Drug Discovery Beyond the Rule of Five
Abstract
Approximately 6% of orally administered drugs have physicochemical properties that are beyond Lipinski's rule of five (bRo5). However, in the past five years, there have been 22 new oral bRo5 drugs approved by the FDA, which account for 21% of new oral drug approvals. The significant increase in the percentage of bRo5 drug approvals represents a shift in the types of drug targets undertaken by medicinal chemists including a larger number of protein–protein interaction (PPI) inhibitors, such as BCL-2 inhibitors, and nontraditional drug targets such as NS5A inhibitors for the treatment of hepatitis C (HCV). The shift away from more druggable enzyme and GPCR targets has resulted in the development of larger molecules that have physicochemical properties that far exceed those previously expected to yield adequate solubility and permeability for oral absorption. Due to frequently lower solubility and permeability, conducting drug discovery research in bRo5 chemical space is difficult and represents a challenge for medicinal chemists to move away from the more well-understood Ro5 chemical space. In this article, we review the current state of the art for drug discovery bRo5 including a review of the literature, an analysis of physicochemical properties and case studies of the approved classes of bRo5 drugs.
References
- 1Lipinski, C.A., Lombardo, F., Dominy, B.W., and Feeney, P.J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23: 3–25. doi: 10.1016/S0169-409X(96)00423-1.
- 2Veber, D.F., Johnson, S.R., Cheng, H.Y., Smith, B.R., Ward, K.W., and Kopple, K.D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 45: 2615–2623. doi: 10.1021/jm020017n.
- 3Lovering, F. (2013). Escape from Flatland 2: complexity and promiscuity. MedChemComm. 4: 515–519. doi: 10.1039/C2MD20347B.
- 4Hill, A.P. and Young, R.J. (2010). Getting physical in drug discovery: a contemporary perspective on solubility and hydrophobicity. Drug Discov. Today 15: 648–655. doi: 10.1016/j.drudis.2010.05.016.
- 5Meanwell, N.A. (2016). Improving drug design: an update on recent applications of efficiency metrics, strategies for replacing problematic elements, and compounds in nontraditional drug space. Chem. Res. Toxicol. 29: 564–616. doi: 10.1021/acs.chemrestox.6b00043.
- 6Hopkins, A.L. and Groom, C.R. (2002). The druggable genome. Nat. Rev. Drug Discov. 1: 727–730. doi: 10.1038/nrd892.
- 7Makley, L.N. and Gestwicki, J.E. (2013). Expanding the number of ‘druggable’ targets: non-enzymes and protein–protein interactions. Chem. Biol. Drug Des. 81: 22–32. doi: 10.1111/cbdd.12066.
- 8Bickerton, G.R., Paolini, G.V., Besnard, J., Muresan, S., and Hopkins, A.L. (2012). Quantifying the chemical beauty of drugs. Nat. Chem. 4: 90–98. doi: 10.1038/nchem.1243.
- 9Walters, W.P. (2012). Going further than Lipinski's rule in drug design. Expert Opin. Drug Discov. 7: 99–107. doi: 10.1517/17460441.2012.648612.
- 10Doak, B.C., Over, B., Giordanetto, F., and Kihlberg, J. (2014). Oral druggable space beyond the rule of 5: insights from drugs and clinical candidates. Chem. Biol. 21: 1115–1142. doi: 10.1016/j.chembiol.2014.08.013.
- 11DeGoey, D.A., Chen, H.-J., Cox, P.B., and Wendt, M.D. (2018). Beyond the rule of 5: lessons learned from Abbvie's drugs and compound collection. J. Med. Chem. 61: 2636–2651. doi: 10.1021/acs.jmedchem.7b00717.
- 12Shultz, M.D. (2019). Two decades under the influence of the rule of five and the changing properties of approved oral drugs. J. Med. Chem. 62 (4): 1701–1714. doi: 10.1021/acs.jmedchem.8b00686.
- 13Mannhold, R., Poda, G.I., Ostermann, C., and Tetko, I.V. (2009). Calculation of molecular lipophilicity: state-of-the-art and comparison of log P methods on more than 96,000 compounds. J. Pharm. Sci. 98: 861–893. doi: 10.1002/jps.21494.
- 14Ritchie, T.J. and MacDonald, S.J.F. (2009). The impact of aromatic ring count on compound developability: are too many aromatic rings a liability in drug design? Drug Discov. Today 14: 1011–1020. doi: 10.1016/j.drudis.2009.07.014.
