The Design and Development of Antibody–Drug Conjugates (ADCs) for the Treatment of Cancer
L. Nathan Tumey
State University of New York Binghamton, Binghamton, NY, USA
Search for more papers by this authorL. Nathan Tumey
State University of New York Binghamton, Binghamton, NY, USA
Search for more papers by this authorAbstract
Over the past 10 years, antibody–drug conjugates (ADCs) have rapidly become an important player in the oncology therapeutic space. ADCs consist of three components: (i) A potently cytotoxic drug; (ii) An antibody that is designed to deliver the drug to specific antigen-expressing cells; and (iii) A linker that holds these two components together but is rapidly cleaved by cancer cells. Tremendous technical advances have been made in the ADC field over the past 15 years that have culminated in the FDA approval of six ADCs and the clinical evaluation (currently) of nearly 100 ADCs. This article provides an overview of the history of ADCs and highlighted important developments in the selection of antigens, design of the linker, selection of conjugation chemistry, and the design of the payload itself. We will focus on promising preclinical strategies that are working their way toward clinical evaluation.
References
- 1Wolska-Washer, A. and Robak, T. (2019). Safety and tolerability of antibody-drug conjugates in cancer. Drug Saf. 42 (2): 295–314. doi: 10.1007/s40264-018-0775-7.
- 2Pilorge, S., Rigaudeau, S., Rabian, F., Sarkozy, C., Taksin, A.L., Farhat, H., Merabet, F., Ghez, S., Raggueneau, V., Terré, C. et al. (2014). Fractionated gemtuzumab ozogamicin and standard dose cytarabine produced prolonged second remissions in patients over the age of 55 years with acute myeloid leukemia in late first relapse. Am. J. Hematol. 89 (4): 399–403. doi: 10.1002/ajh.23653.
- 3Jilani, I., Estey, E., Huh, Y., Joe, Y., Manshouri, T., Yared, M., Giles, F., Kantarjian, H., Cortes, J., Thomas, D. et al. (2002). Differences in CD33 intensity between various myeloid neoplasms. Am. J. Clin. Pathol. 118 (4): 560–566. doi: 10.1309/1WMW-CMXX-4WN4-T55U.
- 4Hernández-Caselles, T., Martínez-Esparza, M., Pérez-Oliva, A.B., Quintanilla-Cecconi, A.M., García-Alonso, A., Alvarez-López, D.M.R., and García-Peñarrubia, P. (2006). A study of CD33 (SIGLEC-3) antigen expression and function on activated human T and NK cells: two isoforms of CD33 are generated by alternative splicing. J. Leukoc. Biol. 79 (1): 46–58. doi: 10.1189/jlb.0205096.
- 5Trail, P.A., Dubowchik, G.M., and Lowinger, T.B. (2018). Antibody drug conjugates for treatment of breast cancer: novel targets and diverse approaches in ADC design. Pharmacol. Ther. 181: 126–142. doi: 10.1016/j.pharmthera.2017.07.013.
- 6Dott, J., Abila, B., and Wuerthner, J.U. (2018). Current trends in the clinical development of antibody-drug conjugates in oncology. Pharmaceut. Med. 32 (4): 259–273. doi: 10.1007/s40290-018-0238-6.
- 7Trail, P.A., Willner, D., Lasch, S.J., Henderson, A.J., Hofstead, S., Casazza, A.M., Firestone, R.A., Hellström, I., Hellström, K.E., Hellstrom, I. et al. (1993). Cure of xenografted human carcinomas by BR96-doxorubicin immunoconjugates. Science 261 (5118): 212–215. doi: 10.1126/science.8327892.
- 8Saleh, M.N., Sugarman, S., Murray, J., Ostroff, J.B., Healey, D., Jones, D., Daniel, C.R., LeBherz, D., Brewer, H., Onetto, N. et al. (2000). Phase I trial of the anti-Lewis Y drug immunoconjugate BR96-doxorubicin in patients with Lewis Y-expressing epithelial tumors. J. Clin. Oncol. 18 (11): 2282–2292.
- 9King, G.T., Eaton, K.D., Beagle, B.R., Zopf, C.J., Wong, G.Y., Krupka, H.I., Hua, S.Y., Messersmith, W.A., and El-Khoueiry, A.B. (2018). A phase 1, dose-escalation study of PF-06664178, an anti-Trop-2/Aur0101 antibody-drug conjugate in patients with advanced or metastatic solid tumors. Investig. New Drugs 36 (5): 836–847. doi: 10.1007/s10637-018-0560-6.
- 10Strop, P., Tran, T.-T., Dorywalska, M., Delaria, K., Dushin, R., Wong, O.K., Ho, W.-H., Zhou, D., Wu, A., Kraynov, E. et al. (2016). RN927C, a site-specific Trop-2 antibody-drug conjugate (ADC) with enhanced stability, is highly efficacious in preclinical solid tumor models. Mol. Cancer Ther. 15 (11): 2698–2708. doi: 10.1158/1535-7163.MCT-16-0431.
- 11Phillips, A.C., Boghaert, E.R., Vaidya, K.S., Mitten, M.J., Norvell, S., Falls, H.D., DeVries, P.J., Cheng, D., Meulbroek, J.A., Buchanan, F.G. et al. (2016). ABT-414, an antibody-drug conjugate targeting a tumor-selective EGFR epitope. Mol. Cancer Ther. 128 (2): 438–445. doi: 10.1158/1535-7163.MCT-15-0901.
10.1158/1535‐7163.MCT‐15‐0901 Google Scholar
- 12Weekes, C.D., Lamberts, L.E., Borad, M.J., Voortman, J., McWilliams, R.R., Diamond, J.R., de Vries, E.G.E., Verheul, H.M., Lieu, C.H., Kim, G.P. et al. (2016). Phase I study of DMOT4039A, an antibody–drug conjugate targeting mesothelin, in patients with unresectable pancreatic or platinum-resistant ovarian cancer. Mol. Cancer Ther. 15 (3): 439–447. doi: 10.1158/1535-7163.MCT-15-0693.
- 13Gordon, M.S., Gerber, D.E., Infante, J.R., Xu, J., Shames, D.S., Choi, Y., Kahn, R.S., Lin, K., Wood, K., Maslyar, D.J. et al. (2013). A phase I study of the safety and pharmacokinetics of DNIB0600A, an anti-NaPi2b antibody-drug-conjugate (ADC), in patients (Pts) with non-small cell lung cancer (NSCLC) and platinum-resistant ovarian cancer (OC). J. Clin. Oncol. 31 (15_suppl): 2507. doi: 10.1200/jco.2013.31.15_suppl.2507.
- 14Polakis, P. (2016). Antibody drug conjugates for cancer therapy. Pharmacol. Rev. 68 (1): 3–19. doi: 10.1124/pr.114.009373.
- 15DeVay, R.M., Delaria, K., Zhu, G., Holz, C., Foletti, D., Sutton, J., Bolton, G., Dushin, R.G., Bee, C., Pons, J. et al. (2017). Improved lysosomal trafficking can modulate the potency of antibody drug conjugates. Bioconjug. Chem. 28 (4): 1102–1114. doi: 10.1021/acs.bioconjchem.7b00013.
- 16Tumey, L.N., Leverett, C.A., Vetelino, B., Li, F., Rago, B., Han, X., Loganzo, F., Musto, S., Bai, G., Sukuru, S.C.K. et al. (2016). Optimization of tubulysin antibody-drug conjugates: a case study in addressing ADC metabolism. ACS Med. Chem. Lett. 7 (11): 977–982. doi: 10.1021/acsmedchemlett.6b00195.
- 17Deora, A., Hegde, S., Lee, J., Choi, C.-H., Chang, Q., Lee, C., Eaton, L., Tang, H., Wang, D., Lee, D. et al. (2017). Transmembrane TNF-dependent uptake of anti-TNF antibodies. MAbs 9 (4): 680–695. doi: 10.1080/19420862.2017.1304869.
- 18Riedl, T., van Boxtel, E., Bosch, M., Parren, P.W.H.I., and Gerritsen, A.F. (2016). High-throughput screening for internalizing antibodies by homogeneous fluorescence imaging of a PH-activated probe. J. Biomol. Screen. 21 (1): 12–23. doi: 10.1177/1087057115613270.
