Aldol Reaction—Homogeneous
Li-Wen Xu
Hangzhou Normal University, Hangzhou, People's Republic of China
Search for more papers by this authorLi Li
Hangzhou Normal University, Hangzhou, People's Republic of China
Search for more papers by this authorYong-Feng Cai
Hangzhou Normal University, Hangzhou, People's Republic of China
Search for more papers by this authorLi-Wen Xu
Hangzhou Normal University, Hangzhou, People's Republic of China
Search for more papers by this authorLi Li
Hangzhou Normal University, Hangzhou, People's Republic of China
Search for more papers by this authorYong-Feng Cai
Hangzhou Normal University, Hangzhou, People's Republic of China
Search for more papers by this authorAbstract
The aldol reaction is one of the oldest and important methods for the construction of carbon–carbon bonds in organic chemistry. Over the last 30 years, tremendous efforts have resulted in the development of many highly sophisticated and efficient catalytic methods of modern aldol reactions in catalytic chemo-, regio-, enantio-, and diastereoselective manners. This review outlined those efforts in homogeneous catalysis and discussed with selected examples (331 publications) according to the different elemental types of catalysts, for example, transition metals and rare earth metals based Lewis acids, main group metals based catalysts, multifunctional catalysts, and metal-free catalysts.
Bibliography
- 1 C. A. Wurtz, Bull. Chem. Chim. Fr. 17, 436–442 (1872).
- 2
C. A. Wurtz,
J. Prakt. Chem.
5,
457–464
(1872).
10.1002/prac.18720050148 Google Scholar
- 3 G. Casiraghi, F. Zanardi, G. Appendino, and G. Rassu, Chem. Rev. 100, 1929–1972 (2000).
- 4 Mukaiyama, T. Angew. Chem., Int. Ed. 43, 5590–5614 (2004).
- 5 S. E. Denmark, J. R. Heemstra, and G. L. Beutner, Angew. Chem., Int. Ed. 44, 4682–4698 (2005).
- 6 B. Schetter and R. Mahrwald, Angew. Chem., Int. Ed. 45, 7506–7525 (2006).
- 7 Mestres, R. Green Chem. 6, 583–603 (2004).
- 8 C. Palomo, M. Oiarbide, and J. M. Garcia, Chem. Soc. Rev. 33, 65–75 (2004).
- 9 J. Mlynarski and J. Paradowska, Chem. Soc. Rev. 37, 1502–1511 (2008).
- 10 Mahrwald, R. Chem. Rev. 99, 1095–1120 (1999).
- 11 Y. M. A. Yamada, N. Yoshikawa, H. Sasai, and M. Shibasaki, Angew. Chem., Int. Ed. 36, 1871–1873 (1997).
- 12
H. Groger,
E. M. Vogl, and
M. Shibasaki,
Chem. Eur. J.
4,
1137–1141
(1998).
10.1002/(SICI)1521-3765(19980710)4:7<1137::AID-CHEM1137>3.0.CO;2-Z CAS Web of Science® Google Scholar
- 13 B. List, Angew. Chem., Int. Ed. 49, 1730–1734 (2010).
- 14 W. Notz, F. Tanaka, and C. F. Barbas, Acc. Chem. Res. 37, 580–591 (2004).
- 15 G. Guillena, C. Najera, and D. J. Ramon, Tetrahedron: Asymmetry 18, 2249–2293 (2007).
- 16 T. Mukaiyama, K. Narasaka, and T. Banno, Chem. Lett. 9, 1011–1014 (1973).
- 17 T. Mukai, K. Banno, and K. Narasaka, J. Am. Chem. Soc. 96, 7503–7509 (1974).
- 18 H. Hagiwara, K. Kimura, and H. Uda, J. Chem. Soc., Chem. Commun. 11, 860–861 (1986).
- 19 E. M. Carreira and R. A. Singer, Drug Discovery Today 1, 145–150 (1996).
- 20 R. Mahrwald and B. Schetter, Org. Lett. 8, 281–284 (2006).
- 21 P. Diraddo and R. G. Harvey, Tetrahedron. Lett. 29, 3885–3886 (1988).
- 22 M. T. Crimmins and P. J. McDougall, Org. Lett. 5, 591–594 (2003).