- 15Ritchie, T.J., MacDonald, S.J.F., Young, R.J., and Pickett, S.D. (2011). The impact of aromatic ring count on compound developability: further insights by examining carbo-and herero-aromatic and aliphatic ring types. Drug Discov. Today 16: 164–171. doi: 10.1016/j.drudis.2010.11.014.
- 16Ritchie, T.J., MacDonald, S.J.F., Peace, S., Pickett, S.D., and Luscombe, C.N. (2013). Increasing small molecule developability in sub-optimal chemical space. MedChemComm. 4: 673–680. doi: 10.1039/C3MD00003F.
- 17Cox, P.B., Gregg, R.J., and Vasudevan, A. (2012). Abbott physicochemical tiering (APT) - A unified approach to HTS triage. Bioorg. Med. Chem. 20: 4564–4573. doi: 10.1016/j.bmc.2012.05.047.
- 18Ritchie, T.J. and MacDonald, S.J.F. (2014). How drug-like are “ugly” drugs: do drug-likeness metrics predict ADME behaviour in humans? Drug Discov. Today 19: 489–495. doi: 10.1016/j.drudis.2014.01.007.
- 19Sauer, W.H.B. and Schwarz, M.K. (2003). Molecular shape diversity of combinatorial libraries: a prerequisite for broad bioactivity. J. Chem. Inf. Comput. Sci. 43: 987–1003. doi: 10.1021/ci025599w.
- 20Firth, N.C., Brown, N., and Blaff, J. (2012). Plane of best fit: A novel method to characterize the three-dimensionality of molecules. J. Chem. Inf. Model. 10: 2516–2525. doi: 10.1021/ci300293f.
- 21Cleves, A.E. and Jain, A.N. (2017). ForceGen 3D structure and conformer generation: From small lead-like molecules to macrocyclic drugs. J. Comput. Aided Mol. Des. 31: 419–439. doi: 10.1007/s1082.
- 22Poongavanam, V., Danelius, E., Peintner, S., Alcaraz, L., Caron, G., Cummings, M.D., Wlodek, S., Erdelyi, M., Hawkins, P.C.D., Ermondi, G., and Kihlberg, J. (2018). Conformational sampling of macrocyclic drugs in different environments: can we find the relevant conformations? ACS Omega 3: 11742–11757. doi: 10.1021/acsomega.8b01379.
- 23Pye, C.R., Hewitt, W.M., Schwochert, J.A., Haddad, T.D., Townsend, C.E., Etienne, L., Lao, Y., Limberakis, C., Furukawa, A., Mathiowetz, A.M., Price, D.A., Liras, S., and Lokey, S. (2017). Non-classical size dependence of permeation defines bounds for passive adsorption of large drug molecules. J. Med. Chem. 60: 1665–1672. doi: 10.1021/acs.jmedchem.6b01483.
- 24Naylor, M.R., Ly, A.M., Handford, M.J., Ramos, D.P., Pye, C.R., Furukawa, A., Klein, V.G., Noland, R.P., Edmondson, Q., Turmon, A.C., Hewitt, W.M., Schwochert, J., Townsend, C.E., Kelly, C.N., Blanco, M.-J., and Lokey, R.S. (2018). Lipophilic permeability efficiency reconciles the opposing roles of lipophilicity in membrane permeability and aqueous solubility. J. Med. Chem. 61: 11169–11182. doi: 10.1021/acs.jmedchem.8b01259.
- 25Whitty, A., Zhong, M., Viarengo, L., Beglov, D., Hall, D.R., and Vajda, S. (2016). Quantifying the chameleonic properties of macrocycles and other high-molecular-weight drugs. Drug Discov. Today 21: 712–717. doi: 10.1016/j.drudis.2016.02.005.
- 26Rossi Sebastiano, M., Doak, B.C., Backlund, M., Poongavanam, V., Over, B., Ermondi, G., Caron, G., Matsson, P., and Kihlberg, J. (2018). Impact of dynamically exposed polarity on permeability and solubility of chameleonic drugs beyond the rule of 5. J. Med. Chem. 61: 4189–4202. doi: 10.1021/acs.jmedchem.8b00347.
- 27Alex, A., Millan, D.S., Perez, M., Wakenhut, F., and Whitlock, G.A. (2011). Intramolecular hydrogen bonding to improve membrane permeability and absorption in beyond rule of five chemical space. MedChemComm. 2: 669–674. doi: 10.1039/C1MD00093D.