- 19Kulkarni, C., Finley, J.E., Bessire, A.J., Zhong, X., Musto, S., and Graziani, E.I. (2017). Development of fluorophore-labeled thailanstatin antibody-drug conjugates for cellular trafficking studies. Bioconjug. Chem. 28 (4): 1041–1047. doi: 10.1021/acs.bioconjchem.6b00718.
- 20Xu, S. (2015). Internalization, trafficking, intracellular processing and actions of antibody-drug conjugates. Pharm. Res. 32 (11): 3577–3583. doi: 10.1007/s11095-015-1729-8.
- 21Emlet, D., Schwartz, R., Brown, K., Pollice, A., Smith, C., and Shackney, S. (2006). HER2 expression as a potential marker for response to therapy targeted to the EGFR. Br. J. Cancer 94: 1144–1153. doi: 10.1038/sj.bjc.6603078.
- 22Goff, L.W., Papadopoulos, K., Posey, J.A., Phan, A.T., Patnaik, A., Miller, J.G., Zildjian, S., O'Leary, J.J., Qin, A., and Tolcher, A. (2009). A phase II study of IMGN242 (HuC242-DM4) in patients with CanAg-positive gastric or gastroesophageal (GE) junction cancer. J. Clin. Oncol. 27 (15_suppl): e15625.
10.1200/jco.2009.27.15_suppl.e15625 Google Scholar
- 23Tolcher, A.W., Ochoa, L., Hammond, L.A., Patnaik, A., Edwards, T., Takimoto, C., Smith, L., De Bono, J., Schwartz, G., Mays, T. et al. (2003). Cantuzumab mertansine, a maytansinoid Immunoconjugate directed to the CanAg antigen: a phase I, pharmacokinetic, and biologic correlative study. J. Clin. Oncol. 21 (2): 211–222. doi: 10.1200/JCO.2003.05.137.
- 24Rajpal, A., Strop, P., Yeung, Y.A., Chaparro-Riggers, J., and Pons, J. (2013). Introduction: antibody structure and function. In: Therapeutic Fc-Fusion Proteins (ed. S.M. Chamow, T. Ryll, H.B. Lowman and D. Farson), 1–44. Weinheim, Germany: Wiley-VCH. doi: 10.1002/9783527675272.ch01.
10.1002/9783527675272.ch01 Google Scholar
- 25Chames, P. (2012). Antibody engineering. Endeavour 18 (1): 27–31. doi: 10.1016/0160-9327(94)90117-1.
10.1016/0160‐9327(94)90117‐1 Google Scholar
- 26Dimitrov, A.S. (2009). Therapeutic Antibodies: Methods and Protocols. Humana.
10.1007/978-1-59745-554-1 Google Scholar
- 27Thurber, G.M., Schmidt, M.M., and Wittrup, K.D. (2008). Antibody tumor penetration: transport opposed by systemic and antigen-mediated clearance. Adv. Drug Deliv. Rev. 60 (12): 1421–1434. doi: 10.1016/j.addr.2008.04.012.
- 28Adams, G.P., Schier, R., McCall, A.M., Simmons, H.H., Horak, E.M., Alpaugh, R.K., Marks, J.D., and Weiner, L.M. (2001). High affinity restricts the localization and tumor penetration of single-chain Fv antibody molecules. Cancer Res. 61 (12): 4750–4755.
- 29Cilliers, C., Guo, H., Liao, J., Christodolu, N., and Thurber, G.M. (2016). Multiscale modeling of antibody-drug conjugates: connecting tissue and cellular distribution to whole animal pharmacokinetics and potential implications for efficacy. AAPS J. 18 (5): 1117–1130. doi: 10.1208/s12248-016-9940-z.
- 30Puthenveetil, S., Musto, S., Loganzo, F., Tumey, L.N., O'Donnell, C.J., and Graziani, E. (2016). Development of solid-phase site-specific conjugation and its application toward generation of dual labeled antibody and fab drug conjugates. Bioconjug. Chem. 27 (4): doi: 10.1021/acs.bioconjchem.6b00054.
- 31Woitok, M., Klose, D., Di Fiore, S., Richter, W., Stein, C., Gresch, G., Grieger, E., Barth, S., Fischer, R., Kolberg, K. et al. (2017). OncoTargets and therapy Dovepress comparison of a mouse and a novel human ScFv-SnaP-Auristatin F drug conjugate with potent activity against EgFr-overexpressing human solid tumor cells. Onco. Targets. Ther. 10: 3313–3327. doi: 10.2147/OTT.S140492.
- 32Pola, R., Král, V., Filippov, S.K., Kaberov, L., Etrych, T., Sieglová, I., Sedláček, J., Fábry, M., and Pechar, M. (2019). Polymer cancerostatics targeted by recombinant antibody fragments to GD2-positive tumor cells. Biomacromolecules 20 (1): 412–421. doi: 10.1021/acs.biomac.8b01616.
- 33Deonarain, M.P., Yahioglu, G., Stamati, I., and Marklew, J. (2015). Emerging formats for next-generation antibody drug conjugates. Expert Opin. Drug Discov. 10 (5): 463–481. doi: 10.1517/17460441.2015.1025049.
- 34Bannas, P., Hambach, J., and Koch-Nolte, F. (2017). Nanobodies and nanobody-based human heavy chain antibodies as antitumor therapeutics. Front. Immunol. 8: 1603. doi: 10.3389/fimmu.2017.01603.
- 35Hansen, R., Dickson, A.J., Goodacre, R., Stephens, G.M., and Sellick, C.A. (2010). Rapid characterization of N-linked glycans from secreted and gel-purified monoclonal antibodies using MALDI-ToF mass spectrometry. Biotechnol. Bioeng. 107 (5): 902–908. doi: 10.1002/bit.22879.
- 36Benjamin, S.R., Jackson, C.P., Fang, S., Carlson, D.P., Guo, Z., and Tumey, L.N. (2019). Thiolation of Q295: site-specific conjugation of hydrophobic payloads without the need for genetic engineering. Mol. Pharm. 16 (6): 2795–2807. doi: 10.1021/acs.molpharmaceut.9b00323.
- 37Millward, T.A., Heitzmann, M., Bill, K., Längle, U., Schumacher, P., and Forrer, K. (2008). Effect of constant and variable domain glycosylation on pharmacokinetics of therapeutic antibodies in mice. Biologicals 36 (1): 41–47. doi: 10.1016/j.biologicals.2007.05.003.
- 38Dorywalska, M., Strop, P., Melton-Witt, J.A., Hasa-Moreno, A., Farias, S.E., Galindo Casas, M., Delaria, K., Lui, V., Poulsen, K., Loo, C. et al. (2015). Effect of attachment site on stability of cleavable antibody drug conjugates. Bioconjug. Chem. 26 (4): 650–659. doi: 10.1021/bc5005747.
- 39Pawlowski, J.W., Bajardi-Taccioli, A., Houde, D., Feschenko, M., Carlage, T., and Kaltashov, I.A. (2018). Influence of glycan modification on IgG1 biochemical and biophysical properties. J. Pharm. Biomed. Anal. doi: 10.1016/j.jpba.2017.12.061.
- 40Dorywalska, M., Strop, P., Melton-Witt, J.A., Hasa-Moreno, A., Farias, S.E., Casas, M.G., Delaria, K., Lui, V., Poulsen, K., Sutton, J. et al. (2015). Site-dependent degradation of a non-cleavable auristatin-based linker-payload in rodent plasma and its effect on ADC efficacy. PLoS One 10 (7): 1–14. doi: 10.1371/journal.pone.0132282.
- 41Schumacher, D., Hackenberger, C.P.R., Leonhardt, H., and Helma, J. (2016). Current status: site-specific antibody drug conjugates. J. Clin. Immunol. 36: 100–107. doi: 10.1007/s10875-016-0265-6.
- 42Tumey, L.N.N., Li, F., Rago, B., Han, X., Loganzo, F., Musto, S., Graziani, E.I.E.I., Puthenveetil, S., Casavant, J., Marquette, K. et al. (2017). Site selection: a case study in the identification of optimal cysteine engineered antibody drug conjugates. AAPS J. 19 (4): 1123–1135. doi: 10.1208/s12248-017-0083-7.
