., Simpson, F., Thompson, E.W., Hill, M.M., Endo-Munoz, L., Leggatt, G., Minchin, R.F., and Guminski, A. (2012). Role of intratumoural heterogeneity in cancer drug resistance: molecular and clinical perspectives. EMBO Mol. Med. 4 (8): 675–684. doi: 10.1002/emmm.201101131.
- 11Helleday, T., Eshtad, S., and Nik-Zainal, S. (2014). Mechanisms underlying mutational signatures in human cancers. Nat. Rev. Genet. 15 (9): 585–598. doi: 10.1038/nrg3729.
- 12Kucab, J.E., Zou, X., Morganella, S., Joel, M., Nanda, A.S., Nagy, E., Gomez, C., Degasperi, A., Harris, R., Jackson, S.P., Arlt, V.M., Phillips, D.H., and Nik-Zainal, S. (2019). A compendium of mutational signatures of environmental agents. Cell 177 (4): 821–836.e16. doi: 10.1016/j.cell.2019.03.001.
- 13Nik-Zainal, S. and Morganella, S. (2017). Mutational signatures in breast cancer: the problem at the DNA level. Clin. Cancer Res. 23 (11): 2617–2629. doi: 10.1158/1078-0432.CCR-16-2810.
- 14Leibowitz, M.L., Zhang, C.-Z., and Pellman, D. (2015). Chromothripsis: a new mechanism for rapid karyotype evolution. Annu. Rev. Genet. 49: 183–211. doi: 10.1146/annurev-genet-120213-092228.
- 15Piazza, A. and Heyer, W.-D. (2019). Homologous recombination and the formation of complex genomic rearrangements. Trends Cell Biol. 29 (2): 135–149. doi: 10.1016/j.tcb.2018.10.006.
- 16Byrum, A.K., Vindigni, A., and Mosammaparast, N. (2019). Defining and modulating “BRCAness”. Trends Cell Biol. 29 (9): 740–751. doi: 10.1016/j.tcb.2019.06.005.
- 17Davies, H., Glodzik, D., Morganella, S., Yates, L.R., Staaf, J., Zou, X., Ramakrishna, M., Martin, S., Boyault, S., Sieuwerts, A.M., Simpson, P.T., King, T.A., Raine, K., Eyfjord, J.E., Kong, G., Borg, Å., Birney, E., Stunnenberg, H.G., van de Vijver, M.J., Børresen-Dale, A.-L., Martens, J.W.M., Span, P.N., Lakhani, S.R., Vincent-Salomon, A., Sotiriou, C., Tutt, A., Thompson, A.M., Van Laere, S., Richardson, A.L., Viari, A., Campbell, P.J., Stratton, M.R., and Nik-Zainal, S. (2017). HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures. Nat. Med. 23 (4): 517–525. doi: 10.1038/nm.4292.
- 18Prakash, R., Zhang, Y., Feng, W., and Jasin, M. (2015). Homologous recombination and human health: the roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harb. Perspect. Biol. 7 (4): a016600. doi: 10.1101/cshperspect.a016600.
- 19Couëdel, C., Mills, K.D., Barchi, M., Shen, L., Olshen, A., Johnson, R.D., Nussenzweig, A., Essers, J., Kanaar, R., Li, G.C., Alt, F.W., and Jasin, M. (2004). Collaboration of homologous recombination and nonhomologous end-joining factors for the survival and integrity of mice and cells. Genes Dev. 18 (11): 1293–1304. doi: 10.1101/gad.1209204.
- 20Heyer, W.-D. (2015). Regulation of recombination and genomic maintenance. Cold Spring Harb. Perspect. Biol. 7 (8): a016501. doi: 10.1101/cshperspect.a016501.
- 21Jasin, M. and Rothstein, R. (2013). Repair of strand breaks by homologous recombination. Cold Spring Harb. Perspect. Biol. 5 (11): a012740. doi: 10.1101/cshperspect.a012740.
- 22Kowalczykowski, S.C. (2015). An overview of the molecular mechanisms of recombinational DNA repair. Cold Spring Harb. Perspect. Biol. 7 (11): doi: 10.1101/cshperspect.a016410.
- 23Moynahan, M.E. and Jasin, M. (2010). Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat. Rev. Mol. Cell Biol. 11 (3): 196–207. doi: 10.1038/nrm2851.
- 24Kass, E.M. and Jasin, M. (2010). Collaboration and competition between DNA double-strand break repair pathways. FEBS Lett. 584 (17): 3703–3708. doi: 10.1016/j.febslet.2010.07.057.
- 25Shibata, A. (2017). Regulation of repair pathway choice at two-ended DNA double-strand breaks. Mutat. Res. 803–805: 51–55. doi: 10.1016/j.mrfmmm.2017.07.011.
- 26Hill, S.J., Rolland, T., Adelmant, G., Xia, X., Owen, M.S., Dricot, A., Zack, T.I., Sahni, N., Jacob, Y., Hao, T., McKinney, K.M., Clark, A.P., Reyon, D., Tsai, S.Q., Joung, J.K., Beroukhim, R., Marto, J.A., Vidal, M., Gaudet, S., Hill, D.E., and Livingston, D.M. (2014). Systematic screening reveals a role for BRCA1 in the response to transcription-associated DNA damage. Genes Dev. 28 (17): 1957–1975. doi: 10.1101/gad.241620.114.
- 27Bhatia, V., Barroso, S.I., García-Rubio, M.L., Tumini, E., Herrera-Moyano, E., and Aguilera, A. (2014). BRCA2 prevents R-loop accumulation and associates with TREX-2 MRNA export factor PCID2. Nature 511 (7509): 362–365. doi: 10.1038/nature13374.
- 28Hatchi, E., Skourti-Stathaki, K., Ventz, S., Pinello, L., Yen, A., Kamieniarz-Gdula, K., Dimitrov, S., Pathania, S., McKinney, K.M., Eaton, M.L., Kellis, M., Hill, S.J., Parmigiani, G., Proudfoot, N.J., and Livingston, D.M. (2015). BRCA1 recruitment to transcriptional pause sites is required for R-loop-driven DNA damage repair. Mol. Cell 57 (4): 636–647. doi: 10.1016/j.molcel.2015.01.011.
- 29Jensen, R.B., Carreira, A., and Kowalczykowski, S.C. (2010). Purified human BRCA2 stimulates RAD51-mediated recombination. Nature 467 (7316): 678–683. doi: 10.1038/nature09399.
- 30Liu, J., Doty, T., Gibson, B., and Heyer, W.-D. (2010). Human BRCA2 protein promotes RAD51 filament formation on RPA-covered single-stranded DNA. Nat. Struct. Mol. Biol. 17 (10): 1260–1262. doi: 10.1038/nsmb.1904.
- 31Thorslund, T., McIlwraith, M.J., Compton, S.A., Lekomtsev, S., Petronczki, M., Griffith, J.D., and West, S.C. (2010). The breast cancer tumor suppressor BRCA2 promotes the specific targeting of RAD51 to single-stranded DNA. Nat. Struct. Mol. Biol. 17 (10): 1263–1265. doi: 10.1038/nsmb.1905.
- 32Kolinjivadi, A.M., Sannino, V., de Antoni, A., Técher, H., Baldi, G., and Costanzo, V. (2017). Moonlighting at replication forks – a new life for homologous recombination proteins BRCA1, BRCA2 and RAD51. FEBS Lett. 591 (8): 1083–1100. doi: 10.1002/1873-3468.12556.