- 28Goetz, G.H., Farrell, W., Shalaeva, M., Sciabola, S., Anderson, D., Yan, J., Philippe, L., and Shapiro, M.J. (2014). High throughput method for the indirect detection of intramolecular hydrogen bonding. J. Med. Chem. 57: 2920–2929. doi: 10.1021/jm401859b.
- 29Goetz, G.H., Philippe, L., and Shapiro, M.J. (2014). EPSA: A novel supercritical fluid chromatography technique enabling the design of permeable cyclic peptides. ACS Med. Chem. Lett. 5: 1167–1172. doi: 10.1021/ml500239m.
- 30Goetz, G.H., Shalaeva, M., Caron, G., Ermondi, G., and Philippe, L. (2017). Relationship between passive permeability and molecular polarity using block relevance analysis. Mol. Pharm. 14: 386–393. doi: 10.1021/acs.molpharmaceut.6b00724.
- 31Caron, G., Kihlberg, J., and Ermondi, G. (2019). Intramolecular hydrogen bonding: an opportunity for improved design in medicinal chemistry. Med. Res. Rev. 39 (5): 1707–1729. doi: 10.1002/med.21562.
- 32Hitchcock, S.A. (2012). Structural modifications that alter the p-glycoprotein efflux properties of compounds. J. Med. Chem. 55: 4877–4895. doi: 10.1021/jm201136z.
- 33Kalliokoski, A. and Niemi, M. (2009). Impact of OATP transporters on pharmacokinetics. Br. J. Pharmacol. 158: 693–705. doi: 10.1111/j.1476-5381.2009.00430.x.
- 34Tamai, I. (2012). Oral drug delivery utilizing intestinal OATP transporters. Adv. Drug Deliv. Rev. 64: 508–514. doi: 10.1016/j.addr.2011.07.007.
- 35Shitara, Y., Maeda, K., Ikejiri, K., Yoshida, K., Horie, T., and Sugiyama, Y. (2013). Clinical significance of organic anion transporting polypeptides (OATPs) in drug disposition: their roles in hepatic clearance and intestinal absorption. Biopharm. Drug Dispos. 34: 45–78. doi: 10.1002/bdd.1823.
- 36Alam, C., Whyte-Allman, S.K., Omeragic, A., and Bendayan, R. (2016). Role and modulation of drug transporters in HIV-1 therapy. Adv. Drug Deliv. Rev. 103: 121–143. doi: 10.1016/j.addr.2016.05.001.
- 37Karlgren, M., Vildhede, A., Norinder, U., Wisniewski, J.R., Kimoto, E., Lai, Y., Haglund, U., and Artursson, P. (2012). Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPS): influence of protein expression on drug–drug interactions. J. Med. Chem. 55: 4740–4763. doi: 10.1021/jm300212s.
- 38Liang, Y., Li, S., and Chen, L. (2015). The physiological role of drug transporters. Protein Cell 6: 334–350. doi: 10.1007/s13238-015-0148-2.
- 39Amidon, G.L., Lennernäs, H., Shah, V.P., and Crison, J.R. (1995). A theoretical basis for a biopharmaceutic drug classification: the correlation in vitro drug product dissolution and in vivo bioavailability. Pharm. Res. 12: 413–420. doi: 10.1023/A:1016212804288.
- 40O'Driscoll, C.M. and Griffin, B.T. (2008). Biopharmaceutical challenges associated with drugs with low aqueous solubility—The potential impact of lipid-based formulations. Adv. Drug Deliv. Rev. 60: 617–624. doi: 10.1016/j.addr.2007.10.012.
- 41Ghadi, R. and Dand, N. (2017). BCS class IV drugs: highly notorious candidates for formulation development. J. Control. Release 248: 71–95. doi: 10.1016/j.jconrel.2017.01.014.
- 42McKelvey, C.A. and Kesisoglou, F. (2019). Enabling an HCV treatment revolution and the frontiers of solid solution formulation. J. Pharm. Sci. 108: 50–57. doi: 10.1016/j.xphs.2018.11.003.
- 43Bergström, C.A.S., Charman, W.N., and Porter, C.J.H. (2016). Computational prediction of formulation strategies for beyond-rule-of-5 compounds. Adv. Drug Deliv. Rev. 101: 6–21. doi: 10.1016/j.addr.2016.02.005.
- 44Giordanetto, F. and Kihlberg, J. (2014). Macrocyclic drugs and clinical candidates: what can medicinal chemists learn from their properties? J. Med. Chem. 57: 278–295. doi: 10.1021/jm400887j.