- 43Puthenveetil, S., He, H., Loganzo, F., Musto, S., Teske, J., Green, M., Tan, X., Hosselet, C., Lucas, J., Tumey, L.N. et al. (2017). Multivalent peptidic linker enables identification of preferred sites of conjugation for a potent thialanstatin antibody drug conjugate. PLoS One 12 (5): doi: 10.1371/journal.pone.0178452.
- 44Junutula, J.R., Flagella, K.M., Graham, R.A., Parsons, K.L., Ha, E., Raab, H., Bhakta, S., Nguyen, T., Dugger, D.L., Li, G. et al. (2010). Engineered thio-trastuzumab-DM1 conjugate with an improved therapeutic index to target human epidermal growth factor receptor 2-positive breast cancer. Clin. Cancer Res. 16 (19): 4769–4778. doi: 10.1158/1078-0432.CCR-10-0987.
- 45Junutula, J.R.J.R., Raab, H., Clark, S., Bhakta, S., Leipold, D.D.D., Weir, S., Chen, Y., Simpson, M., Tsai, S.P., Dennis, M.S. et al. (2008). Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat. Biotechnol. 26 (8): 925–932. doi: 10.1038/nbt.1480.
- 46Axup Jun, Y., Bajjuri Krishna, M., Ritland, M., Hutchins Benjamin, M., Kim Chan, H., Kazane Stephanie, A., Halder, R., Forsyth Jane, S., Santidrian Antonio, F., Stafin, K. et al. (2012). Synthesis of site-specific antibody-drug conjugates using unnatural amino acids. Proc. Natl. Acad. Sci. U.S.A. 109 (40): 16101–16106.
- 47Tian, F., Lu, Y., Manibusan, A., Sellers, A., Tran, H., Sun, Y., Phuong, T., Barnett, R., Hehli, B., Song, F. et al. (2014). A general approach to site-specific antibody drug conjugates. Proc. Natl. Acad. Sci. U. S. A. 111 (5): 1766–1771. doi: 10.1073/pnas.1321237111.
- 48Zimmerman, E.S., Heibeck, T.H., Gill, A., Li, X., Murray, C.J., Madlansacay, M.R., Tran, C., Uter, N.T., Yin, G., Rivers, P.J. et al. (2014). Production of site-specific antibody-drug conjugates using optimized non-natural amino acids in a cell-free expression system. Bioconjug. Chem. 25 (2): 351–361. doi: 10.1021/bc400490z.
- 49VanBrunt, M.P., Shanebeck, K., Caldwell, Z., Johnson, J., Thompson, P., Martin, T., Dong, H., Li, G., Xu, H., D'Hooge, F. et al. (2015). Genetically encoded azide containing amino acid in mammalian cells enables site-specific antibody–drug conjugates using click cycloaddition chemistry. Bioconjug. Chem. 26 (11): 2249–2260. doi: 10.1021/acs.bioconjchem.5b00359.
- 50Oller-Salvia, B., Kym, G., and Chin, J.W. (2018). Rapid and efficient generation of stable antibody-drug conjugates via an encoded cyclopropene and an inverse-electron-demand Diels-Alder reaction. Angew. Chem. Int. Ed. 57 (11): 2831–2834. doi: 10.1002/anie.201712370.
- 51Chio, T.I., Gu, H., Mukherjee, K., Tumey, L.N., and Bane, S.L. (2019). Site-specific bioconjugation and multi-bioorthogonal labeling via rapid formation of a boron–nitrogen heterocycle. Bioconjug. Chem. doi: 10.1021/acs.bioconjchem.9b00246.
- 52Garofalo, A.W. (2013). Hydrazino-Iso-Pictet-Spengler Ligation: a new method for the generation of stable ADC's. Abstracts, 44th Western Regional Meeting of the American Chemical Society, Santa Clara, CA, United States, 3–6 Oct. 2013, WRM-175.
- 53Fischer, E., Romagne, F., and Dennler, P. (2014). Recognition tags for transglutaminase-mediated conjugation to antibodies. US Patent 2013-EP73428.
- 54Strop, P., Liu, S.-H.H., Dorywalska, M., Delaria, K., Dushin, R.G., Tran, T.-T.T., Ho, W.-H.H., Farias, S., Casas, M.G., Abdiche, Y. et al. (2013). Location matters: site of conjugation modulates stability and pharmacokinetics of antibody drug conjugates. Chem. Biol. 20 (2): 161–167. doi: 10.1016/j.chembiol.2013.01.010.
- 55Jeger, S., Zimmermann, K., Blanc, A., Grünberg, J., Honer, M., Hunziker, P., Struthers, H., and Schibli, R. (2010). Site-specific and stoichiometric modification of antibodies by bacterial transglutaminase. Angew. Chem. Int. Ed. 49 (51): 9995–9997. doi: 10.1002/anie.201004243.
- 56Dennler, P., Chiotellis, A., Fischer, E., Bregeon, D., Belmant, C., Gauthier, L., Lhospice, F., Romagne, F., and Schibli, R. (2014). Transglutaminase-based chemo-enzymatic conjugation approach yields homogeneous antibody-drug conjugates. Bioconjug. Chem. 25 (3): 569–578. doi: 10.1021/bc400574z.
- 57Anami, Y., Xiong, W., Gui, X., Deng, M., Zhang, C.C., Zhang, N., An, Z., and Tsuchikama, K. (2017). Enzymatic conjugation using branched linkers for constructing homogeneous antibody-drug conjugates with high potency. Org. Biomol. Chem. 15 (26): 5635–5642. doi: 10.1039/c7ob01027c.
- 58Beerli, R.R., Hell, T., Merkel, A.S., and Grawunder, U. (2015). Sortase enzyme-mediated generation of site-specifically conjugated antibody drug conjugates with high in vitro and in vivo potency. PLoS One doi: 10.1371/journal.pone.0131177.
- 59Meyer, C., Liebscher, S., and Bordusa, F. (2016). Selective coupling of click anchors to proteins via trypsiligase. Bioconjug. Chem. 27 (1): 47–53. doi: 10.1021/acs.bioconjchem.5b00618.
- 60Badescu, G., Bryant, P., Bird, M., Henseleit, K., Swierkosz, J., Parekh, V., Tommasi, R., Pawlisz, E., Jurlewicz, K., Farys, M. et al. (2014). Bridging disulfides for stable and defined antibody drug conjugates. Bioconjug. Chem. 25 (6): 1124–1136. doi: 10.1021/bc500148x.
- 61Thompson, P., Ezeadi, E., Hutchinson, I., Fleming, R., Bezabeh, B., Lin, J., Mao, S., Chen, C., Masterson, L., Zhong, H. et al. (2016). Straightforward glycoengineering approach to site-specific antibody–pyrrolobenzodiazepine conjugates. ACS Med. Chem. Lett. 7 (11): 1005–1008. doi: 10.1021/acsmedchemlett.6b00278.
- 62Lac, D., Feng, C., Bhardwaj, G., Le, H., Tran, J., Xing, L., Fung, G., Liu, R., Cheng, H., and Lam, K.S. (2016). Covalent chemical ligation strategy for mono- and polyclonal immunoglobulins at their nucleotide binding sites. Bioconjug. Chem. 27 (1): 159–169. doi: 10.1021/acs.bioconjchem.5b00574.
- 63Yamada, K., Shikida, N., Shimbo, K., Ito, Y., Khedri, Z., Matsuda, Y., and Mendelsohn, B.A. (2019). AJICAP: affinity peptide mediated regiodivergent functionalization of native antibodies. Angew. Chem. Int. Ed. 58 (17): 5592–5597. doi: 10.1002/anie.201814215.
- 64Tolcher, A.W., Sugarman, S., Gelmon, K.A., Cohen, R., Saleh, M., Isaacs, C., Young, L., Healey, D., Onetto, N., and Slichenmyer, W. (1999). Randomized phase II study of BR96-doxorubicin conjugate in patients with metastatic breast cancer. J. Clin. Oncol. 17 (2): 478–484.