- 33Hashimoto, Y., Ray Chaudhuri, A., Lopes, M., and Costanzo, V. (2010). Rad51 protects nascent DNA from Mre11-dependent degradation and promotes continuous DNA synthesis. Nat. Struct. Mol. Biol. 17 (11): 1305–1311. doi: 10.1038/nsmb.1927.
- 34Schlacher, K., Christ, N., Siaud, N., Egashira, A., Wu, H., and Jasin, M. (2011). Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell 145 (4): 529–542. doi: 10.1016/j.cell.2011.03.041.
- 35Ray Chaudhuri, A., Callen, E., Ding, X., Gogola, E., Duarte, A.A., Lee, J.-E., Wong, N., Lafarga, V., Calvo, J.A., Panzarino, N.J., John, S., Day, A., Crespo, A.V., Shen, B., Starnes, L.M., de Ruiter, J.R., Daniel, J.A., Konstantinopoulos, P.A., Cortez, D., Cantor, S.B., Fernandez-Capetillo, O., Ge, K., Jonkers, J., Rottenberg, S., Sharan, S.K., and Nussenzweig, A. (2016). Replication fork stability confers chemoresistance in BRCA-deficient cells. Nature 535 (7612): 382–387. doi: 10.1038/nature18325.
- 36Schlacher, K., Wu, H., and Jasin, M. (2012). A distinct replication fork protection pathway connects Fanconi Anemia tumor suppressors to RAD51-BRCA1/2. Cancer Cell 22 (1): 106–116. doi: 10.1016/j.ccr.2012.05.015.
- 37Ying, S., Hamdy, F.C., and Helleday, T. (2012). Mre11-dependent degradation of stalled DNA replication forks is prevented by BRCA2 and PARP1. Cancer Res. 72 (11): 2814–2821. doi: 10.1158/0008-5472.CAN-11-3417.
- 38Lord, C.J. and Ashworth, A. (2017). PARP inhibitors: synthetic lethality in the clinic. Science 355 (6330): 1152–1158. doi: 10.1126/science.aam7344.
- 39Shibata, A., Moiani, D., Arvai, A.S., Perry, J., Harding, S.M., Genois, M.-M., Maity, R., van Rossum-Fikkert, S., Kertokalio, A., Romoli, F., Ismail, A., Ismalaj, E., Petricci, E., Neale, M.J., Bristow, R.G., Masson, J.-Y., Wyman, C., Jeggo, P.A., and Tainer, J.A. (2014). DNA double-strand break repair pathway choice is directed by distinct MRE11 nuclease activities. Mol. Cell 53 (1): 7–18. doi: 10.1016/j.molcel.2013.11.003.
- 40Jiang, Q. and Greenberg, R.A. (2015). Deciphering the BRCA1 tumor suppressor network. J. Biol. Chem. 290 (29): 17724–17732. doi: 10.1074/jbc.R115.667931.
- 41Amé, J.-C., Spenlehauer, C., and de Murcia, G. (2004). The PARP superfamily. Bioessays 26 (8): 882–893. doi: 10.1002/bies.20085.
- 42Caldecott, K.W. (2008). Single-strand break repair and genetic disease. Nat. Rev. Genet. 9 (8): 619–631. doi: 10.1038/nrg2380.
- 43Krishnakumar, R. and Kraus, W.L. (2010). PARP-1 regulates chromatin structure and transcription through a KDM5B-dependent pathway. Mol. Cell 39 (5): 736–749. doi: 10.1016/j.molcel.2010.08.014.
- 44Decker, P. and Muller, S. (2002). Modulating poly (ADP-ribose) polymerase activity: potential for the prevention and therapy of pathogenic situations involving DNA damage and oxidative stress. Curr. Pharm. Biotechnol. 3 (3): 275–283.
- 45Ashworth, A. (2008). Drug resistance caused by reversion mutation. Cancer Res. 68 (24): 10021–10023. doi: 10.1158/0008-5472.CAN-08-2287.
- 46Sugimura, K., Takebayashi, S.-I., Taguchi, H., Takeda, S., and Okumura, K. (2008). PARP-1 ensures regulation of replication fork progression by homologous recombination on damaged DNA. J. Cell Biol. 183 (7): 1203–1212. doi: 10.1083/jcb.200806068.
- 47De Lorenzo, S.B., Patel, A.G., Hurley, R.M., and Kaufmann, S.H. (2013). The elephant and the blind men: making sense of PARP inhibitors in homologous recombination deficient tumor cells. Front. Oncol. 3: 228. doi: 10.3389/fonc.2013.00228.
- 48Patel, A.G., Sarkaria, J.N., and Kaufmann, S.H. (2011). Nonhomologous end joining drives poly(ADP-ribose) polymerase (PARP) inhibitor lethality in homologous recombination-deficient cells. Proc. Natl. Acad. Sci. U. S. A. 108 (8): 3406–3411. doi: 10.1073/pnas.1013715108.
- 49Bryant, H.E., Schultz, N., Thomas, H.D., Parker, K.M., Flower, D., Lopez, E., Kyle, S., Meuth, M., Curtin, N.J., and Helleday, T. (2005). Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434 (7035): 913–917. doi: 10.1038/nature03443.
- 50Farmer, H., McCabe, N., Lord, C.J., Tutt, A.N.J., Johnson, D.A., Richardson, T.B., Santarosa, M., Dillon, K.J., Hickson, I., Knights, C., Martin, N.M.B., Jackson, S.P., Smith, G.C.M., and Ashworth, A. (2005). Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434 (7035): 917–921. doi: 10.1038/nature03445.
- 51Yap, T.A., Sandhu, S.K., Carden, C.P., and de Bono, J.S. (2011). Poly(ADP-ribose) polymerase (PARP) inhibitors: exploiting a synthetic lethal strategy in the clinic. CA Cancer J. Clin. 61 (1): 31–49. doi: 10.3322/caac.20095.
- 52Murata, S., Zhang, C., Finch, N., Zhang, K., Campo, L., and Breuer, E.-K. (2016). Predictors and modulators of synthetic lethality: an update on PARP inhibitors and personalized medicine. Biomed. Res. Int. 2016: 2346585. doi: 10.1155/2016/2346585.
- 53Brown, J.S., Kaye, S.B., and Yap, T.A. (2016). PARP inhibitors: the race is on. Br. J. Cancer 114 (7): 713–715. doi: 10.1038/bjc.2016.67.
- 54Purnell, M.R. and Whish, W.J. (1980). Novel inhibitors of poly(ADP-ribose) synthetase. Biochem. J. 185 (3): 775–777.
- 55Jones, P., Altamura, S., Boueres, J., Ferrigno, F., Fonsi, M., Giomini, C., Lamartina, S., Monteagudo, E., Ontoria, J.M., Orsale, M.V., Palumbi, M.C., Pesci, S., Roscilli, G., Scarpelli, R., Schultz-Fademrecht, C., Toniatti, C., and Rowley, M. (2009). Discovery of 2-{4-[(3S)-piperidin-3-Yl]phenyl}-2H-indazole-7-carboxamide (MK-4827): a novel oral poly(ADP-ribose)polymerase (PARP) inhibitor efficacious in BRCA-1 and -2 mutant tumors. J. Med. Chem. 52 (22): 7170–7185. doi: 10.1021/jm901188v.