- 45Over, B., Matsson, P., Tyrchan, C., Artursson, P., Doak, B.C., Foley, M.A., Hilgendorf, C., Johnston, S.E., Lee, M.D., Lewis, R.J., McCarren, P., Muncipinto, G., Norinder, U., Perry, M.W.D., Duvall, J.R., and Kihlberg, J. (2016). Structural and conformational determinants of macrocycle cell permeability. Nat. Chem. Biol. 12: 1065–1074. doi: 10.1038/nchembio.2203.
- 46Rezai, T., Yu, B., Millhauser, G.L., Jacobson, M.P., and Lokey, R.S. (2006). Testing the conformational hypothesis of passive membrane permeability using synthetic cyclic peptide diastereomers. J. Am. Chem. Soc. 128: 2510–2511. doi: 10.1021/ja0563455.
- 47Hewitt, W.M., Leung, S.S., Pye, C.R., Ponkey, A.R., Bednarek, M., Jacobson, M.P., and Lokey, R.S. (2015). Cell-permeable cyclic peptides from synthetic libraries inspired by natural products. J. Am. Chem. Soc. 137: 715–721. doi: 10.1021/ja508766b.
- 48Nielsen, D.S., Hoang, H.N., Lohman, R.J., Hill, T.A., Lucke, A.J., Craik, D.J., Edmonds, D.J., Griffith, D.A., Rotter, C.J., Ruggeri, R.B., Price, D.A., Liras, S., and Fairlie, D.P. (2014). Improving on nature: making a cyclic heptapeptide orally bioavailable. Angew. Chem. Int. Ed. 53: 12059–12063. doi: 10.1002/anie.201405364.
- 49Wang, C.K., Northfield, S.E., Colless, B., Chaousis, S., Hamernig, I., Lohman, R.J., Nielsen, D.S., Schroeder, C.I., Liras, S., Price, D.A., Fairlie, D.P., and Craik, D.J. (2014). Rational design and synthesis of an orally bioavailable peptide guided by NMR amide temperature coefficients. Proc. Natl. Acad. Sci. U.S.A. 111: 17504–17509. doi: 10.1073/pnas.1417611111.
- 50Villar, E.A., Beglov, D., Chennamadhavuni, S., Porco, J.A. Jr., Kozakov, D., Vajda, S., and Whitty, A. (2014). How proteins bind macrocycles. Nat. Chem. Biol. 10: 723–732. doi: 10.1038/nchembio.1584.
- 51Mackman, R.L., Steadman, V.A., Dean, D.K., Jansa, P., Poullennec, K.G., Appleby, T., Austin, C., Blakemore, C.A., Cai, R., Cannizzaro, C., Chin, G., Chiva, J.-Y.C., Dunbar, N.A., Fliri, H., Highton, A.J., Hui, H., Ji, M., Jin, H., Karki, K., Keats, A.J., Lazarides, L., Lee, Y.-J., Liclican, A., Mish, M., Murray, B., Pettit, S.B., Pyun, P., Sangi, M., Santos, R., Sanvoisin, J., Schmitz, U., Schrier, A., Siegel, D., Sperandio, D., Stepan, G., Tian, Y., Watt, G.M., Yang, H., and Schultz, B.E. (2018). Discovery of a potent and orally bioavailable cyclophilin inhibitor derived from the sanglifehrin macrocycle. J. Med. Chem. 61: 9473–9499. doi: 10.1021/acs.jmedchem.8b00802.
- 52Doak, B. and Kihlberg, J. (2018). Cyclophilin succumbs to a macrocyclic chameleon. J. Med. Chem. 61: 9469–9472. doi: 10.1021/acs.jmedchem.8b01555.
- 53Kramer, S.D., Aschmann, H.E., Hatibovic, M., Hermann, K.F., Neuhaus, C.S., Brunner, C., and Belli, S. (2016). When barriers ignore the “rule of five.” Adv. Drug Deliv. Rev. 101: 62–74. doi: 10.1016/j.addr.2016.02.001.
- 54Doak, B.C., Zheng, J., Dobritzsch, D., and Kihlberg, J. (2016). How beyond rule of 5 drugs and clinical candidates bind to their targets. J. Med. Chem. 59: 2312–2327. doi: 10.1021/acs.jmedchem.5b01286.
- 55Gaynor, M. and Mankin, A.S. (2003). Macrolide antibiotics: binding site, mechanism of action, resistance. Curr. Top. Med. Chem. 3: 949–961. doi: 10.2174/1568026033452159.