- 65Liang, Z.X. (2010). Complexity and simplicity in the biosynthesis of enediyne natural products. Nat. Prod. Rep. 27 (4): 499–528. doi: 10.1039/b908165h.
- 66Pettit, R.K., Pettit, G.R., and Hazen, K.C. (1998). Specific activities of Dolastatin 10 and peptide derivatives against Cryptococcus neoformans. Antimicrob. Agents Chemother. 42 (11): 2961–2965. doi: 10.1128/AAC.42.11.2961.
- 67Doronina, S.O., Toki, B.E., Torgov, M.Y., Mendelsohn, B.A., Cerveny, C.G., Chace, D.F., DeBlanc, R.L., Gearing, R.P., Bovee, T.D., Siegall, C.B. et al. (2003). Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat. Biotechnol. 21 (8): 941. doi: 10.1038/nbt0803-941a.
- 68Ma, Y., Cruz-Chuh, J.D., Khojasteh, S.C., Dragovich, P.S., Pillow, T.H., and Zhang, D. (2019). Carfilzomib is not an appropriate payload of antibody-drug conjugates due to rapid inactivation by lysosomal enzymes. Drug Metab. Dispos. doi: 10.1124/dmd.119.086595.
- 69Tumey, L.N. (2017). Thinking small and dreaming big: medicinal chemistry strategies for designing optimal antibody-drug conjugates (ADCs). Med. Chem. Rev. 52: 363–381. doi: 10.29200/acsmedchemrev-v52.ch19.
- 70Loganzo, F., Sung, M., and Gerber, H.-P. (2016). Mechanisms of resistance to antibody–drug conjugates. Mol. Cancer Ther. 15 (12): 2825–2834. doi: 10.1158/1535-7163.MCT-16-0408.
- 71Hamblett, K.J., Jacob, A.P., Gurgel, J.L., Tometsko, M.E., Rock, B.M., Patel, S.K., Milburn, R.R., Siu, S., Ragan, S.P., Rock, D.A. et al. (2015). SLC46A3 is required to transport catabolites of noncleavable antibody maytansine conjugates from the lysosome to the cytoplasm. Cancer Res. 75 (24): 5329–5340. doi: 10.1158/0008-5472.CAN-15-1610.
- 72Tumey, L.N. (2018). Next Generation Payloads for ADCs, 187–214. Cham: Humana Press. doi: 10.1007/978-3-319-78154-9_8.
10.1007/978‐3‐319‐78154‐9_8 Google Scholar
- 73Drake, P.M. and Rabuka, D. (2017). Recent developments in ADC technology: preclinical studies signal future clinical trends. BioDrugs doi: 10.1007/s40259-017-0254-1.
- 74Maderna, A., Doroski, M., Subramanyam, C., Porte, A., Leverett, C.A., Vetelino, B.C., Chen, Z., Risley, H., Parris, K., Pandit, J. et al. (2014). Discovery of cytotoxic Dolastatin 10 analogues with N-terminal modifications. J. Med. Chem. 57 (24): 10527–10543. doi: 10.1021/jm501649k.
- 75Kovtun, Y.V., Audette, C.A., Mayo, M.F., Jones, G.E., Doherty, H., Maloney, E.K., Erickson, H.K., Sun, X., Wilhelm, S., Ab, O. et al. (2010). Antibody-maytansinoid conjugates designed to bypass multidrug resistance. Cancer Res. 70 (6): 2528–2537. doi: 10.1158/0008-5472.CAN-09-3546.
- 76Burke, P.J., Hamilton, J.Z., Pires, T.A., Setter, J.R., Hunter, J.H., Cochran, J.H., Waight, A.B., Gordon, K.A., Toki, B.E., Emmerton, K.K. et al. (2016). Development of novel quaternary ammonium linkers for antibody-drug conjugates. Mol. Cancer Ther. 15 (May): 938–945. doi: 10.1158/1535-7163.MCT-16-0038.
- 77Li, J.Y., Perry, S.R., Muniz-Medina, V., Wang, X., Wetzel, L.K., Rebelatto, M.C., Hinrichs, M.J.M., Bezabeh, B.Z., Fleming, R.L., Dimasi, N. et al. (2016). A biparatopic HER2-targeting antibody-drug conjugate induces tumor regression in primary models refractory to or ineligible for HER2-targeted therapy. Cancer Cell 29 (1): 117–129. doi: 10.1016/j.ccell.2015.12.008.
- 78Burke, P.J., Hamilton, J.Z., Pires, T.A., Lai, H.W.H., Leiske, C.I., Emmerton, K.K., Waight, A.B., Senter, P.D., Lyon, R.P., and Jeffrey, S.C. (2018). Glucuronide-linked antibody-tubulysin conjugates display activity in MDR þ and heterogeneous tumor models. Mol. Cancer Ther. 17 (8): doi: 10.1158/1535-7163.MCT-18-0073.
- 79Verma, V.A., Pillow, T.H., DePalatis, L., Li, G., Phillips, G.L., Polson, A.G., Raab, H.E., Spencer, S., and Zheng, B. (2015). The cryptophycins as potent payloads for antibody drug conjugates. Bioorg. Med. Chem. Lett. 25 (4): 864–868. doi: 10.1016/J.BMCL.2014.12.070.
- 80Bernardes, G.J.L., Casi, G., Truessel, S., Hartmann, I., Schwager, K., Scheuermann, J.J., Neri, D., Bernardes Goncalo, J.L., Casi, G., Trussel, S. et al. (2012). A traceless vascular-targeting antibody-drug conjugate for cancer therapy. Angew. Chem. Int. Ed. 51 (4): 941–944. doi: 10.1002/anie.201106527.
- 81Kerk, S.A., Finkel, K.A., Pearson, A.T., Warner, K.A., Zhang, Z., Nor, F., Wagner, V.P., Vargas, P.A., Wicha, M.S., Hurt, E.M. et al. (2016). 5T4-targeted therapy ablates cancer stem cells and prevents recurrence of head and neck squamous cell carcinoma. Clin. Cancer Res. 25 (16): 25. doi: 10.1158/1078-0432.CCR-16-1834.
10.1158/1078‐0432.CCR‐16‐1834 Google Scholar
- 82Chowdari, N.S., Pan, C., Rao, C., Langley, D.R., Sivaprakasam, P., Sufi, B., Derwin, D., Wang, Y., Kwok, E., Passmore, D. et al. (2019). Uncialamycin as a novel payload for antibody drug conjugate (ADC) based targeted cancer therapy. Bioorg. Med. Chem. Lett. 29 (3): 466–470. doi: 10.1016/J.BMCL.2018.12.021.
- 83Jeffrey, S.C., Burke, P.J., Lyon, R.P., Meyer, D.W., Sussman, D., Anderson, M., Hunter, J.H., Leiske, C.I., Miyamoto, J.B., Nicholas, N.D. et al. (2013). A potent anti-CD70 antibody-drug conjugate combining a dimeric pyrrolobenzodiazepine drug with site-specific conjugation technology. Bioconjug. Chem. 24 (7): 1256–1263. doi: 10.1021/bc400217g.
- 84Saunders, L.R., Bankovich, A.J., Anderson, W.C., Aujay, M.A., Bheddah, S., Black, K., Desai, R., Escarpe, P.A., Hampl, J., Laysang, A. et al. (2015). A DLL3-targeted antibody-drug conjugate eradicates high-grade pulmonary neuroendocrine tumor-initiating cells in vivo HHS public access. Sci. Transl. Med. 7 (302): 302–136. doi: 10.1126/scitranslmed.aac9459.
- 85Thevanayagam, L., Bell, A., Chakraborty, I., Sufi, B., Gangwar, S., Zang, A., Rangan, V., Rao, C., Wang, Z., Pan, C. et al. (2013). Novel detection of DNA-alkylated adducts of antibody-drug conjugates with potentially unique preclinical and biomarker applications. Bioanalysis 5 (9): 1073–1081. doi: 10.4155/bio.13.57.
- 86Walter, R.B. (2018). Investigational CD33-targeted therapeutics for acute myeloid leukemia. Expert Opin. Investig. Drugs 27 (4): 339–348. doi: 10.1080/13543784.2018.1452911.