- 56Donawho, C.K., Luo, Y., Luo, Y., Penning, T.D., Bauch, J.L., Bouska, J.J., Bontcheva-Diaz, V.D., Cox, B.F., DeWeese, T.L., Dillehay, L.E., Ferguson, D.C., Ghoreishi-Haack, N.S., Grimm, D.R., Guan, R., Han, E.K., Holley-Shanks, R.R., Hristov, B., Idler, K.B., Jarvis, K., Johnson, E.F., Kleinberg, L.R., Klinghofer, V., Lasko, L.M., Liu, X., Marsh, K.C., McGonigal, T.P., Meulbroek, J.A., Olson, A.M., Palma, J.P., Rodriguez, L.E., Shi, Y., Stavropoulos, J.A., Tsurutani, A.C., Zhu, G.-D., Rosenberg, S.H., Giranda, V.L., and Frost, D.J. (2007). ABT-888, an orally active poly(ADP-ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models. Clin. Cancer Res. 13 (9): 2728–2737. doi: 10.1158/1078-0432.CCR-06-3039.
- 57Penning, T.D., Zhu, G.-D., Gandhi, V.B., Gong, J., Thomas, S., Lubisch, W., Grandel, R., Wernet, W., Park, C.H., Fry, E.H., Liu, X., Shi, Y., Klinghofer, V., Johnson, E.F., Donawho, C.K., Frost, D.J., Bontcheva-Diaz, V., Bouska, J.J., Olson, A.M., Marsh, K.C., Luo, Y., Rosenberg, S.H., and Giranda, V.L. (2008). Discovery and SAR of 2-(1-propylpiperidin-4-yl)-1H-benzimidazole-4-carboxamide: a potent inhibitor of poly(ADP-ribose) polymerase (PARP) for the treatment of cancer. Bioorg. Med. Chem. 16 (14): 6965–6975. doi: 10.1016/j.bmc.2008.05.044.
- 58Penning, T.D., Zhu, G.-D., Gandhi, V.B., Gong, J., Liu, X., Shi, Y., Klinghofer, V., Johnson, E.F., Donawho, C.K., Frost, D.J., Bontcheva-Diaz, V., Bouska, J.J., Osterling, D.J., Olson, A.M., Marsh, K.C., Luo, Y., and Giranda, V.L. (2009). Discovery of the poly(ADP-ribose) polymerase (PARP) inhibitor 2-[(R)-2-methylpyrrolidin-2-Yl]-1H-benzimidazole-4-carboxamide (ABT-888) for the treatment of cancer. J. Med. Chem. 52 (2): 514–523. doi: 10.1021/jm801171j.
- 59Chuang, H.-C., Kapuriya, N., Kulp, S.K., Chen, C.-S., and Shapiro, C.L. (2012). Differential anti-proliferative activities of poly(ADP-ribose) polymerase (PARP) inhibitors in triple-negative breast cancer cells. Breast Cancer Res. Treat. 134 (2): 649–659. doi: 10.1007/s10549-012-2106-5.
- 60Wahlberg, E., Karlberg, T., Kouznetsova, E., Markova, N., Macchiarulo, A., Thorsell, A.-G., Pol, E., Frostell, Å., Ekblad, T., Öncü, D., Kull, B., Robertson, G.M., Pellicciari, R., Schüler, H., and Weigelt, J. (2012). Family-wide chemical profiling and structural analysis of PARP and tankyrase inhibitors. Nat. Biotechnol. 30 (3): 283–288. doi: 10.1038/nbt.2121.
- 61Thorsell, A.-G., Ekblad, T., Karlberg, T., Löw, M., Pinto, A.F., Trésaugues, L., Moche, M., Cohen, M.S., and Schüler, H. (2017). Structural basis for potency and promiscuity in poly(ADP-ribose) polymerase (PARP) and tankyrase inhibitors. J. Med. Chem. 60 (4): 1262–1271. doi: 10.1021/acs.jmedchem.6b00990.
- 62Knezevic, C.E., Wright, G., Rix, L.L.R., Kim, W., Kuenzi, B.M., Luo, Y., Watters, J.M., Koomen, J.M., Haura, E.B., Monteiro, A.N., Radu, C., Lawrence, H.R., and Rix, U. (2016). Proteome-wide profiling of clinical PARP inhibitors reveals compound-specific secondary targets. Cell Chem. Biol. 23 (12): 1490–1503. doi: 10.1016/j.chembiol.2016.10.011.
- 63Lupo, B. and Trusolino, L. (2014). Inhibition of poly(ADP-ribosyl)ation in cancer: old and new paradigms revisited. Biochim. Biophys. Acta 1846 (1): 201–215. doi: 10.1016/j.bbcan.2014.07.004.
- 64Incorvaia, L., Passiglia, F., Rizzo, S., Galvano, A., Listì, A., Barraco, N., Maragliano, R., Calò, V., Natoli, C., Ciaccio, M., Bazan, V., and Russo, A. (2017). “Back to a false normality”: new intriguing mechanisms of resistance to PARP inhibitors. Oncotarget 8 (14): 23891–23904. doi: 10.18632/oncotarget.14409.
- 65Ledermann, J.A., Harter, P., Gourley, C., Friedlander, M., Vergote, I., Rustin, G., Scott, C., Meier, W., Shapira-Frommer, R., Safra, T., Matei, D., Fielding, A., Spencer, S., Rowe, P., Lowe, E., Hodgson, D., Sovak, M.A., and Matulonis, U. (2016). Overall survival in patients with platinum-sensitive recurrent serous ovarian cancer receiving olaparib maintenance monotherapy: an updated analysis from a randomised, placebo-controlled, double-blind, phase 2 trial. Lancet Oncol. 17 (11): 1579–1589. doi: 10.1016/S1470-2045(16)30376-X.
- 66Edwards, S.L., Brough, R., Lord, C.J., Natrajan, R., Vatcheva, R., Levine, D.A., Boyd, J., Reis-Filho, J.S., and Ashworth, A. (2008). Resistance to therapy caused by intragenic deletion in BRCA2. Nature 451 (7182): 1111–1115. doi: 10.1038/nature06548.
- 67Sakai, W., Swisher, E.M., Karlan, B.Y., Agarwal, M.K., Higgins, J., Friedman, C., Villegas, E., Jacquemont, C., Farrugia, D.J., Couch, F.J., Urban, N., and Taniguchi, T. (2008). Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. Nature 451 (7182): 1116–1120. doi: 10.1038/nature06633.
- 68Swisher, E.M., Sakai, W., Karlan, B.Y., Wurz, K., Urban, N., and Taniguchi, T. (2008). Secondary BRCA1 mutations in BRCA1-mutated ovarian carcinomas with platinum resistance. Cancer Res. 68 (8): 2581–2586. doi: 10.1158/0008-5472.CAN-08-0088.
- 69Bouwman, P., Aly, A., Escandell, J.M., Pieterse, M., Bartkova, J., van der Gulden, H., Hiddingh, S., Thanasoula, M., Kulkarni, A., Yang, Q., Haffty, B.G., Tommiska, J., Blomqvist, C., Drapkin, R., Adams, D.J., Nevanlinna, H., Bartek, J., Tarsounas, M., Ganesan, S., and Jonkers, J. (2010). 53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers. Nat. Struct. Mol. Biol. 17 (6): 688–695. doi: 10.1038/nsmb.1831.
- 70Bunting, S.F., Callén, E., Wong, N., Chen, H.-T., Polato, F., Gunn, A., Bothmer, A., Feldhahn, N., Fernandez-Capetillo, O., Cao, L., Xu, X., Deng, C.-X., Finkel, T., Nussenzweig, M., Stark, J.M., and Nussenzweig, A. (2010). 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 141 (2): 243–254. doi: 10.1016/j.cell.2010.03.012.