- 56Campbell, E.A., Korzheva, N., Mustaev, A., Murakami, K., Nair, S., Goldfarb, A., and Darst, S.A. (2001). Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 104: 901–912. doi: 10.1016/S0092-8674(01)00286-0.
- 57Sweeney, Z.K., Fu, J., and Wiedmann, B. (2014). From chemical tools to clinical medicines: nonimmunosuppressive cyclophilin inhibitors derived from the cyclosporin and sanglifehrin scaffolds. J. Med. Chem. 57: 7145–7159. doi: 10.1021/jm500223x.
- 58Witek, J., Keller, B.G., Blatter, M., Meissner, A., Wagner, T., and Riniker, S. (2016). Kinetic models of cyclosporin a in polar and apolar environments reveal multiple congruent conformational states. J. Chem. Inf. Model. 56: 1547–1562. doi: 10.1021/acs.jcim.6b00251.
- 59Choi, J., Chen, J., Schreiber, S.L., and Clardy, J. (1996). Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. Science 273: 239–242. doi: 10.1126/science.273.5272.239.
- 60Maertens, J.A. (2004). History of the development of azole derivatives. Clin. Microbiol. Infect. 10 (Suppl 1): 1–10. doi: 10.1111/j.1470-9465.2004.00841.x.
- 61Murrell, D., Bossaer, J.B., Carico, R., Harirforoosh, S., and Cluck, D. (2017). Isavuconazonium sulfate: a triazole prodrug for invasive fungal infections. Int. J. Pharm. Pract. 25: 18–30. doi: 10.1111/ijpp.12302.
- 62Laursen, M., Lindholt Gregersen, J., Yatime, L., Nissen, P., and Fedosova, N.U. (2015). Structures and characterization of digoxin- and bufalin-bound Na+,K+-ATPase compared with the ouabain-bound complex. PNAS 112: 1755–1760. doi: 10.1073/pnas.1422997112.
- 63Ghosh, A.K., Osswald, H.L., and Prato, G. (2016). Recent progress in the development of HIV-1 protease inhibitors for the treatment of HIV/AIDS. J. Med. Chem. 59: 5172–5208. doi: 10.1021/acs.jmedchem.5b01697.
- 64Ridky, T.W., Cameron, C.E., Cameron, J., Leis, J., Copeland, T., Wlodawer, A., Weber, I.T., and Harrison, R.W. (1996). Human immunodeficiency virus, type 1 protease substrate specificity is limited by interactions between substrate amino acids bound in adjacent enzyme subsites. J. Biol. Chem. 271: 4709–4717. doi: 10.1074/jbc.271.9.4709.
- 65Kaur, P., Chamberlin, A.R., Poulos, T.L., and Sevrioukova, I.F. (2016). Structure-based inhibitor design for evaluation of a CYP3A4 pharmacophore model. J. Med. Chem. 59: 4210–4220. doi: 10.1021/acs.jmedchem.5b01146.
- 66Burstow, N.J., Mohamed, Z., Gomaa, A.I., Sonderup, M.W., Cook, N.A., Waked, I., Spearman, C.W., and Taylor-Robinson, S.D. (2017). Hepatitis C treatment: where are we now? Int. J. Gen. Med. 10: 39–52. doi: 10.2147/IJGM.S127689.
- 67Belema, M., Lopez, O.D., Bender, J.A., Romine, J.L.,.S., Laurent, D.R., Langley, D.R., Lemm, J.A., O'Boyle, D.R. II, Sun, J.H., Wang, C., Fridell, R.A., and Meanwell, N.A. (2014). Discovery and development of hepatitis C virus NS5A replication complex inhibitors. J. Med. Chem. 57: 1643–1672. doi: 10.1021/jm401793m.
- 68Tellinghuisen, T.L., Marcotrigiano, J., and Rice, C.M. (2005). Structure of the zinc-binding domain of an essential component of the hepatitis C virus replicase. Nature 435: 374–379. doi: 10.1038/nature03580.
- 69Love, R.A., Brodsky, O., Hickey, M.J., Wells, P.A., and Cronin, C.N. (2009). Crystal structure of a novel dimeric form of NS5A domain I protein from hepatitis C virus. J. Virol. 83: 4395–4403. doi: 10.1128/JVI.02352-08.