- 23 C. Schneider, M. Hansch, and T. Weide, Chem. Eur. J. 11, 3010–3021 (2005).
- 24 S. Shirodkar, M. Nerzstormes, and E. R. Thorenton, Tetrahedron Lett. 31, 4699–4702 (1990).
- 25 R. Annunziata, M. Cinquini, F. Cozzi, and A. L. Borgia, J. Org. Chem. 57, 6339–6342 (1992).
- 26 A. K. Ghosh and M. Onishi, J. Am. Chem. Soc. 118, 2527–2528 (1996).
- 27 M. T. Crimmins, B. W. King, and E. A. Tabet, J. Am. Chem. Soc. 119, 7883–7884 (1997).
- 28 J. G. Solsona, P. Romea, F. Urpi, and Vilarrasa, J. Org. Lett. 5, 519–522 (2003).
- 29 D. Gawas and U. Kazmaier, J. Org. Chem. 74, 1788–1790 (2009).
- 30 R. D. Duthaler and A. Hafner, Chem. Rev. 92, 807–832 (1992).
- 31 K. Mikami and S. Matsukawa, J. Am. Chem. Soc. 115, 7039–7040 (1993).
- 32
R. Zimmer,
A. Peritz,
R. Czerwonka,
L. Schefzig, and
H. U. Reissig,
Eur. J. Org. Chem.
20,
3419–3428
(2002).
10.1002/1099-0690(200210)2002:20<3419::AID-EJOC3419>3.0.CO;2-F Google Scholar
- 33 E. Carreira, R. A. Singer, and W. S. Lee, J. Am. Chem. Soc. 116, 8837–8838 (1994).
- 34 H. Ishitani, Y. Yamashita, H. Shimizu, and S. Kobayashi, J. Am. Chem. Soc. 122, 5403–5404 (2000).
- 35 S. Kobayashi, H. Ishitani, Y. Yamashita, M. Ueno, and H. Shimizu, Tetrahedron. 57, 861–866 (2001).
- 36 S. Kobayashi, S. Saito, M. Ueno, and Y. Yamashita, Chem. Commun. 16, 2016–2017 (2003).
- 37 C. Schneider, M. Hansch, and P. Sreekumar, Tetrahedron; Asymmetry 17, 2738–2742 (2006).
- 38 Y. Yamashita, H. Ishitani, H. Shimizu, and S. Kobayashi, J. Am. Chem. Soc. 124, 3292–3302 (2002).
- 39 L. Nondek and J. Malek, Czech, Coll. Chem. Commun. 44, 2384–2392 (1979).
- 40 L. Colombo, I. Ulgheri, and L. Prati, Tetrahedron Lett. 30, 6435–6436 (1989).
- 41 Y. Kuroda, Y. Suzuki, and H. Ogoshi, Tetrahedron Lett. 35, 749–750 (1994).
- 42 R. Uma, N. Gouault, C. Crevisy, and R. Gree, Tetrahedron Lett. 44, 6187–6190 (2003).
- 43 N. Aoyama, K. Manabe, and S. Kobayashi, Chem. Lett. 33, 312–313 (2004).
- 44 H. J. Li, W. J. Li, and Z. P. Li, Chem. Commun. 22, 3264–3266 (2009).
- 45 J. Jankowska, J. Paradowska, and J. Mlynarski, Tetraherdron Lett. 47, 5281–5284 (2006).
- 46 J. Jankowska, J. Paradowska, B. Rakiel, and J. Mlynarski, J. Org. Chem. 72, 2228–2231 (2007).
- 47 W. Odenkirk, J. Whelan, and B. Bosnich, Tetrahedron Lett. 33, 5729–5732 (1992).
- 48 S. Murahashi, T. Naota, H. Taki, M. Mizuno, H. Takaya, S. Komiya, Y. Mizuho, H. Oyasato, M. Hiraoka, M. Hirano, and A. Fukuoka, J. Am. Chem. Soc. 117, 12436–12451 (1995).
- 49
M. W. Wang,
X. F. Yang, and
C. J. Li,
Eur. J. Org. Chem.
6,
998–1003
(2003).
10.1002/ejoc.200390155 Google Scholar
- 50 R. Uma, M. Davies, C. Crevisy, and R. Gree, Tetraherdron Lett. 42, 3069–3072 (2001).