- 71Choi, Y.E., Meghani, K., Brault, M.-E., Leclerc, L., He, Y.J., Day, T.A., Elias, K.M., Drapkin, R., Weinstock, D.M., Dao, F., Shih, K.K., Matulonis, U., Levine, D.A., Konstantinopoulos, P.A., and Chowdhury, D. (2016). Platinum and PARP inhibitor resistance due to overexpression of MicroRNA-622 in BRCA1-mutant ovarian cancer. Cell Rep. 14 (3): 429–439. doi: 10.1016/j.celrep.2015.12.046.
- 72Bouwman, P., van der Gulden, H., van der Heijden, I., Drost, R., Klijn, C.N., Prasetyanti, P., Pieterse, M., Wientjens, E., Seibler, J., Hogervorst, F.B.L., and Jonkers, J. (2013). A high-throughput functional complementation assay for classification of BRCA1 missense variants. Cancer Discov. 3 (10): 1142–1155. doi: 10.1158/2159-8290.CD-13-0094.
- 73Anantha, R.W., Simhadri, S., Foo, T.K., Miao, S., Liu, J., Shen, Z., Ganesan, S., and Xia, B. (2017). Functional and mutational landscapes of BRCA1 for homology-directed repair and therapy resistance. Elife 6: doi: 10.7554/eLife.21350.
- 74Friedman, L.S., Szabo, C.I., Ostermeyer, E.A., Dowd, P., Butler, L., Park, T., Lee, M.K., Goode, E.L., Rowell, S.E., and King, M.C. (1995). Novel inherited mutations and variable expressivity of BRCA1 alleles, including the founder mutation 185delAG in Ashkenazi Jewish families. Am. J. Hum. Genet. 57 (6): 1284–1297.
- 75Struewing, J.P., Tarone, R.E., Brody, L.C., Li, F.P., and Boice, J.D. (1996). BRCA1 mutations in young women with breast cancer. Lancet 347 (9013): 1493.
- 76Wang, Y., Krais, J.J., Bernhardy, A.J., Nicolas, E., Cai, K.Q., Harrell, M.I., Kim, H.H., George, E., Swisher, E.M., Simpkins, F., and Johnson, N. (2016). RING domain-deficient BRCA1 promotes PARP inhibitor and platinum resistance. J. Clin. Invest. 126 (8): 3145–3157. doi: 10.1172/JCI87033.
- 77Liu, Y., Burness, M.L., Martin-Trevino, R., Guy, J., Bai, S., Harouaka, R., Brooks, M.D., Shang, L., Fox, A., Luther, T.K., Davis, A., Baker, T.L., Colacino, J., Clouthier, S.G., Shao, Z.-M., Wicha, M.S., and Liu, S. (2017). RAD51 mediates resistance of cancer stem cells to PARP inhibition in triple-negative breast cancer. Clin. Cancer Res. 23 (2): 514–522. doi: 10.1158/1078-0432.CCR-15-1348.
- 78Ding, X., Ray Chaudhuri, A., Callen, E., Pang, Y., Biswas, K., Klarmann, K.D., Martin, B.K., Burkett, S., Cleveland, L., Stauffer, S., Sullivan, T., Dewan, A., Marks, H., Tubbs, A.T., Wong, N., Buehler, E., Akagi, K., Martin, S.E., Keller, J.R., Nussenzweig, A., and Sharan, S.K. (2016). Synthetic viability by BRCA2 and PARP1/ARTD1 deficiencies. Nat. Commun. 7: 12425. doi: 10.1038/ncomms12425.
- 79Guillemette, S., Serra, R.W., Peng, M., Hayes, J.A., Konstantinopoulos, P.A., Green, M.R., and Cantor, S.B. (2015). Resistance to therapy in BRCA2 mutant cells due to loss of the nucleosome remodeling factor CHD4. Genes Dev. 29 (5): 489–494. doi: 10.1101/gad.256214.114.
- 80Noordermeer, S.M. and van Attikum, H. (2019). PARP inhibitor resistance: a tug-of-war in BRCA-mutated cells. Trends Cell Biol. 29 (10): 820–834. doi: 10.1016/j.tcb.2019.07.008.
- 81Wakefield, M.J., Nesic, K., Kondrashova, O., and Scott, C.L. (2019). Diverse mechanisms of PARP inhibitor resistance in ovarian cancer. Biochim. Biophys. Acta Rev. Cancer 1872 (2): 188307. doi: 10.1016/j.bbcan.2019.08.002.
- 82Giovannini, S., Weller, M.-C., Repmann, S., Moch, H., and Jiricny, J. (2019). Synthetic lethality between BRCA1 deficiency and poly(ADP-ribose) polymerase inhibition is modulated by processing of endogenous oxidative DNA damage. Nucleic Acids Res. 47 (17): 9132–9143. doi: 10.1093/nar/gkz624.
- 83Berti, M., Ray Chaudhuri, A., Thangavel, S., Gomathinayagam, S., Kenig, S., Vujanovic, M., Odreman, F., Glatter, T., Graziano, S., Mendoza-Maldonado, R., Marino, F., Lucic, B., Biasin, V., Gstaiger, M., Aebersold, R., Sidorova, J.M., Monnat, R.J., Lopes, M., and Vindigni, A. (2013). Human RECQ1 promotes restart of replication forks reversed by DNA topoisomerase I inhibition. Nat. Struct. Mol. Biol. 20 (3): 347–354. doi: 10.1038/nsmb.2501.
- 84Pommier, Y., Redon, C., Rao, V.A., Seiler, J.A., Sordet, O., Takemura, H., Antony, S., Meng, L., Liao, Z., Kohlhagen, G., Zhang, H., and Kohn, K.W. (2003). Repair of and checkpoint response to topoisomerase I-mediated DNA damage. Mutat. Res. 532 (1–2): 173–203.
- 85Koster, D.A., Palle, K., Bot, E.S.M., Bjornsti, M.-A., and Dekker, N.H. (2007). Antitumour drugs impede DNA uncoiling by topoisomerase I. Nature 448 (7150): 213–217. doi: 10.1038/nature05938.
- 86Ray Chaudhuri, A., Hashimoto, Y., Herrador, R., Neelsen, K.J., Fachinetti, D., Bermejo, R., Cocito, A., Costanzo, V., and Lopes, M. (2012). Topoisomerase I poisoning results in PARP-mediated replication fork reversal. Nat. Struct. Mol. Biol. 19 (4): 417–423. doi: 10.1038/nsmb.2258.
- 87Fox, B.M., Xiao, X., Antony, S., Kohlhagen, G., Pommier, Y., Staker, B.L., Stewart, L., and Cushman, M. (2003). Design, synthesis, and biological evaluation of cytotoxic 11-alkenylindenoisoquinoline topoisomerase I inhibitors and indenoisoquinoline-camptothecin hybrids. J. Med. Chem. 46 (15): 3275–3282. doi: 10.1021/jm0300476.
- 88Bugreev, D.V., Rossi, M.J., and Mazin, A.V. (2011). Cooperation of RAD51 and RAD54 in regression of a model replication fork. Nucleic Acids Res. 39 (6): 2153–2164. doi: 10.1093/nar/gkq1139.
- 89Ceballos, S.J. and Heyer, W.-D. (2011). Functions of the Snf2/Swi2 family Rad54 motor protein in homologous recombination. Biochim. Biophys. Acta 1809 (9): 509–523. doi: 10.1016/j.bbagrm.2011.06.006.
- 90Deakyne, J.S., Huang, F., Negri, J., Tolliday, N., Cocklin, S., and Mazin, A.V. (2013). Analysis of the activities of RAD54, a SWI2/SNF2 protein, using a specific small-molecule inhibitor. J. Biol. Chem. 288 (44): 31567–31580. doi: 10.1074/jbc.M113.502195.