- 70Wagner, R., Randolph, J.T., Patel, S.V., Nelson, L., Matulenko, M.A., Keddy, R., Pratt, J.K., Liu, D., Krueger, A.C., Donner, P.L., Hutchinson, D.K., Flentge, C., Betebenner, D., Rockway, T., Maring, C.J., Ng, T.I., Krishnan, P., Pilot-Matias, T., Collins, C., Panchal, N., Reisch, T., Dekhtyar, T., Mondal, R., Stolarik, D.F., Gao, Y., Gao, W., Beno, D.A., and Kati, W.M. (2018). Highlights of the structure-activity relationships of benzimidazole linked pyrrolidines leading to the discovery of the hepatitis c virus NS5A inhibitor pibrentasvir (ABT-530). J. Med. Chem. 61: 4052–4066. doi: 10.1021/acs.jmedchem.8b00082.
- 71DeGoey, D.A., Randolph, J.T., Liu, D., Pratt, J., Hutchins, C., Donner, P., Krueger, A.C., Matulenko, M., Patel, S., Motter, C.E., Nelson, L., Keddy, R., Tufano, M., Caspi, D.D., Krishnan, P., Mistry, N., Koev, G., Reisch, T.J., Mondal, R., Pilot-Matias, T., Gao, Y., Beno, D.W.A., Maring, C.J., Molla, A., Dumas, E., Campbell, A., Williams, L., Collins, C., Wagner, R., and Kati, W.M. (2014). Discovery of ABT-267, a pan-genotypic inhibitor of HCV NS5A. J. Med. Chem. 57: 2047–2057. doi: 10.1021/jm401398x.
- 72Wakenhut, F., Tran, T.D., Pickford, C., Shaw, S., Westby, M., Smith-Burchnell, C., Watson, L., Paradowski, M., Milbank, J., Stonehouse, D., Cheung, K., Wybrow, R., Daverio, F., Crook, S., Statham, K., Leese, D., Stead, D., Adam, F., Hay, D., Roberts, L.R., Chiva, J.-Y., Nichols, C., Blakemore, D.C., Goetz, G.H., Che, Y., Gardner, I., Dayal, S., Pike, A., Webster, R., and Pryde, D.C. (2014). The discovery of potent NS5A inhibitors with a unique resistance profile-part 2. ChemMedChem. 9: 1387–1396. doi: 10.1002/cmdc.201400046.
- 73Meanwell, N.A. (2018). Fluorine and fluorinated motifs in the design and application of bioisosteres for drug design. J. Med. Chem. 61: 5822–5880. doi: 10.1021/acs.jmedchem.7b01788.
- 74McCauley, J.A. and Rudd, M.T. (2016). Hepatitis C virus NS3/4a protease inhibitors. Curr. Opin. Pharmacol. 30: 84–92. doi: 10.1016/j.coph.2016.07.015.
- 75de Leuw, P. and Stephan, C. (2018). Protease inhibitor therapy for hepatitis C virus-infection. Expert Opin. Pharmacother. 19: 577–587. doi: 10.1080/14656566.2018.1454428.
- 76Kim, J.L., Morgenstern, K.A., Lin, C., Fox, T., Dwyer, M.D., Landro, J.A., Chambers, S.P., Markland, W., Lepre, C.A., O'Malley, E.T., Harbeson, S.L., Rice, C.M., Murcko, M.A., Caron, P.R., and Thomson, J.A. (1996). Crystal structure of the hepatitis C virus NS3 protease domain complexed with a synthetic NS4A cofactor peptide. Cell 87: 343–355. doi: 10.1016/S0092-8674(00)81351-3.
- 77Goudreau, N., Cameron, D.R., Bonneau, P., Gorys, V., Plouffe, C., Poirier, M., Lamarre, D., and Llinas-Brunet, M. (2004). NMR structural characterization of peptide inhibitors bound to the hepatitis c virus NS3 protease: design of a new P2 substituent. J. Med. Chem. 47: 123–132. doi: 10.1021/jm0303002.
- 78Delbridge, A.R.D., Grabow, S., Strasser, A., and Vaux, D.L. (2016). Thirty years of BCL-2: translating cell death discoveries into novel cancer therapies. Nat. Rev. Cancer 16: 99–109. doi: 10.1038/nrc.2015.17.
- 79Ashkenazi, A., Fairbrother, W.J., Leverson, J.D., and Souers, A.J. (2017). From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat. Rev. Drug Discov. 16: 273–284. doi: 10.1038/nrd.2016.253.