- 87 FierceBiotech (2019). AbbVie takes $4B hit on Rova-T failures. https://www.fiercebiotech.com/biotech/abbvie-takes-4b-hit-rova-t-failures (accessed 18 Feb 2019).
- 88 FierceBiotech (2019). ImmunoGen cuts deep to eke out cash for mirvetuximab trial. https://www.fiercebiotech.com/biotech/immunogen-cuts-deep-to-eke-out-cash-for-mirvetuximab-trial (accessed 19 Jul 2019).
- 89Kahl, B.S., Hamadani, M., Radford, J., Carlo-Stella, C., Caimi, P., Reid, E., Feingold, J.M., Ardeshna, K.M., Solh, M., Heffner, L.T. et al. (2019). A phase I study of ADCT-402 (loncastuximab tesirine), a novel pyrrolobenzodiazepine-based antibody–drug conjugate, in relapsed/refractory B-cell non-Hodgkin lymphoma. Clin. Cancer Res. doi: 10.1158/1078-0432.ccr-19-0711.
- 90Miller, M.L., Fishkin, N.E., Li, W., Whiteman, K.R., Kovtun, Y., Reid, E.E., Archer, K.E., Maloney, E.K., Audette, C.A., Mayo, M.F. et al. (2016). A new class of antibody-drug conjugates with potent DNA alkylating activity. Mol. Cancer Ther. 15 (8): 1870–1878. doi: 10.1158/1535-7163.MCT-16-0184.
- 91Cardillo, T.M., Govindan, S.V., Sharkey, R.M., Trisal, P., Arrojo, R., Liu, D., Rossi, E.A., Chang, C.H., and Goldenberg, D.M. (2015). Sacituzumab govitecan (IMMU-132), an anti-Trop-2/SN-38 antibody-drug conjugate: characterization and efficacy in pancreatic, gastric, and other cancers. Bioconjug. Chem. 26 (5): 919–931. doi: 10.1021/acs.bioconjchem.5b00223.
- 92Sharkey, R.M., Govindan, S.V., Cardillo, T.M., and Goldenberg, D.M. (2012). Epratuzumab-SN-38: a new antibody-drug conjugate for the therapy of hematologic malignancies. Mol. Cancer Ther. 11 (1): 224–234. doi: 10.1158/1535-7163.mct-11-0632.
- 93Tamura, K., Tsurutani, J., Takahashi, S., Iwata, H., Krop, I.E., Redfern, C., Sagara, Y., Doi, T., Park, H., Murthy, R.K. et al. (2019). Trastuzumab deruxtecan (DS-8201a) in patients with advanced HER2-positive breast cancer previously treated with trastuzumab emtansine: a dose-expansion, phase 1 study. Lancet. Oncol. 20 (6): 816–826. doi: 10.1016/S1470-2045(19)30097-X.
- 94Ratnayake, A.S.S., Chang, L., Tumey, L.N., Loganzo, F., Chemler, J.A., Wagenaar, M., Musto, S., Li, F., Janso, J.E., Ballard, T.E. et al. Natural product bis-intercalator depsipeptides as a new class of payloads for antibody–drug conjugates. Bioconjug. Chem. 30 (1): 200–209.
- 95Stefan, N., Gébleux, R., Waldmeier, L., Hell, T., Escher, M., Wolter, F.I., Grawunder, U., and Beerli, R.R. (2017). Highly potent, anthracycline-based antibody-drug conjugates generated by enzymatic, site-specific conjugation. Mol. Cancer Ther. 16 (5): 879–892. doi: 10.1158/1535-7163.MCT-16-0688.
- 96Puthenveetil, S., Loganzo, F., He, H., Dirico, K., Green, M., Teske, J., Musto, S., Clark, T., Rago, B., Koehn, F. et al. (2016). Natural product splicing inhibitors: a new class of antibody-drug conjugate (ADC) payloads. Bioconjug. Chem. 27 (8): 1880–1888. doi: 10.1021/acs.bioconjchem.6b00291.
- 97Moldenhauer, G., Salnikov, A.V., Lüttgau, S., Herr, I., Anderl, J., and Faulstich, H. (2012). Therapeutic potential of amanitin-conjugated anti-epithelial cell adhesion molecule monoclonal antibody against pancreatic carcinoma. J. Natl. Cancer Inst. 104 (8): 622–634. doi: 10.1093/jnci/djs140.
- 98Letschert, K., Faulstich, H., Keller, D., and Keppler, D. (2006). Molecular characterization and inhibition of amanitin uptake into human hepatocytes. Toxicol. Sci. 91 (1): 140–149. doi: 10.1093/toxsci/kfj141.
- 99Gundala, S., Wells, L.D., Milliano, M.T., Talkad, V., Luxon, B.A., and Neuschwander-Tetri, B.A. (2004). The hepatocellular bile acid transporter Ntcp facilitates uptake of the lethal mushroom toxin?-amanitin. Arch. Toxicol. 78 (2): 68–73. doi: 10.1007/s00204-003-0527-y.
- 100Grunewald, J., Jin, Y., Ou, W., and Uno, T. (2016). Preparation of amatoxin derivatives and their immunoconjugates as inhibitors of RNA polymerase for treating cell proliferative disorders. WO2016071856 A1.
- 101Mendelsohn, B.A. and Moon, S.J. (2013). Amatoxin derivatives and cell-permeable conjugates thereof as inhibitors of RNA polymerase. WO 2014043403 A1.
- 102Muller, C., Anderl, J., Simon, W., Lutz, C., and Hechler, T. (2014). Amatoxin derivatives. WO/2014/135282.
- 103Liu, Y., Zhang, X., Han, C., Wan, G., Huang, X., Ivan, C., Jiang, D., Rodriguez-Aguayo, C., Lopez-Berestein, G., Rao, P.H. et al. (2015). TP53 loss creates therapeutic vulnerability in colorectal cancer. Nature 520 (7549): 697–701. doi: 10.1038/nature14418.
- 104Lerchen, H.-G., Wittrock, S., Stelte-Ludwig, B., Sommer, A., Berndt, S., Griebenow, N., Rebstock, A.-S., Johannes, S., Cancho-Grande, Y., Mahlert, C. et al. (2018). Antibody-drug conjugates with pyrrole-based KSP inhibitors as the payload class. Angew. Chem. Int. Ed. 57 (46): 15243–15247. doi: 10.1002/anie.201807619.
- 105Karpov, A.S., Abrams, T., Clark, S., Raikar, A., D'Alessio, J.A., Dillon, M.P., Gesner, T.G., Jones, D., Lacaud, M., Mallet, W. et al. (2018). Nicotinamide phosphoribosyltransferase inhibitor as a novel payload for antibody-drug conjugates. ACS Med. Chem. Lett. 9 (8): 838–842. doi: 10.1021/acsmedchemlett.8b00254.
- 106Neumann, C.S., Olivas, K.C., Anderson, M.E., Cochran, J.H., Jin, S., Li, F., Loftus, L.V., Meyer, D.W., Neale, J., Nix, J.C. et al. (2018). Targeted delivery of cytotoxic NAMPT inhibitors using antibody-drug conjugates. Mol. Cancer Ther. 17 (12): 2633–2642. doi: 10.1158/1535-7163.MCT-18-0643.
- 107Tao, Z.-F., Doherty, G., Wang, X., Sullivan, G.M., Song, X., Kunzer, A.R., Wendt, M.D., Marin, V.L., Frey, R.R., Cullen, S.C. et al. (2016). Preparation of Bcl-XL inhibitory compounds having low cell permeability and antibody drug conjugates containing them. WO2016094509 A1.
- 108Ackler, S.L., Bennett, N.B., Boghaert, E.R., Cullen, S.C., Doherty, G., Frey, R.R., Haight, A.R., Judd, A.S., Kunzer, A.R., Shen, X. et al. (2016). Bcl-Xl inhibitory compounds and antibody drug conjugates including the same. US20160158377A1.