- 51 X. F. Yang, M. W. Wang, R. S. Varma, and C. J. Li, Org. Lett. 5, 657–660 (2003).
- 52 M. Michman and S. Nussbaum, J. Organomet. Chem. 205, 111–116 (1981).
- 53 Y. Tencer, M. Michman, and I. Goldenfeld, J. Organomet. Chem. 412; 203–214 (1991).
- 54 S. Sato, I. Matsuda, and Y. Izumi, Tetrahedron Lett. 27, 5517–5520 (1986).
- 55 M. T. Reetz and A. E. Vougioukas, Tetrahedron Lett. 28, 793–796 (1987).
- 56
J. J. Schneider,
D. Wolf,
D. Blaser, and
R. Boese,
Eur. J. Org. Chem.
4,
713–718
(2000).
10.1002/(SICI)1099-0682(200004)2000:4<713::AID-EJIC713>3.0.CO;2-A Google Scholar
- 57 T. G. Baik, A. L. Luis, L. C. Wang, and M. J. Krische, J. Am. Chem. Soc. 123, 5112–5113 (2001).
- 58 H. Lam, P. M. Joensuu, G. J. Murray, E. A. Fordyce, O. Prieto, and T. Luebbers, Org. Lett. 8, 3729–3732 (2006).
- 59 R. J. R. Lumby, P. M. Joensuu, and H. W. Lam, Tetrahedron 64, 7729–7740 (2008).
- 60 M. T. Reetz and A. E. Vougioukas, Tetrahedron Lett. 28, 793–796 (1987).
- 61 R. Kuwano, H. Miyazaki, and Y. Ito, Chem. Commun. 1, 71–72 (1998).
- 62 S. J. Taylor, M. O. Duffer, and J. P. Morken, J. Am. Chem. Soc. 122, 4528–4529 (2000).
- 63 C. X. Zhao, J. bass, and J. P. Morken, Org. Lett. 3; 2839–2842 (2001).
- 64 K. Yoshida, M. Ogasawa, and T. Hayashi, J. Am. Chem. Soc. 124, 10984–10985 (2002).
- 65 R. R. Huddleston and M. J. Krische, Org. Lett. 5, 1143–1146 (2003).
- 66 C. Bee, S. B. Han, A. Hanssan, H. Lida, and M. J. Krische, J. Am. Chem. Soc. 130, 2746–2747 (2008).
- 67 C. X. Zhao, M. O. Duffey, S. J. Taylor, and J. P. Morken, Org. Lett. 3, 1829–1831 (2001).
- 68 H. Nishiyama, T. Shiomi, Y. Tsuchiya, and I. Matsuda, J. Am. Chem. Soc. 127, 6972–6973 (2005).
- 69 T. Shiomi, J. I. Ito, Y. Yamamoto, and H. Nishiyama, Eur. J. Org. Chem. 24, 5594–5600 (2006).
- 70 T. Shiomi and H. Nishiyama, Org. Lett. 9, 1651–1654 (2007).
- 71 H. Inoue, M. Kikuchi, J. I. Ito, and H. Nishiyama, Tetrahedron. 64, 493–499 (2008).
- 72 M. Mizuno, H. Inoue, T. Naito, L. Zhou, and H. Nishiyama, Chem. Eur. J. 15, 8985–8998 (2009).
- 73
E.-i. Negishi,
Handbook of Organopalladium Chemistry for Organic Synthesis,
John Wiley & Sons, Inc.,
New York,
2002.
10.1002/0471212466 Google Scholar
- 74 J. Nokami, T. Mandai, H. Watanabe, H. Ohyama, and J. Tsuji, J. Am. Chem. Soc. 111, 4126–4127 (1989).
- 75 S. Kiyooka, A. Shimizu, and S. Torii, Tetrahedron Lett. 39, 5237–5238 (1998).
- 76 C. C. Chrovian and J. Montgomery, Org. Lett. 9, 537–540 (2007).
- 77 P. M. Joensuu, G. J. Murray, E. A. F. Fordyce, T. Luebers, and H. W. Lam, J. Am. Chem. Soc. 130, 7328–7338 (2008).
- 78 F. Gorla, A. Togni, L. M. Venanzi, A. Albinati, and F. Lianza, Organometallics 13, 1607–1616 (1994).