- 80Montero, J. and Letai, A. (2017). Why do BCL-2 inhibitors work and where should we use them in the clinic? Cell Death Differ. 25: 56–64. doi: 10.1038/cdd.2017.183.
- 81Roberts, A.W., Davids, M.S., Pagel, J.M., Kahl, B.S., Puvvada, S.D., Gerecitano, J.F., Kipps, T.J., Anderson, M.A., Brown, J.R., Gressick, L., Wong, S., Dunbar, M., Zhu, M., Desai, M.B., Cerri, E., Heitner Enschede, S., Humerickhouse, R.A., Wierda, W.G., and Seymour, J.F. (2016). Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 374: 311–322. doi: 10.1056/NEJMoa1513257.
- 82Bai, L., Chen, J., McEachern, D., Liu, L., Zhou, H., Aguilar, A., and Wang, S. (2014). BM-1197: a novel and specific BCL-2/BCL-XL inhibitor inducing complete and long-lasting tumor regression in vivo. PLoS One 9: e9940. doi: 10.1371/journal.pone.0099404.
- 83Choo, E.F., Boggs, J., Zhu, C., Lubach, J.W., Catron, N.D., Jenkins, G., Souers, A.J., and Voorman, R. (2014). The role of lymphatic transport on the systemic bioavailability of the BCL-2 protein family inhibitors navitoclax (ABT-263) and ABT-199. Drug Metab. Dispos. 42 (2): 207–212. doi: 10.1124/dmd.113.055053.
- 84Casara, P., Davidson, J.C., Claperon, A., Le Toumelin-Braizat, G., Vogler, M., Bruno, A., Chanrion, M., Lysiak-Auvity, G., Le Diguarher, T., Starck, J., Chen, I., Whitehead, N., Graham, C.J., Matassova, N., Dokurno, P., Pedder, C., Wang, Y., Qiu, S., Girard, A., Schneider, E., Gravé, F., Studény, A., Guasconi, G., Rocchetti, F., Maïga, S., Henlin, J.M., Colland, F., Kraus-Berthier, L., Le Gouill, S., Dyer, M.J., SHubbard, R.E., Wood, M., Amiot, M., Cohen, G.M., Hickman, J.L., Morris, E.J., Murray, J.B., and Geneste, O. (2018). S55746 is a novel orally active BCL-2 selective and potent inhibitor that impairs hematological tumor growth. Oncotarget 9: 20075–20088. doi: 10.18632/oncotarget.24744.
- 85Arkin, M.R., Tang, Y., and Wells, J.A. (2014). Small-molecule inhibitors of protein-protein interactions: Progressing toward the reality. Chem. Biol. 21: 1102–1114. doi: 10.1016/j.chembiol.2014.09.001.
- 86Ran, X. and Gestwicki, J.E. (2018). Inhibitors of protein–protein interactions (PPIs): An analysis of scaffold choices and buried surface area. Curr. Opin. Chem. Biol. 44: 75–86. doi: 10.1016/j.cbpa.2018.06.004.
- 87Wang, W., Groves, M.R., and Dömling, A. (2018). Artificial macrocycles as IL-17A/IL-17RA antagonists. MedChemComm. 9: 22–26. doi: 10.1039/C7MD00464H.
- 88Xiang, W., Chao-Yie Yang, C.-Y., and Bai, L. (2018). MCL-1 inhibition in cancer treatment. OncoTargets Ther. 11: 7301–7314. doi: 10.2147/OTT.S146228.
- 89Lin, K.H., Winter, P.S., Xie, A., Roth, C., Martz, C.A., Stein, E.M., Anderson, G.R., Tingley, J.P., and Wood, K.C. (2016). Targeting MCL-1/BCL-XL forestalls the acquisition of resistance to ABT-199 in acute myeloid leukemia. Sci. Rep. 6: 27696. doi: 10.1038/srep27696.
- 90Kotschy, A., Szlavik, Z., Murray, J., Davidson, J., Maragno, A.L., Le Toumelin-Braizat, G., Chanrion, M., Kelly, G.L., Gong, J.-N., Moujalled, D.M., Bruno, A., Csekei, M., Paczal, A., Szabo, Z.B., Sipos, S., Radics, G., Proszenyak, A., Balint, B., Ondi, L., Blasko, G., Robertson, A., Surgenor, A., Dokurno, P., Chen, I., Matassova, N., Smith, J., Pedder, C., Graham, C., Studeny, A., Lysiak-Auvity, G., Girard, A.-M., Gravé, F., Segal, D., Riffkin, C.D., Pomilio, G., Galbraith, L.C.A., Aubrey, B.J., Brennan, M.S., Herold, M.J., Chang, C., Guasconi, G., Cauquil, N., Melchiore, F., Guigal-Stephan, N., Lockhart, B., Colland, F., Hickman, J.A., Roberts, A.W., Huang, D.C.S., Wei, A.H., Strasser, A., Lessene, G., and Geneste, O. (2016). The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature 538: 477–486. doi: 10.1038/nature19830.