- 109Zhou, D., Casavant, J., Graziani, E.I., He, H., Janso, J., Loganzo, F., Musto, S., Tumey, N., O'Donnell, C.J., and Dushin, R. (2019). Novel PIKK inhibitor antibody-drug conjugates: synthesis and anti-tumor activity. Bioorg. Med. Chem. Lett. doi: 10.1016/J.BMCL.2019.01.009.
- 110Gadd, A.J.R., Greco, F., Cobb, A.J.A., and Edwards, A.D. (2015). Targeted activation of toll-like receptors: conjugation of a toll-like receptor 7 agonist to a monoclonal antibody maintains antigen binding and specificity. Bioconjug. Chem. 26 (8): 1743–1752. doi: 10.1021/acs.bioconjchem.5b00302.
- 111 Bolt Biotherapeutics, Inc. (2019). Bolt biotherapeutics presents preclinical data showing eradication of large resistant tumors with ISAC monotherapy at SITC 2019.
- 112ClinicalTrials.gov (2019). Study to determine safety and dose of NJH395 in non-breast HER2+ advanced cancer - full text view. https://clinicaltrials.gov/ct2/show/NCT03696771 (accessed 16 Dec 2019).
- 113Ackerman, S.E., Gonzalez, J.C., Gregorio, J.D., Paik, J.C., Hartmann, F.J., Kenkel, J.A., Lee, A., Luo, A., Pearson, C.I., Nguyen, M.L. et al. (2019). Abstract 1559: TLR7/8 immune-stimulating antibody conjugates elicit robust myeloid activation leading to enhanced effector function and anti-tumor immunity in pre-clinical models. Immunology doi: 10.1158/1538-7445.am2019-1559.
10.1158/1538‐7445.am2019‐1559 Google Scholar
- 114Thomsen, K.L., Møller, H.J., Graversen, J.H., Magnusson, N.E., Moestrup, S.K., Vilstrup, H., and Grønbæk, H. (2016). Anti-CD163-dexamethasone conjugate inhibits the acute phase response to lipopolysaccharide in rats. World J. Hepatol. 8 (17): 726–730. doi: 10.4254/wjh.v8.i17.726.
- 115Brandish, P.E., Palmieri, A., Antonenko, S., Beaumont, M., Benso, L., Cancilla, M., Cheng, M., Fayadat-Dilman, L., Feng, G., Figueroa, I. et al. (2018). Development of anti-CD74 antibody–drug conjugates to target glucocorticoids to immune cells. Bioconjug. Chem. 29 (7): 2357–2369. doi: 10.1021/acs.bioconjchem.8b00312.
- 116Kern, J.C., Cancilla, M., Dooney, D., Kwasnjuk, K., Zhang, R., Beaumont, M., Figueroa, I., Hsieh, S.C., Liang, L., Tomazela, D. et al. (2016). Discovery of pyrophosphate diesters as tunable, soluble, and bioorthogonal linkers for site-specific antibody-drug conjugates. J. Am. Chem. Soc. 138 (4): 1430–1445. doi: 10.1021/jacs.5b12547.
- 117Wang, R.E., Liu, T., Wang, Y., Cao, Y., Du, J., Luo, X., Deshmukh, V., Kim, C.H., Lawson, B.R., Tremblay, M.S. et al. (2015). An immunosuppressive antibody-drug conjugate. J. Am. Chem. Soc. 137 (9): 3229–3232. doi: 10.1021/jacs.5b00620.
- 118Lim, R.K.V., Yu, S., Cheng, B., Li, S., Kim, N.J., Cao, Y., Chi, V., Kim, J.Y., Chatterjee, A.K., Schultz, P.G. et al. (2015). Targeted delivery of LXR agonist using a site-specific antibody-drug conjugate. Bioconjug. Chem. 26 (11): 2216–2222. doi: 10.1021/acs.bioconjchem.5b00203.
- 119Lehar, S.M., Pillow, T., Xu, M., Staben, L., Kajihara, K.K., Vandlen, R., DePalatis, L., Raab, H., Hazenbos, W.L., Hiroshi Morisaki, J. et al. (2015). Novel antibody–antibiotic conjugate eliminates intracellular S. aureus. Nature 527 (7578): 323–328. doi: 10.1038/nature16057.
- 120Dubowchik, G.M., Firestone, R.A., Padilla, L., Willner, D., Hofstead, S.J., Mosure, K., Knipe, J.O., Lasch, S.J., and Trail, P.A. (2002). Cathepsin B-labile dipeptide linkers for lysosomal release of doxorubicin from internalizing immunoconjugates: model studies of enzymatic drug release and antigen-specific in vitro anticancer activity. Bioconjug. Chem. 13 (4): 855–869. doi: 10.1021/bc025536j.
- 121Pillow, T.H., Lee, B.-C., Ma, Y., Cheung, T.K., Phung, Q., Sliwkowski, M.X., Kozak, K.R., Akita, R.W., Polson, A.G., Haley, B. et al. (2017). Cathepsin B is dispensable for cellular processing of cathepsin B-cleavable antibody–drug conjugates. Cancer Res. 77 (24): 7027–7037. doi: 10.1158/0008-5472.can-17-2391.
- 122Widdison, W.C., Ponte, J.F., Coccia, J.A., Lanieri, L., Setiady, Y., Dong, L., Skaletskaya, A., Hong, E.E., Wu, R., Qiu, Q. et al. (2015). Development of anilino-maytansinoid ADCs that efficiently release cytotoxic metabolites in cancer cells and induce high levels of bystander killing. Bioconjug. Chem. 26 (11): 2261–2278. doi: 10.1021/acs.bioconjchem.5b00430.
- 123Shen, B.-Q., Bumbaca, D., Saad, O., Yue, Q., Pastuskovas, C.V., Khojasteh, S.C., Tibbitts, J., Kaur, S., Wang, B., Chu, Y.-W. et al. (2012). Catabolic fate and pharmacokinetic characterization of trastuzumab emtansine (T-DM1): an emphasis on preclinical and clinical catabolism. Curr. Drug Metab. 13 (7): 901–910. doi: 10.2174/138920012802138598.
- 124Lambert, J.M. and Chari, R.V.J. (2014). Ado-trastuzumab emtansine (T-DM1): an antibody-drug conjugate (ADC) for HER2-positive breast cancer. J. Med. Chem. 57 (16): 6949–6964. doi: 10.1021/jm500766w.
- 125Rock, B.M., Tometsko, M.E., Patel, S.K., Hamblett, K.J., Fanslow, W.C., and Rock, D.A. (2015). Intracellular catabolism of an antibody drug conjugate with a noncleavable linker. Drug Metab. Dispos. 43 (9): 1341–1344. doi: 10.1124/dmd.115.064253.
- 126Tumey, L.N. and Han, S. (2018). ADME considerations for the development of biopharmaceutical conjugates using cleavable linkers. Curr. Top. Med. Chem. 17 (32): 3444–3462. doi: 10.2174/1568026618666180118154017.
- 127Leriche, G., Chisholm, L., and Wagner, A. (2012). Cleavable linkers in chemical biology. Bioorg. Med. Chem. 20 (2): 571–582. doi: 10.1016/j.bmc.2011.07.048.
- 128Jain, N., Smith, S.W., Ghone, S., and Tomczuk, B. (2015). Current ADC linker chemistry. Pharm. Res. 32 (11): 3526–3540. doi: 10.1007/s11095-015-1657-7.
- 129Sutherland, M.S.K., Walter, R.B., Jeffrey, S.C., Burke, P.J., Yu, C., Kostner, H., Stone, I., Ryan, M.C., Sussman, D., Lyon, R.P. et al. (2013). SGN-CD33A: a novel CD33-targeting antibody-drug conjugate using a pyrrolobenzodiazepine dimer is active in models of drug-resistant AML. Blood 122 (8): 1455–1463. doi: 10.1182/blood-2013-03-491506.
- 130Kern, J.C., Dooney, D., Zhang, R., Liang, L., Brandish, P.E., Cheng, M., Feng, G., Beck, A., Bresson, D., Firdos, J. et al. (2016). Novel phosphate modified cathepsin B linkers: improving aqueous solubility and enhancing payload scope of ADCs. Bioconjug. Chem. 27 (9): 2081–2088. doi: 10.1021/acs.bioconjchem.6b00337.