- 91Aggarwal, M., Banerjee, T., Sommers, J.A., and Brosh, R.M. (2013). Targeting an Achilles' heel of cancer with a WRN helicase inhibitor. Cell Cycle 12 (20): 3329–3335. doi: 10.4161/cc.26320.
- 92Aggarwal, M., Banerjee, T., Sommers, J.A., Iannascoli, C., Pichierri, P., Shoemaker, R.H., and Brosh, R.M. (2013). Werner syndrome helicase has a critical role in DNA damage responses in the absence of a functional Fanconi Anemia pathway. Cancer Res. 73 (17): 5497–5507. doi: 10.1158/0008-5472.CAN-12-2975.
- 93Aggarwal, M., Sommers, J.A., Shoemaker, R.H., and Brosh, R.M. (2011). Inhibition of helicase activity by a small molecule impairs Werner syndrome helicase (WRN) function in the cellular response to DNA damage or replication stress. Proc. Natl. Acad. Sci. U. S. A. 108 (4): 1525–1530. doi: 10.1073/pnas.1006423108.
- 94Larsen, N.B. and Hickson, I.D. (2013). RecQ helicases: conserved guardians of genomic integrity. Adv. Exp. Med. Biol. 767: 161–184. doi: 10.1007/978-1-4614-5037-5_8.
- 95Huang, Y. and Li, L. (2013). DNA crosslinking damage and cancer – a tale of friend and foe. Transl. Cancer Res. 2 (3): 144–154. doi: 10.3978/j.issn.2218-676X.2013.03.01.
- 96Kottemann, M.C. and Smogorzewska, A. (2013). Fanconi anaemia and the repair of Watson and Crick DNA crosslinks. Nature 493 (7432): 356–363. doi: 10.1038/nature11863.
- 97Wang, A.T. and Smogorzewska, A. (2015). SnapShot: Fanconi Anemia and associated proteins. Cell 160 (1–2): 354–354.e1. doi: 10.1016/j.cell.2014.12.031.
- 98Jacquemont, C., Simon, J.A., D'Andrea, A.D., and Taniguchi, T. (2012). Non-specific chemical inhibition of the Fanconi Anemia pathway sensitizes cancer cells to cisplatin. Mol. Cancer 11: 26. doi: 10.1186/1476-4598-11-26.
- 99Rosenthal, A.S., Dexheimer, T.S., Gileadi, O., Nguyen, G.H., Chu, W.K., Hickson, I.D., Jadhav, A., Simeonov, A., and Maloney, D.J. (2013). Synthesis and SAR studies of 5-(pyridin-4-yl)-1,3,4-thiadiazol-2-amine derivatives as potent inhibitors of bloom helicase. Bioorg. Med. Chem. Lett. 23 (20): 5660–5666. doi: 10.1016/j.bmcl.2013.08.025.
- 100Rosenthal, A.S., Dexheimer, T.S., Nguyen, G., Gileadi, O., Vindigni, A., Simeonov, A., Jadhav, A., Hickson, I., and Maloney, D.J. (2010). Discovery of ML216, a small molecule inhibitor of bloom (BLM) helicase. In: Probe Reports from the NIH Molecular Libraries Program. National Center for Biotechnology Information (US): Bethesda (MD).
- 101Harris, M.N., Medrek, T.J., Golomb, F.M., Gumport, S.L., Postel, A.H., and Wright, J.C. (1965). Chemotherapy with streptonigrin in advanced cancer. Cancer 18: 49–57. doi: 10.1002/1097-0142(196501)18:1<49::aid-cncr2820180109>3.0.co;2-#.
10.1002/1097-0142(196501)18:1<49::AID-CNCR2820180109>3.0.CO;2-# CAS PubMed Web of Science® Google Scholar
- 102Dupré, A., Boyer-Chatenet, L., Sattler, R.M., Modi, A.P., Lee, J.-H., Nicolette, M.L., Kopelovich, L., Jasin, M., Baer, R., Paull, T.T., and Gautier, J. (2008). A forward chemical genetic screen reveals an inhibitor of the Mre11-Rad50-Nbs1 complex. Nat. Chem. Biol. 4 (2): 119–125. doi: 10.1038/nchembio.63.
- 103Chandramouly, G., McDevitt, S., Sullivan, K., Kent, T., Luz, A., Glickman, J.F., Andrake, M., Skorski, T., and Pomerantz, R.T. (2015). Small-molecule disruption of RAD52 rings as a mechanism for precision medicine in BRCA-deficient cancers. Chem. Biol. 22 (11): 1491–1504. doi: 10.1016/j.chembiol.2015.10.003.
- 104Huang, F., Goyal, N., Sullivan, K., Hanamshet, K., Patel, M., Mazina, O.M., Wang, C.X., An, W.F., Spoonamore, J., Metkar, S., Emmitte, K.A., Cocklin, S., Skorski, T., and Mazin, A.V. (2016). Targeting BRCA1- and BRCA2-deficient cells with RAD52 small molecule inhibitors. Nucleic Acids Res. 44 (9): 4189–4199. doi: 10.1093/nar/gkw087.
- 105Sullivan, K., Cramer-Morales, K., McElroy, D.L., Ostrov, D.A., Haas, K., Childers, W., Hromas, R., and Skorski, T. (2016). Identification of a small molecule inhibitor of RAD52 by structure-based selection. PLoS One 11 (1): e0147230. doi: 10.1371/journal.pone.0147230.
- 106Hengel, S.R., Malacaria, E., Constantino, L.F.d.S., Bain, F.E., Diaz, A., Koch, B.G., Yu, L., Wu, M., Pichierri, P., Spies, M.A., and Spies, M. (2016). Small-molecule inhibitors identify the RAD52-SsDNA interaction as critical for recovery from replication stress and for survival of BRCA2 deficient cells. eLife 5: e14740. doi: 10.7554/eLife.14740.
- 107Ishida, T., Takizawa, Y., Kainuma, T., Inoue, J., Mikawa, T., Shibata, T., Suzuki, H., Tashiro, S., and Kurumizaka, H. (2009). DIDS, a chemical compound that inhibits RAD51-mediated homologous pairing and strand exchange. Nucleic Acids Res. 37 (10): 3367–3376. doi: 10.1093/nar/gkp200.
- 108Huang, F., Motlekar, N.A., Burgwin, C.M., Napper, A.D., Diamond, S.L., and Mazin, A.V. (2011). Identification of specific inhibitors of human RAD51 recombinase using high-throughput screening. ACS Chem. Biol. 6 (6): 628–635. doi: 10.1021/cb100428c.
- 109Alagpulinsa, D.A., Ayyadevara, S., and Shmookler Reis, R.J. (2014). A small-molecule inhibitor of RAD51 reduces homologous recombination and sensitizes multiple myeloma cells to doxorubicin. Front. Oncol. 4: 289. doi: 10.3389/fonc.2014.00289.
- 110Huang, F., Mazina, O.M., Zentner, I.J., Cocklin, S., and Mazin, A.V. (2012). Inhibition of homologous recombination in human cells by targeting RAD51 recombinase. J. Med. Chem. 55 (7): 3011–3020. doi: 10.1021/jm201173g.
- 111Huang, F. and Mazin, A.V. (2014). A small molecule inhibitor of human RAD51 potentiates breast cancer cell killing by therapeutic agents in mouse xenografts. PLoS One 9 (6): e100993. doi: 10.1371/journal.pone.0100993.