- 79 J. M. Longmire, X. M. Zhang, and M. Y. Shang, Organometallics 17, 4374–4379 (1998).
- 80 Y. Motoyama, H. Kawakami, K. Shimozono, K. Aoki, and H. Nishiyami, Organometallics 21, 3408–3416 (2002).
- 81 S. Kiyooka, S. Matsumoto, M. Kojima, K. Sakonaka, and H. Maeda, Tetrahedron Lett. 49, 1589–1592 (2008).
- 82
M. Sodeoka,
R. Tokunoh,
F. Miyazaki,
E. Hagiwara, and
M. Shibasaki,
Synlett.
5,
463–466
(1997).
10.1055/s-1997-6145 Google Scholar
- 83 S. Kiyooka, S. Hosokawa, and S. Tsukasa, Tetrahedron Lett. 47, 3959–3962 (2006).
- 84 I. Fukuchi, Y. Hamashima, and M. Sodeoka, Adv. Synth. Catal. 349, 509–512 (2007).
- 85 N. Umebayashi, Y. Hamashima, D. Hashizume, and M. Sodeoka, Angew. Chem., Int. Ed. 47, 4196–4199 (2008).
- 86 M. Iwata and S. Emoto, Bull. Chem. Soc. Jpn. 49, 1369–1374 (1976).
- 87 D. A. Evans, J. A. Murry, and M. C. Kozlowski, J. Am. Chem. Soc. 118, 5814–5815 (1996).
- 88 D. A. Evans, C. S. Burgy, M. C. Kozlowski, and S. W. Tregay, J. Am. Chem. Soc. 121, 686–699 (1999).
- 89 J. S. Johnson and D. A. Evans, Acc. Chem. Soc. 33; 325–335 (2000).
- 90 M. Langner and C. Bolm, Angew. Chem., Int. Ed. 43, 5984–5987 (2004).
- 91 M. Langner, P. Remy, and C. Bolm, Chem. Eur. J. 11, 6254–6265 (2005).
- 92 J. Sedelmeier, T. Hammerer, and C. Bolm, Org. Lett. 10, 917–920 (2008).
- 93 J. Krüger and E. M. Carreira, J. Am. Chem. Soc. 120, 837–838 (1998).
- 94
B. L. Pagenkopf,
J. Krüger,
A. Stojanovic, and
E. M. Carreira,
Angew. Chem., Int. Ed.
37,
3124–3126
(1998).
10.1002/(SICI)1521-3773(19981204)37:22<3124::AID-ANIE3124>3.0.CO;2-1 CAS PubMed Web of Science® Google Scholar
- 95 Y. Ito, M. Sawamura, and T. Hayashi, J. Am. Chem. Soc. 108, 6405–6406 (1986).
- 96 T. Hayashi, M. Sawamura, and Y. Ito, Tetrahedron. 48, 1999–2012 (1992).
- 97 V. A. Soloshonok, A. D. Kacharov, and T. Hayashi, Tetrahedron. 52, 245–254 (1996).
- 98 A. Togni and S. D. Pastor, Chirality 3, 331–340 (1991).
- 99 M. Sawamura, H. Hamashima, and Y. Ito, J. Org. Chem. 55, 5935–5936 (1990).
- 100 M. Sawamura, Y. Ito, and T. Hayashi, Tetrahedron Lett. 31, 2723–2726 (1990).
- 101 A. Yanagisawa, Y. Matsumoto, H. Nakashima, K. Asakawa, and H. Yamamoto, J. Am. Chem. Soc. 119, 9319–9320 (1997).
- 102 M. Ohkouchi, D. Masui, M. Yamaguchi, and T. Yamagishi, J. Mol. Catal. A: Chem. 170, 1–15 (2001).
- 103 A. Yanagisawa, Y. Terajima, K. Sugita, and K. Yoshida, Adv. Synth. Catal. 351, 1757–1762 (2009).
- 104 N. Momiyama and H. Yamamoto, J. Am. Chem. Soc. 126, 5360–5361 (2004).
- 105 B. Trost and S. Oi, J. Am. Chem. Soc. 123, 1230-(2001).
- 106 B. M. Trost, C. Jonasson, and M. Wucher, J. Am. Chem. Soc. 123, 12736–12737 (2001).