- 131Staben, L.R., Koenig, S.G., Lehar, S.M., Vandlen, R., Zhang, D., Chuh, J., Yu, S.-F., Ng, C., Guo, J., Liu, Y. et al. (2016). Targeted drug delivery through the traceless release of tertiary and heteroaryl amines from antibody–drug conjugates. Nat. Chem. 8 (12): 1112–1119. doi: 10.1038/nchem.2635.
- 132Lin, R.-H., Lin, S.-Y., Hsieh, Y.-C., and Huang, C.-C. (2014). Preparation of hydrophilic self-immolative linkers and conjugates thereof. WO2014100762A9.
- 133Wang, J., Li, S., Luo, T., Wang, C., and Zhao, J. (2012). Disulfide linkage: a potent strategy in tumor-targeting drug discovery. Curr. Med. Chem. 19 (18): 2976–2983. doi: 10.2174/092986712800672030.
- 134Austin, C.D., Wen, X., Gazzard, L., Nelson, C., Scheller, R.H., and Scales, S.J. (2005). Oxidizing potential of endosomes and lysosomes limits intracellular cleavage of disulfide-based antibody-drug conjugates. Proc. Natl. Acad. Sci. U.S.A. 102 (50): 17987–17992. doi: 10.1073/pnas.0509035102.
- 135Erickson, H.K., Park, P.U., Widdison, W.C., Kovtun, Y.V., Garrett, L.M., Hoffman, K., Lutz, R.J., Goldmacher, V.S., and Blaettler, W.A. (2006). Antibody-maytansinoid conjugates are activated in targeted cancer cells by lysosomal degradation and linker-dependent intracellular processing. Cancer Res. 66 (8): 4426–4433. doi: 10.1158/0008-5472.can-05-4489.
- 136Lewis Phillips, G.D., Li, G., Dugger, D.L., Crocker, L.M., Parsons, K.L., Mai, E., Blättler, W.A., Lambert, J.M., Chari, R.V.J., Lutz, R.J. et al. (2008). Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res. 68 (22): 9280–9290. doi: 10.1158/0008-5472.CAN-08-1776.
- 137Kellogg, B.A., Garrett, L., Kovtun, Y., Lai, K.C., Leece, B., Miller, M., Payne, G., Steeves, R., Whiteman, K.R., Widdison, W. et al. (2011). Disulfide-linked antibody-maytansinoid conjugates: optimization of in vivo activity by varying the steric hindrance at carbon atoms adjacent to the disulfide linkage. Bioconjug. Chem. 22 (4): 717–727. doi: 10.1021/bc100480a.
- 138Zhang, D., Yu, S.F., Ma, Y., Xu, K., Dragovich, P.S., Pillow, T.H., Liu, L., Del Rosario, G., He, J., Pei, Z. et al. (2016). Chemical structure and concentration of intratumor catabolites determine efficacy of antibody drug conjugates. Drug Metab. Dispos. 44 (9): 1517–1523. doi: 10.1124/dmd.116.070631.
- 139Boghaert, E.R., Khandke, K.M., Sridharan, L., Dougher, M., DiJoseph, J.F., Kunz, A., Hamann, P.R., Moran, J., Chaudhary, I., and Damle, N.K. (2008). Determination of pharmacokinetic values of calicheamicin-antibody conjugates in mice by plasmon resonance analysis of small (5 μl) blood samples. Cancer Chemother. Pharmacol. 61 (6): 1027–1035. doi: 10.1007/s00280-007-0560-2.
- 140Choy, C.J., Ley, C.R., Davis, A.L., Backer, B.S., Geruntho, J.J., Clowers, B.H., and Berkman, C.E. (2016). Second-generation tunable PH-sensitive phosphoramidate-based linkers for controlled release. Bioconjug. Chem. 27 (9): 2206–2213. doi: 10.1021/acs.bioconjchem.6b00422.
- 141Choy, C.J., Geruntho, J.J., Davis, A.L., and Berkman, C.E. (2016). Tunable PH-sensitive linker for controlled release. Bioconjug. Chem. 27 (3): 824–830. doi: 10.1021/acs.bioconjchem.6b00027.
- 142Cardillo, T.M., Govindan, S.V., Sharkey, R.M., Trisal, P., and Goldenberg, D.M. (2011). Humanized anti-Trop-2 IgG-SN-38 conjugate for effective treatment of diverse epithelial cancers: preclinical studies in human cancer xenograft models and monkeys. Clin. Cancer Res. 17: 3157–3169. doi: 10.1158/1078-0432.ccr-10-2939.
- 143Finniss, M.C., Chu, K.S., Bowerman, C.J., Luft, J.C., Haroon, Z.A., and Desimone, J.M. (2014). A versatile acid-labile linker for antibody-drug conjugates. Med. Chem. Commun. 5: doi: 10.1039/C4MD00150H.
- 144Jeffrey, S.C., Andreyka, J.B., Bernhardt, S.X., Kissler, K.M., Kline, T., Lenox, J.S., Moser, R.F., Nguyen, M.T., Okeley, N.M., Stone, I.J. et al. (2006). Development and properties of β-glucuronide linkers for monoclonal antibody-drug conjugates. Bioconjug. Chem. 17 (3): 831–840. doi: 10.1021/bc0600214.
- 145Hamblett, K.J., Senter, P.D., Chace, D.F., Sun, M.M.C., Lenox, J., Cerveny, C.G., Kissler, K.M., Bernhardt, S.X., Kopcha, A.K., Zabinski, R.F. et al. (2004). Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin. Cancer Res. 10 (20): 7063–7070. doi: 10.1158/1078-0432.CCR-04-0789.
- 146Lyon, R.P., Setter, J.R., Bovee, T.D., Doronina, S.O., Hunter, J.H., Anderson, M.E., Balasubramanian, C.L., Duniho, S.M., Leiske, C.I., Li, F. et al. (2014). Self-hydrolyzing maleimides improve the stability and pharmacological properties of antibody-drug conjugates. Nat. Biotechnol. 32 (10): 1059–1062. doi: 10.1038/nbt.2968.
- 147Jeffrey, S.C., De Brabander, J., Miyamoto, J., and Senter, P.D. (2010). Expanded utility of the β-glucuronide linker: ADCs that deliver phenolic cytotoxic agents. ACS Med. Chem. Lett. 1 (6): 277–280. doi: 10.1021/ml100039h.
- 148Shen, B.-Q., Xu, K., Liu, L., Raab, H., Bhakta, S., Kenrick, M., Parsons-Reponte, K.L., Tien, J., Yu, S.-F., Mai, E. et al. (2012). Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nat. Biotechnol. 30 (2): 184–189. doi: 10.1038/nbt.2108.
- 149Yoder, N.C., Bai, C., Tavares, D., Widdison, W.C., Whiteman, K.R., Wilhelm, A., Wilhelm, S.D., Mcshea, M.A., Maloney, E.K., Ab, O. et al. (2019). A case study comparing heterogeneous lysine-and site-specific cysteine-conjugated maytansinoid antibody-drug conjugates (ADCs) illustrates benefits of lysine conjugation. Mol. Pharm. 16 (9): 3926–3937. doi: 10.1021/acs.molpharmaceut.9b00529.
- 150Ogitani, Y., Aida, T., Hagihara, K., Yamaguchi, J., Ishii, C., Harada, N., Soma, M., Okamoto, H., Oitate, M., Arakawa, S. et al. (2016). DS-8201a, a novel HER2-targeting ADC with a novel DNA topoisomerase I inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1. Clin. Cancer Res. 22 (20): 5097–5108. doi: 10.1158/1078-0432.CCR-15-2822.
- 151Lyons, A., King, D.J., Owens, R.J., Yarranton, G.T., Millican, A., Whittle, N.R., and Adair, J.R. (1990). Site-specific attachment to recombinant antibodies via introduced surface cysteine residues. Protein Eng. 3 (8): 703–708.
- 152Ohri, R., Bhakta, S., Fourie-O'Donohue, A., Dela Cruz-Chuh, J., Tsai, S.P., Cook, R., Wei, B., Ng, C., Wong, A.W., Bos, A.B. et al. (2018). High-throughput cysteine scanning to identify stable antibody conjugation sites for maleimide- and disulfide-based linkers. Bioconjug. Chem. doi: 10.1021/acs.bioconjchem.7b00791.