- 112Budke, B., Logan, H.L., Kalin, J.H., Zelivianskaia, A.S., Cameron McGuire, W., Miller, L.L., Stark, J.M., Kozikowski, A.P., Bishop, D.K., and Connell, P.P. (2012). RI-1: a chemical inhibitor of RAD51 that disrupts homologous recombination in human cells. Nucleic Acids Res. 40 (15): 7347–7357. doi: 10.1093/nar/gks353.
- 113Jayathilaka, K., Sheridan, S.D., Bold, T.D., Bochenska, K., Logan, H.L., Weichselbaum, R.R., Bishop, D.K., and Connell, P.P. (2008). A chemical compound that stimulates the human homologous recombination protein RAD51. Proc. Natl. Acad. Sci. U. S. A. 105 (41): 15848–15853. doi: 10.1073/pnas.0808046105.
- 114Lv, W., Budke, B., Pawlowski, M., Connell, P.P., and Kozikowski, A.P. (2016). Development of small molecules that specifically inhibit the D-loop activity of RAD51. J. Med. Chem. 59 (10): 4511–4525. doi: 10.1021/acs.jmedchem.5b01762.
- 115Budke, B., Kalin, J.H., Pawlowski, M., Zelivianskaia, A.S., Wu, M., Kozikowski, A.P., and Connell, P.P. (2013). An optimized RAD51 inhibitor that disrupts homologous recombination without requiring Michael acceptor reactivity. J. Med. Chem. 56 (1): 254–263. doi: 10.1021/jm301565b.
- 116Normand, A., Rivière, E., and Renodon-Cornière, A. (2014). Identification and characterization of human Rad51 inhibitors by screening of an existing drug library. Biochem. Pharmacol. 91 (3): 293–300. doi: 10.1016/j.bcp.2014.07.033.
- 117Cejka, P. (2015). DNA end resection: nucleases team up with the right partners to initiate homologous recombination. J. Biol. Chem. 290 (38): 22931–22938. doi: 10.1074/jbc.R115.675942.
- 118Symington, L.S. (2014). DNA repair: making the cut. Nature 514 (7520): 39–40. doi: 10.1038/nature13751.
- 119Symington, L.S. (2016). Mechanism and regulation of DNA end resection in eukaryotes. Crit. Rev. Biochem. Mol. Biol. 51 (3): 195–212. doi: 10.3109/10409238.2016.1172552.
- 120Cimprich, K.A. and Cortez, D. (2008). ATR: an essential regulator of genome integrity. Nat. Rev. Mol. Cell Biol. 9 (8): 616–627. doi: 10.1038/nrm2450.
- 121Zou, L. and Elledge, S.J. (2003). Sensing DNA damage through ATRIP recognition of RPA-SsDNA complexes. Science 300 (5625): 1542–1548. doi: 10.1126/science.1083430.
- 122Yazinski, S.A., Comaills, V., Buisson, R., Genois, M.-M., Nguyen, H.D., Ho, C.K., Todorova Kwan, T., Morris, R., Lauffer, S., Nussenzweig, A., Ramaswamy, S., Benes, C.H., Haber, D.A., Maheswaran, S., Birrer, M.J., and Zou, L. (2017). ATR inhibition disrupts rewired homologous recombination and fork protection pathways in PARP inhibitor-resistant BRCA-deficient cancer cells. Genes Dev. 31 (3): 318–332. doi: 10.1101/gad.290957.116.
- 123Kim, D., Liu, Y., Oberly, S., Freire, R., and Smolka, M.B. (2018). ATR-mediated proteome remodeling is a major determinant of homologous recombination capacity in cancer cells. Nucleic Acids Res. 46 (16): 8311–8325. doi: 10.1093/nar/gky625.
- 124Lecona, E. and Fernandez-Capetillo, O. (2018). Targeting ATR in cancer. Nat. Rev. Cancer 18 (9): 586–595. doi: 10.1038/s41568-018-0034-3.
- 125Mei, L., Zhang, J., He, K., and Zhang, J. (2019). Ataxia telangiectasia and Rad3-related inhibitors and cancer therapy: where we stand. J. Hematol. Oncol. 12 (1): 43. doi: 10.1186/s13045-019-0733-6.
- 126Foote, K.M., Nissink, J.W.M., McGuire, T., Turner, P., Guichard, S., Yates, J.W.T., Lau, A., Blades, K., Heathcote, D., Odedra, R., Wilkinson, G., Wilson, Z., Wood, C.M., and Jewsbury, P.J. (2018). Discovery and characterization of AZD6738, a potent inhibitor of ataxia telangiectasia mutated and Rad3 related (ATR) kinase with application as an anticancer agent. J. Med. Chem. 61 (22): 9889–9907. doi: 10.1021/acs.jmedchem.8b01187.
- 127Sullivan-Reed, K., Bolton-Gillespie, E., Dasgupta, Y., Langer, S., Siciliano, M., Nieborowska-Skorska, M., Hanamshet, K., Belyaeva, E.A., Bernhardy, A.J., Lee, J., Moore, M., Zhao, H., Valent, P., Matlawska-Wasowska, K., Müschen, M., Bhatia, S., Bhatia, R., Johnson, N., Wasik, M.A., Mazin, A.V., and Skorski, T. (2018). Simultaneous targeting of PARP1 and RAD52 triggers dual synthetic lethality in BRCA-deficient tumor cells. Cell Rep. 23 (11): 3127–3136. doi: 10.1016/j.celrep.2018.05.034.
- 128Mateos-Gomez, P.A., Gong, F., Nair, N., Miller, K.M., Lazzerini-Denchi, E., and Sfeir, A. (2015). Mammalian polymerase θ promotes alternative NHEJ and suppresses recombination. Nature 518 (7538): 254–257. doi: 10.1038/nature14157.
- 129Ceccaldi, R., Liu, J.C., Amunugama, R., Hajdu, I., Primack, B., Petalcorin, M.I.R., O'Connor, K.W., Konstantinopoulos, P.A., Elledge, S.J., Boulton, S.J., Yusufzai, T., and D'Andrea, A.D. (2015). Homologous-recombination-deficient tumours are dependent on Polθ-mediated repair. Nature 518 (7538): 258–262. doi: 10.1038/nature14184.
- 130Kelso, A.A., Lopezcolorado, F.W., Bhargava, R., and Stark, J.M. (2019). Distinct roles of RAD52 and POLQ in chromosomal break repair and replication stress response. PLoS Genet. 15 (8): e1008319. doi: 10.1371/journal.pgen.1008319.
- 131Kais, Z., Rondinelli, B., Holmes, A., O'Leary, C., Kozono, D., D'Andrea, A.D., and Ceccaldi, R. (2016). FANCD2 maintains fork stability in BRCA1/2-deficient tumors and promotes alternative end-joining DNA repair. Cell Rep. 15 (11): 2488–2499. doi: 10.1016/j.celrep.2016.05.031.
- 132Mengwasser, K.E., Adeyemi, R.O., Leng, Y., Choi, M.Y., Clairmont, C., D'Andrea, A.D., and Elledge, S.J. (2019). Genetic screens reveal FEN1 and APEX2 as BRCA2 synthetic lethal targets. Mol. Cell 73 (5): 885–899.e6. doi: 10.1016/j.molcel.2018.12.008.
- 133Carbajosa, S., Pansa, M.F., Paviolo, N.S., Castellaro, A.M., Andino, D.L., Nigra, A.D., García, I.A., Racca, A.C., Rodriguez-Berdini, L., Angiolini, V., Guantay, L., Villafañez, F., Federico, M.B., Rodríguez-Baili, M.C., Caputto, B.L., Drewes, G., Madauss, K.P., Gloger, I., Fernandez, E., Gil, G.A., Bocco, J.L., Gottifredi, V., and Soria, G. (2019). Polo-like kinase 1 inhibition as a therapeutic approach to selectively target BRCA1-deficient cancer cells by synthetic lethality induction. Clin. Cancer Res. 25 (13): 4049–4062. doi: 10.1158/1078-0432.CCR-18-3516.