- 107 D. A. Widdowson, G. H. Wiebecke, and D. J. Williams, Tetrahedron Lett. 23, 4285–4288 (1982).
- 108 T. Mukaiyama, T. Takashima, H. Kusaka, and T. Shimpuku, Chem. Lett. 10, 1777–1780 (1990).
- 109 B. M. Trost, H. Ito, and E. R. Silcoff, J. Am. Chem. Soc. 123, 3367–3368 (2001).
- 110 B. M. Trost, E. R. Silcoff, and H. Ito, Org. Lett. 3, 2497–2500 (2001).
- 111 N. Kumagai, S. Matsunaga, N. Yoshikawa, T. Ohshima, and M. Shibasaki, Org. Lett. 3, 1539–1542 (2001).
- 112 N. Kumagai, S. Matsunaga, T. Kinoshita, S. Harada, S. Okada, S. Sakamoto, K. Yamaguchi, and M. Shibasaki, J. Am. Chem. Soc. 125, 2169–2178 (2003).
- 113 J. Mlynarski and J. Jankowska, Adv. Synth. Catal. 347, 521–525 (2005).
- 114 J. Jankowska, J. Paradowska, B. Rakiel, and J. Mlynarski, J. Org. Chem. 72, 2228–2231 (2007).
- 115 J. Paradowska, M. Stodulski, and J. Mlynarski, Adv. Synth. Catal. 349, 1041–1046 (2007).
- 116
J. G. Schmidt,
Dtsch, Ber.
Chem. Ges.
13,
2342–2345
(1880).
10.1002/cber.188001302266 Google Scholar
- 117
C. H. Heathcock, in
B. M. Trost,
I. Fleming, and
L. A. Paquette, Eds.,
Comprehensive Organic Synthesis,
Pergamon Press,
Oxford, UK,
1991, pp.
181–238.
10.1016/B978-0-08-052349-1.00028-7 Google Scholar
- 118 Z. Zhang, Y. W. Dong, and G. W. Wang, Chem. Lett. 32, 966–967 (2003).
- 119 A. Arnold, M. Markert, and R. Mahrwald, Synthesis. 7, 1099–1102 (2006).
- 120 T. Nakagawa, H. Fujisawa, Y. Nagata, and T. Mukaiyama, Bull. Chem. Soc. Jpn. 77, 1555–1567 (2004).
- 121 T. Nakagawa, H. Fujisawa, and T. Mukaiyama, Chem. Lett. 32, 696–697 (2003).
- 122 T. P. Loh, L. C. Feng, and L. L. Wei, Tetrahedron 56, 7309–7312 (2000).
- 123 H. Fujisawa and T. Mukaiyama, Chem. Lett. 31, 858–859 (2002).
- 124 M. Hatano, E. Takagi, and K. Ishihara, Org. Lett. 9, 4527–4530 (2007).
- 125 M. Hatano, S. Suzuki, E. Takagi, and K. Ishihara, Tetrahedron Lett. 50, 3171–3174 (2009).
- 126 T. Ichibakase, Y. Orito, and M. Nakajima, Tetrahedron Lett. 49, 4427–4429 (2008).
- 127 M. Nakajima, Y. Orito, T. Ishizuka, and S. Hashimoto, Org. Lett. 6, 3763–3765 (2004).
- 128 G. Kyriakak, M. C. Rouxschm, and J. Seydenpe, J. Organomet. Chem. 47, 315–320 (1973).
- 129 G. Stork and J. d'Angelo, J. Am. Chem. Soc. 96, 7114–7116 (1974).
- 130 J. F. Allan, K. W. Henderson, and A. R. Kennedy, Chem. Commun. 14, 1325–1326 (1999).
- 131 G. Zhang, H. Hattori, and K. Tanabe, Appl. Catal. 36, 189–197 (1988).
- 132 E. J. Corey, W. Li, and G. A. Reichard, J. Am. Chem. Soc. 120, 2330–2336 (1998).
- 133 G. H. Deng, H. Hu, H. X. Wei, and P. W. Pare, Helv. Chim. Acta. 86, 3510–3515 (2002).
- 134 J. McNulty, J. J. Nair, M. Siliwinski, L. E. Harrington, and S. Pandey, Eur. J. Org. Chem. 34, 5669–5673 (2007).