- 153Strop, P., Delaria, K., Foletti, D., Witt, J.M., Hasa-Moreno, A., Poulsen, K., Casas, M.G., Dorywalska, M., Farias, S., Pios, A. et al. (2015). Site-specific conjugation improves therapeutic index of antibody drug conjugates with high drug loading. Nat. Biotechnol. 33 (7): 694–696. doi: 10.1038/nbt.3274.
- 154Pan, L., Zhao, W., Lai, J., Ding, D., Zhang, Q., Yang, X., Huang, M., Jin, S., Xu, Y., Zeng, S. et al. (2017). Sortase A-generated highly potent anti-CD20-MMAE conjugates for efficient elimination of B-lineage lymphomas. Small 13 (6): 1602267. doi: 10.1002/smll.201602267.
- 155Grünewald, J., Klock, H.E., Cellitti, S.E., Bursulaya, B., McMullan, D., Jones, D.H., Chiu, H.P., Wang, X., Patterson, P., Zhou, H. et al. (2015). Efficient preparation of site-specific antibody-drug conjugates using phosphopantetheinyl transferases. Bioconjug. Chem. 26 (12): 2554–2562. doi: 10.1021/acs.bioconjchem.5b00558.
- 156Patterson, D.M. and Prescher, J.A. (2015). Orthogonal bioorthogonal chemistries. Curr. Opin. Chem. Biol. 28: 141–149. doi: 10.1016/J.CBPA.2015.07.006.
- 157Hamblett, K.J., Le, T., Rock, B.M., Rock, D.A., Siu, S., Huard, J.N., Conner, K.P., Milburn, R.R., O'Neill, J.W., Tometsko, M.E. et al. (2016). Altering antibody-drug conjugate binding to the neonatal fc receptor impacts efficacy and tolerability. Mol. Pharm. 13 (7): 2387–2396. doi: 10.1021/acs.molpharmaceut.6b00153.
- 158Wei, C., Zhang, G., Clark, T., Barletta, F., Tumey, L.N., Rago, B., Hansel, S., and Han, X. (2016). Where did the linker-payload go? A quantitative investigation on the destination of the released linker-payload from an antibody-drug conjugate with a maleimide linker in plasma. Anal. Chem. 88 (9): 4979–4986. doi: 10.1021/acs.analchem.6b00976.
- 159Rago, B., Clark, T., King, L., Zhang, J., Tumey, L.N.N., Li, F., Barletta, F., Wei, C., Leal, M., Hansel, S. et al. (2016). Calculated conjugated payload from immunoassay and LC-MS intact protein analysis measurements of antibody-drug conjugate. Bioanalysis 8 (21): 2205–2217. doi: 10.4155/bio-2016-0160.
- 160Tumey, L.N.N., Charati, M., He, T., Sousa, E., Ma, D., Han, X., Clark, T., Casavant, J., Loganzo, F., Barletta, F. et al. (2014). Mild method for succinimide hydrolysis on ADCs: impact on ADC potency, stability, exposure, and efficacy. Bioconjug. Chem. 25 (10): 1871–1880. doi: 10.1021/bc500357n.
- 161Dokter, W., Ubink, R., van der Lee, M., van der Vleuten, M., van Achterberg, T., Jacobs, D., Loosveld, E., van den Dobbelsteen, D., Egging, D., Mattaar, E. et al. (2014). Preclinical profile of the HER2-targeting ADC SYD983/SYD985: introduction of a new duocarmycin-based linker-drug platform. Mol. Cancer Ther. 13 (11): 2618–2629. doi: 10.1158/1535-7163.MCT-14-0040-T.
- 162Alley, S.C., Benjamin, D.R., Jeffrey, S.C., Okeley, N.M., Meyer, D.L., Sanderson, R.J., and Senter, P.D. (2008). Contribution of linker stability to the activities of anticancer immunoconjugates. Bioconjug. Chem. 19 (3): 759–765. doi: 10.1021/bc7004329.
- 163Dorywalska, M., Dushin, R., Moine, L., Farias, S.E., Zhou, D., Navaratnam, T., Lui, V., Hasa-Moreno, A., Casas, M.G., Tran, T.-T. et al. (2016). Molecular basis of valine-citrulline-PABC linker instability in site-specific ADCs and its mitigation by linker design. Mol. Cancer Ther. 15 (5): 958–970. doi: 10.1158/1535-7163.mct-15-1004.
- 164Kraynov, E., Kamath, A.V., Walles, M., Tarcsa, E., Deslandes, A., Iyer, R.A., Datta-Mannan, A., Sriraman, P., Bairlein, M., Yang, J.J. et al. (2015). Current approaches for ADME characterization of antibody-drug conjugates: an industry white paper. Drug Metab. Dispos. doi: 10.1124/dmd.115.068049.
- 165Vollmar, B.S., Wei, B., Ohri, R., Zhou, J., He, J., Yu, S.-F., Leipold, D., Cosino, E., Yee, S., Fourie-O'Donohue, A. et al. (2017). Attachment site cysteine thiol pKa is a key driver for site-dependent stability of THIOMAB antibody–drug conjugates. Bioconjug. Chem. 28 (10): 2538–2548. doi: 10.1021/acs.bioconjchem.7b00365.
- 166Lyon, R.P., Bovee, T.D., Doronina, S.O., Burke, P.J., Hunter, J.H., Neff-LaFord, H.D., Jonas, M., Anderson, M.E., Setter, J.R., and Senter, P.D. (2015). Reducing hydrophobicity of homogeneous antibody-drug conjugates improves pharmacokinetics and therapeutic index. Nat. Biotechnol. 33 (7): 733–736. doi: 10.1038/nbt.3212.
- 167Brunet, S., Sardon, T., Zimmerman, T., Wittmann, T., Pepperkok, R., Karsenti, E., and Vernos, I. (2004). Characterization of the TPX2 domains involved in microtubule nucleation and spindle assembly in Xenopus egg extracts. Mol. Biol. Cell 15 (12): 5318–5328. doi: 10.1091/mbc.E04.
- 168de Goeij Bart, E., Vink, T., Ten Napel, H., Breij Esther, C., Satijn, D., Wubbolts, R., Miao, D., and Parren Paul, W. (2016). Efficient payload delivery by a bispecific antibody-drug conjugate targeting HER2 and CD63. Mol. Cancer Ther. 15 (11): 2688–2697.
- 169Andreev, J., Thambi, N., Perez Bay, A.E., Delfino, F., Martin, J., Kelly, M.P., Kirshner, J.R., Rafique, A., Kunz, A., Nittoli, T. et al. (2017). Bispecific antibodies and antibody–drug conjugates (ADCs) bridging HER2 and prolactin receptor improve efficacy of HER2 ADCs. Mol. Cancer Ther. 16 (4): 681–693. doi: 10.1158/1535-7163.MCT-16-0658.
- 170Li, F., Ulrich, M., Jonas, M., Stone, I.J., Linares, G., Zhang, X., Westendorf, L., Benjamin, D.R., and Law, C.-L. (2017). Tumor-associated macrophages can contribute to antitumor activity through FcγR-mediated processing of antibody–drug conjugates. Mol. Cancer Ther. doi: 10.1158/1535-7163.mct-17-0019.
10.1158/1535‐7163.mct‐17‐0019 Google Scholar
- 171Donaghy, H. (2016). Effects of antibody, drug and linker on the preclinical and clinical toxicities of antibody-drug conjugates. MAbs 8 (4): 659–671. doi: 10.1080/19420862.2016.1156829.
- 172Zhao, H., Gulesserian, S., Malinao, M.C., Ganesan, S.K., Song, J., Chang, M.S., Williams, M.M., Zeng, Z., Mattie, M., Mendelsohn, B.A. et al. (2017). A potential mechanism for ADC-induced neutropenia: role of neutrophils in their own demise. Mol. Cancer Ther. 16 (9): 1866–1876. doi: 10.1158/1535-7163.MCT-17-0133.