- 134Cramer-Morales, K., Nieborowska-Skorska, M., Scheibner, K., Padget, M., Irvine, D.A., Sliwinski, T., Haas, K., Lee, J., Geng, H., Roy, D., Slupianek, A., Rassool, F.V., Wasik, M.A., Childers, W., Copland, M., Müschen, M., Civin, C.I., and Skorski, T. (2013). Personalized synthetic lethality induced by targeting RAD52 in leukemias identified by gene mutation and expression profile. Blood 122 (7): 1293–1304. doi: 10.1182/blood-2013-05-501072.
- 135Lok, B.H. and Powell, S.N. (2012). Molecular pathways: understanding the role of Rad52 in homologous recombination for therapeutic advancement. Clin. Cancer Res. 18 (23): 6400–6406. doi: 10.1158/1078-0432.CCR-11-3150.
- 136Hanamshet, K., Mazina, O.M., and Mazin, A.V. (2016). Reappearance from obscurity: mammalian Rad52 in homologous recombination. Genes (Basel) 7 (9). doi: 10.3390/genes7090063.
- 137New, J.H., Sugiyama, T., Zaitseva, E., and Kowalczykowski, S.C. (1998). Rad52 protein stimulates DNA strand exchange by Rad51 and replication protein A. Nature 391 (6665): 407–410. doi: 10.1038/34950.
- 138Shinohara, A. and Ogawa, T. (1998). Stimulation by Rad52 of yeast Rad51-mediated recombination. Nature 391 (6665): 404–407. doi: 10.1038/34943.
- 139Sung, P. (1997). Function of yeast Rad52 protein as a mediator between replication protein A and the Rad51 recombinase. J. Biol. Chem. 272 (45): 28194–28197. doi: 10.1074/jbc.272.45.28194.
- 140Rijkers, T., Van Den Ouweland, J., Morolli, B., Rolink, A.G., Baarends, W.M., Van Sloun, P.P., Lohman, P.H., and Pastink, A. (1998). Targeted inactivation of mouse RAD52 reduces homologous recombination but not resistance to ionizing radiation. Mol. Cell. Biol. 18 (11): 6423–6429. doi: 10.1128/mcb.18.11.6423.
- 141Yamaguchi-Iwai, Y., Sonoda, E., Buerstedde, J.M., Bezzubova, O., Morrison, C., Takata, M., Shinohara, A., and Takeda, S. (1998). Homologous recombination, but not DNA repair, is reduced in vertebrate cells deficient in RAD52. Mol. Cell. Biol. 18 (11): 6430–6435. doi: 10.1128/mcb.18.11.6430.
- 142Yáñez, R.J. and Porter, A.C.G. (2002). Differential effects of Rad52p overexpression on gene targeting and extrachromosomal homologous recombination in a human cell line. Nucleic Acids Res. 30 (3): 740–748. doi: 10.1093/nar/30.3.740.
- 143Stark, J.M., Pierce, A.J., Oh, J., Pastink, A., and Jasin, M. (2004). Genetic steps of mammalian homologous repair with distinct mutagenic consequences. Mol. Cell. Biol. 24 (21): 9305–9316. doi: 10.1128/MCB.24.21.9305-9316.2004.
- 144Malacaria, E., Pugliese, G.M., Honda, M., Marabitti, V., Aiello, F.A., Spies, M., Franchitto, A., and Pichierri, P. (2019). Rad52 prevents excessive replication fork reversal and protects from nascent strand degradation. Nat. Commun. 10 (1): 1412. doi: 10.1038/s41467-019-09196-9.
- 145Malacaria, E., Honda, M., Franchitto, A., Spies, M., and Pichierri, P. (2020). Physiological and pathological roles of RAD52 at DNA replication forks. Cancers (Basel) 12 (2): doi: 10.3390/cancers12020402.
- 146Murfuni, I., Basile, G., Subramanyam, S., Malacaria, E., Bignami, M., Spies, M., Franchitto, A., and Pichierri, P. (2013). Survival of the replication checkpoint deficient cells requires MUS81-RAD52 function. PLoS Genet. 9 (10): e1003910. doi: 10.1371/journal.pgen.1003910.
- 147Bhowmick, R., Minocherhomji, S., and Hickson, I.D. (2016). RAD52 facilitates mitotic DNA synthesis following replication stress. Mol. Cell 64 (6): 1117–1126. doi: 10.1016/j.molcel.2016.10.037.
- 148Sotiriou, S.K., Kamileri, I., Lugli, N., Evangelou, K., Da-Ré, C., Huber, F., Padayachy, L., Tardy, S., Nicati, N.L., Barriot, S., Ochs, F., Lukas, C., Lukas, J., Gorgoulis, V.G., Scapozza, L., and Halazonetis, T.D. (2016). Mammalian RAD52 functions in break-induced replication repair of collapsed DNA replication forks. Mol. Cell 64 (6): 1127–1134. doi: 10.1016/j.molcel.2016.10.038.
- 149Min, J., Wright, W.E., and Shay, J.W. (2017). Alternative lengthening of telomeres mediated by mitotic DNA synthesis engages break-induced replication processes. Mol. Cell. Biol. 37 (20): doi: 10.1128/MCB.00226-17.
- 150Grimme, J.M., Honda, M., Wright, R., Okuno, Y., Rothenberg, E., Mazin, A.V., Ha, T., and Spies, M. (2010). Human Rad52 binds and wraps single-stranded DNA and mediates annealing via two HRad52-SsDNA complexes. Nucleic Acids Res. 38 (9): 2917–2930. doi: 10.1093/nar/gkp1249.
- 151Honda, M., Okuno, Y., Yoo, J., Ha, T., and Spies, M. (2011). Tyrosine phosphorylation enhances RAD52-mediated annealing by modulating its DNA binding. EMBO J. 30 (16): 3368–3382. doi: 10.1038/emboj.2011.238.
- 152Saotome, M., Saito, K., Yasuda, T., Ohtomo, H., Sugiyama, S., Nishimura, Y., Kurumizaka, H., and Kagawa, W. (2018). Structural basis of homology-directed DNA repair mediated by RAD52. iScience 3: 50–62. doi: 10.1016/j.isci.2018.04.005.
- 153Grimme, J.M. and Spies, M. (2011). FRET-based assays to monitor DNA binding and annealing by Rad52 recombination mediator protein. Methods Mol. Biol. 745: 463–483. doi: 10.1007/978-1-61779-129-1_27.
- 154Baumann, P., Benson, F.E., and West, S.C. (1996). Human Rad51 protein promotes ATP-dependent homologous pairing and strand transfer reactions in vitro. Cell 87 (4): 757–766. doi: 10.1016/s0092-8674(00)81394-x.
- 155Morrical, S.W. (2015). DNA-pairing and annealing processes in homologous recombination and homology-directed repair. Cold Spring Harb. Perspect. Biol. 7 (2): a016444. doi: 10.1101/cshperspect.a016444.
- 156Spies, M. and Fishel, R. (2015). Mismatch repair during homologous and homeologous recombination. Cold Spring Harb. Perspect. Biol. 7 (3): a022657. doi: 10.1101/cshperspect.a022657.
- 157Klein, H.L. (2008). The consequences of Rad51 overexpression for normal and tumor cells. DNA Repair (Amst.) 7 (5): 686–693. doi: 10.1016/j.dnarep.2007.12.008.