- 135 P. Salehi, M. M. Khodaer, M. A. Zolfigol, and A. Keyvan, Monat. Chem. 133, 1291–1295 (2002).
- 136 M. C. Willis, G. A. Cutting, and M. P. John, Synlett 7, 1195–1198 (2004).
- 137 H. Fujisawa, Y. Sasaki, and T. Mukaiyama, Chem. Lett. 3, 190–191 (2001).
- 138 K. Hayashi, E. Kujime, H. Katayama, S. Sano, and Y. Nagao, Chem. Pharm. Bull. 55, 1773–1775 (2007).
- 139 D. A. Evans, J. S. Tedrow, J. T. Shaw, and C. W. Downey, J. Am. Chem. Soc. 124, 392–393 (2002).
- 140 D. A. Evans, C. W. Downey, J. T. Shaw, and J. S. Tedrow, Org. Lett. 4, 1127–1130 (2002).
- 141 B. M. Trost, S. Malhotra, and B. A. Fried, J. Am. Chem. Soc. 131, 1674–1675 (2009).
- 142 J. P. Guthrie, J. Am. Chem. Soc. 113, 7249–7255 (1991).
- 143 M. C. Willis and V. J. D. Picclo, Synlett 1, 1625–1628 (2002).
- 144 T. Yoshino, H. Morimoto, G. Lu, S. Matsunaga, and M. Shibasaki, J. Am. Chem. Soc. 131, 17082–17083 (2009).
- 145 Y. M. A. Yamada and M. Shibasaki, Tetrahedron Lett. 39, 5561–5564 (1998).
- 146 S. Saito and S. Kobayashi, J. Am. Chem. Soc. 128, 8704–8705 (2006).
- 147 A. Yamaguchi, S. Matsunaga, and M. Shibasaki, J. Am. Chem. Soc. 131, 10842–10843 (2009).
- 148 K. Miura, T. Nakagawa, and A. Hosomi, J. Am. Chem. Soc. 124, 536–537 (2002).
- 149 T. Suzuki, N. Yamagiwa, Y. Matsuo, S. Sakamoto, K. Yamaguchi, M. Shibasaki, and R. Noyori, Tetrahedron Lett. 42, 4669–1671 (2001).
- 150 E. A. Jeffery, A. Meisters, and T. Mole, J. Organomet. Chem. 74, 365–384 (1974).
- 151 S. Saito, M. Shiozawa, M. Ito, and H. Yamamoto, J. Am. Chem. Soc. 120, 813–814 (1998).
- 152
S. Saito,
M. Shiozawa, and
H. Yamamoto,
Angew. Chem., Int. Ed.
38,
1769–1771
(1999).
10.1002/(SICI)1521-3773(19990614)38:12<1769::AID-ANIE1769>3.0.CO;2-0 CAS PubMed Web of Science® Google Scholar
- 153 Y. Naruse, J. Ulkai, N. Ikeda, and H. Yamamoto, Chem. Lett. 10, 1451–1452 (1985).
- 154
S. Kobayashi and
M. Horibe,
Synlett
11,
855–857
(1993).
10.1055/s-1993-22632 Google Scholar
- 155 T. Ooi, E. Tayama, M. Takahashi, and K. Maruoka, Tetrahedron Lett. 38, 7403–7406 (1997).
- 156 T. Ooi, Takahashi, M. M. Yamada, E. Tayama, K. Omoto, and K. Maruoka, J. Am. Chem. Soc. 126, 1150–1160 (2004).
- 157 S. M. Raders and J. G. Verkade, J. Org. Chem. 74, 5417–5428 (2009).
- 158
M. Shimizu,
M. Kawamoto,
Y. Yamamoto, and
T. Fujisawa,
Synlett
5,
501–502
(1997).
10.1055/s-1997-6148 Google Scholar
- 159 H. Suga, K. Ikai, and T. Ibata, J. Org. Chem. 64, 7040–7047 (1999).
- 160
D. A. Evans,
J. M. Janey,
N. Magomedov, and
J. S. Tedrow,
Angew. Chem., Int. Ed.
40,
1884–1888
(2001).
10.1002/1521-3773(20010518)40:10<1884::AID-ANIE1884>3.0.CO;2-9 CAS PubMed Web of Science® Google Scholar
- 161 J. S. Yadav, Reddy, VS B, M. K. Gupta, and S. K. Pandey, J. Mol. Catal. A: Chem. 264, 309–312 (2007).