- 91Tron, A.E., Belmonte, M.A., Adam, A., Aquila, B.M., Boise, L.H., Chiarparin, E., Cidado, J., Embrey, K.J., Gangl, E., Gibbons, F.D., Gregory, G.P., Hargreaves, D., Hendricks, J.A., Johannes, J.W., Johnstone, R.W., Kazmirski, S.L., Kettle, J.G., Lamb, M.L., Matulis, S.M., Nooka, A.K., Packer, M.J., Peng, B., Rawlins, P.B., Robbins, D.W., Schuller, A.G., Su, N., Yang, W., Ye, Q., Zheng, X., Secrist, J.P., Clark, E.A., Wilson, D.M., Fawell, S.E., and Hird, A.W. (2018). Discovery of Mcl-1-specific inhibitor AZD5991 and preclinical activity in multiple myeloma and acute myeloid leukemia. Nat. Commun. 9: 5341. doi: 10.1038/s41467-018-07551-w.
- 92Caenepeel, S., Brown, S.P., Belmontes, B., Moody, G., Keegan, K.S., Chui, D., Whittington, D.A., Huang, X., Poppe, L., Cheng, A.C., Cardozo, M., Houze, J., Li, Y., Lucas, B., Paras, N.A., Wang, X., Taygerly, J.P., Vimolratana, M., Zancanella, M., Zhu, L., Cajulis, E., Osgood, T., Sun, J., Damon, L., Egan, R.K., Greninger, P., McClanaghan, J.D., Gong, J., Moujalled, D., Pomilio, G., Beltran, P., Benes, C.H., Roberts, A.W., Huang, D.C., Wei, A., Canon, J., Coxon, A., and Hughes, P.E. (2018). AMG 176, a selective MCL1 inhibitor, is effective in hematologic cancer models alone and in combination with established therapies. Cancer Discov. 8: 1582–1597. doi: 10.1158/2159-8290.CD-18-0387.
- 93Sakamoto, K.M., Kim, K.B., Kumagai, A., Mercurio, F., Crews, C.M., and Deshaies, R.J. (2001). Protacs: Chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc. Natl. Acad. Sci. U.S.A. 98: 8554–8559. doi: 10.1073/pnas.141230798.
- 94Churcher, I. (2018). PROTAC-induced protein degradation in drug discovery: breaking the rules or just making new ones? J. Med. Chem. 61: 444–452. doi: 10.1021/acs.jmedchem.7b01272.
- 95Winter, G.E., Buckley, D.L., Paulk, J., Roberts, J.M., Souza, A., Dhe-Paganon, S., and Bradner, J.E. (2015). Phthalimide conjugation as a strategy for in vivo target protein degradation. Science 348: 1376–1381. doi: 10.1126/science.aab1433.
- 96Lu, J., Qian, Y., Altieri, M., Dong, H., Wang, J., Raina, K., Hines, J., Winkler, J.D., Crew, A.P., Coleman, K., and Crews, C.M. (2015). Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4. Chem. Biol. 22: 755–763. doi: 10.1016/j.chembiol.2015.05.009.
- 97Zengerle, M., Chan, K.H., and Ciulli, A. (2015). Selective small molecule induced degradation of the BET bromodomain protein BRD4. ACS Chem. Biol. 10: 1770–1777. doi: 10.1021/acschembio.5b00216.
- 98Neklesa, T., Snyder, L.B., Willard, R.R., Vitale, N., Raina, K., Pizzano, J., Gordon, D., Bookbinder, M., Macaluso, J., Dong, H., Liu, Z., Ferraro, C., Wang, G., Wang, J., Crews, C.M., Houston, J., Crew, A.P., and Taylor, I. (2018). Abstract 5236: ARV-110: an androgen receptor PROTAC degrader for prostate cancer. Cancer Res. 78 (13 Supplement): 5236–5236. doi: 10.1158/1538-7445.AM2018-5236.
10.1158/1538‐7445.AM2018‐5236 Google Scholar