- 158Budke, B., Lv, W., Kozikowski, A.P., and Connell, P.P. (2016). Recent developments using small molecules to target RAD51: how to best modulate RAD51 for anticancer therapy? ChemMedChem 11 (22): 2468–2473. doi: 10.1002/cmdc.201600426.
- 159Jessen, F., Sjøholm, C., and Hoffmann, E.K. (1986). Identification of the anion exchange protein of ehrlich cells: a kinetic analysis of the inhibitory effects of 4,4′-diisothiocyano-2,2′-stilbene-disulfonic acid (DIDS) and labeling of membrane proteins with 3H-DIDS. J. Membr. Biol. 92 (3): 195–205. doi: 10.1007/bf01869388.
- 160Wiegmans, A.P., Miranda, M., Wen, S.W., Al-Ejeh, F., and Möller, A. (2016). RAD51 inhibition in triple negative breast cancer cells is challenged by compensatory survival signaling and requires rational combination therapy. Oncotarget 7 (37): 60087–60100. doi: 10.18632/oncotarget.11065.
- 161Carreira, A. and Kowalczykowski, S.C. (2011). Two classes of BRC repeats in BRCA2 promote RAD51 nucleoprotein filament function by distinct mechanisms. Proc. Natl. Acad. Sci. U. S. A. 108 (26): 10448–10453. doi: 10.1073/pnas.1106971108.
- 162Shivji, M.K.K., Davies, O.R., Savill, J.M., Bates, D.L., Pellegrini, L., and Venkitaraman, A.R. (2006). A region of human BRCA2 containing multiple BRC repeats promotes RAD51-mediated strand exchange. Nucleic Acids Res. 34 (14): 4000–4011. doi: 10.1093/nar/gkl505.
- 163Kim, T.M., Son, M.Y., Dodds, S., Hu, L., and Hasty, P. (2014). Deletion of BRCA2 exon 27 causes defects in response to both stalled and collapsed replication forks. Mutat. Res. 766–767: 66–72. doi: 10.1016/j.mrfmmm.2014.06.003.
- 164Saeki, H., Siaud, N., Christ, N., Wiegant, W.W., van Buul, P.P.W., Han, M., Zdzienicka, M.Z., Stark, J.M., and Jasin, M. (2006). Suppression of the DNA repair defects of BRCA2-deficient cells with heterologous protein fusions. Proc. Natl. Acad. Sci. U. S. A. 103 (23): 8768–8773. doi: 10.1073/pnas.0600298103.
- 165Scott, D.E., Coyne, A.G., Venkitaraman, A., Blundell, T.L., Abell, C., and Hyvönen, M. (2015). Small-molecule inhibitors that target protein-protein interactions in the RAD51 family of recombinases. ChemMedChem 10 (2): 296–303. doi: 10.1002/cmdc.201402428.
- 166Pellegrini, L., Yu, D.S., Lo, T., Anand, S., Lee, M., Blundell, T.L., and Venkitaraman, A.R. (2002). Insights into DNA recombination from the structure of a RAD51-BRCA2 complex. Nature 420 (6913): 287–293. doi: 10.1038/nature01230.
- 167Subramanyam, S., Jones, W.T., Spies, M., and Spies, M.A. (2013). Contributions of the RAD51 N-terminal domain to BRCA2-RAD51 interaction. Nucleic Acids Res. 41 (19): 9020–9032. doi: 10.1093/nar/gkt691.
- 168Moschetti, T., Sharpe, T., Fischer, G., Marsh, M.E., Ng, H.K., Morgan, M., Scott, D.E., Blundell, T.L., Venkitaraman, A.R., Skidmore, J., Abell, C., and Hyvönen, M. (2016). Engineering archeal surrogate systems for the development of protein-protein interaction inhibitors against human RAD51. J. Mol. Biol. 428 (23): 4589–4607. doi: 10.1016/j.jmb.2016.10.009.
- 169Hanahan, D. and Weinberg, R.A. (2011). Hallmarks of cancer: the next generation. Cell 144 (5): 646–674. doi: 10.1016/j.cell.2011.02.013.
- 170Sato, H., Niimi, A., Yasuhara, T., Permata, T.B.M., Hagiwara, Y., Isono, M., Nuryadi, E., Sekine, R., Oike, T., Kakoti, S., Yoshimoto, Y., Held, K.D., Suzuki, Y., Kono, K., Miyagawa, K., Nakano, T., and Shibata, A. (2017). DNA double-strand break repair pathway regulates PD-L1 expression in cancer cells. Nat. Commun. 8 (1): 1751. doi: 10.1038/s41467-017-01883-9.
- 171Le, D.T., Uram, J.N., Wang, H., Bartlett, B.R., Kemberling, H., Eyring, A.D., Skora, A.D., Luber, B.S., Azad, N.S., Laheru, D., Biedrzycki, B., Donehower, R.C., Zaheer, A., Fisher, G.A., Crocenzi, T.S., Lee, J.J., Duffy, S.M., Goldberg, R.M., de la Chapelle, A., Koshiji, M., Bhaijee, F., Huebner, T., Hruban, R.H., Wood, L.D., Cuka, N., Pardoll, D.M., Papadopoulos, N., Kinzler, K.W., Zhou, S., Cornish, T.C., Taube, J.M., Anders, R.A., Eshleman, J.R., Vogelstein, B., and Diaz, L.A. (2015). PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372 (26): 2509–2520. doi: 10.1056/NEJMoa1500596.
- 172Vikas, P., Borcherding, N., and Zhang, W. (2018). The clinical promise of immunotherapy in triple-negative breast cancer. Cancer Manag. Res. 10: 6823–6833. doi: 10.2147/CMAR.S185176.
- 173Helleday, T. (2019). Making immunotherapy “cold” tumours “Hot” by chemotherapy-induced mutations-a misconception. Ann. Oncol. 30 (3): 360–361. doi: 10.1093/annonc/mdz013.
- 174Rankin, P.W., Jacobson, E.L., Benjamin, R.C., Moss, J., and Jacobson, M.K. (1989). Quantitative studies of inhibitors of ADP-ribosylation in vitro and in vivo. J. Biol. Chem. 264 (8): 4312–4317.
- 175Menear, K.A., Adcock, C., Boulter, R., Cockcroft, X., Copsey, L., Cranston, A., Dillon, K.J., Drzewiecki, J., Garman, S., Gomez, S. et al. (2008). 4-[3-(4-Cyclopropanecarbonylpiperazine-1-carbonyl)-4-fluorobenzyl]-2H-phthalazin-1-one: a novel bioavailable inhibitor of poly(ADP-ribose) polymerase-1. J. Med. Chem. 51 (20): 6581–6591. doi: 10.1021/jm8001263.
- 176Thomas, H.D., Calabrese, C.R., Batey, M.A., Canan, S., Hostomsky, Z., Kyle, S., Maegley, K.A., Newell, D.R., Skalitzky, D., Wang, L.-Z. et al. (2007). Preclinical selection of a novel poly(ADP-ribose) polymerase inhibitor for clinical trial. Mol. Cancer Ther. 6 (3): 945–956. doi: 10.1158/1535-7163.MCT-06-0552.
- 177Wagner, L.M. (2015). Profile of veliparib and its potential in the treatment of solid tumors. Onco. Targets Ther. 8: 1931–1939. doi: 10.2147/OTT.S69935.
- 178Pommier, Y. (2006). Topoisomerase I inhibitors: camptothecins and beyond. Nat. Rev. Cancer 6 (10): 789–802. doi: 10.1038/nrc1977.