- 162 Y. Han and Y. Z. Huang, Tetrahedron Lett. 39, 7751–7754 (1998).
- 163 Y. Nishimura, Y. Miyake, R. Amemiya, and M. Yamaguchi, Org. Lett. 8, 5077–5080 (2006).
- 164 H. J. Li, H. Y. Tian, Y. J. Chen, D. Wang, and C. J. Li, Chem. Commun. 24, 2994–2995 (2002).
- 165 H. J. Li, H. Y. Tian, Y. C. Wu, Y. J. Chen, L. Liu, D. Wang, and C. J. Li, Adv. Synth. Catal. 347, 1247–1256 (2005).
- 166 T. P. Loh, J. A. Pei, and G. Q. Cao, Chem. Commun. 15, 1819–1820 (1996).
- 167 T. P. Loh, J. Pei, K. S. V. Koh, G. Q. Cao, and X. R. Li, Tetrahedron Lett. 39, 3465–3468 and 3993–3994 (1997).
- 168 S. Kobayashi, T. Busujima, and S. Nagayama, Tetrahedron Lett. 39, 1579–1582 (1998).
- 169 O. Muñoz-Muñiz, M. Quintanar-Audelo, and E. Juaristi, J. Org. Chem. 68, 1622–1625 (2003).
- 170 T. P. Loh, G. L. Chua, J. J. Vittal, and M. W. Wong, Chem. Commun. 8, 861–862 (1998).
- 171 T. P. Loh, J. M. Huang, S. H. Goh, and J. J. Vittal, Org. Lett. 2, 1291–1294 (2000).
- 172 F. Fu, Y. C. Teo, and T. P. Loh, Tetrahedron Lett. 47, 4267–4269 (2006).
- 173 K. Inoue, T. Ishiba, I. Shibata, and A. Baba, Adv. Synth. Catal. 344, 283–287 (2002).
- 174 I. Shibata, H. Kato, T. Ishida, M. Yasuda, and A. Baba, Angew. Chem. Int. Ed. 43, 711–714 (2004).
- 175 R. W. Stevens, N. Iwasawa, and T. Mukaiyamai, Chem. Lett. 3, 353–356 (1982).
- 176 N. Iwasawa and T. Mukaiyama, Chem. Lett. 4, 637–640 (1986).
- 177 T. Mukaiyama, S. Kobayashi, M. Tamura, and Y. Sagawa, Chem. Lett. 3, 491–494 (1987).
- 178 T. Mukaiyama, S. Kobayashi, H. Uchiro, and I. Shiina, Chem. Lett. 1, 129–132 (1990).
- 179 S. Kobayashi, M. Furuya, A. Ohtsubo, and T. Mukaiyama, Tetrahedron: Asymmetry 2, 635–638 (1991).
- 180 S. Kobayashi, H. Uchiro, I. Shiina, and T. Mukaiyama, Tetrahedron. 49, 1761–1772 (1993).
- 181 S. Kobayashi and M. Horibe, Tetrahedron: Asymmetry 6, 2565–2569 (1995).
- 182 S. Sano, T. Ishii, T. Miwa, and Y. Nagao, Tetrahedron Lett. 40, 3013–3016 (1999).
- 183
K. Matsui,
B. Z. Zheng,
S. Kusaka,
M. Kuroda,
K. Yoshimoto,
H. Yamada, and
O. Yonemitsu,
Eur. J. Org. Chem.
19,
3615–3624
(2001).
10.1002/1099-0690(200110)2001:19<3615::AID-EJOC3615>3.0.CO;2-P Google Scholar
- 184 I. Shina, T. Iizumi, Y. S. Yamai, Y. Kawakita, K. Yokoyama, and Y. Yamada, Synthesis 17, 2915–2926 (2009).
- 185 A. Yanagisawa, T. Satou, A. Immiseki, Y. Tanaka, M. Miyagi, T. Arai, and K. Yoshida, Chem. Eur. J. 15, 11450–11453 (2009).
- 186 D. A. Evans, D. W. C. MacMillan, and K. R. Campos, J. Am. Chem. Soc. 119, 10859–10860 (1997).
- 187 S. Nagayama and S. Kobayashi, J. Am. Chem. Soc. 122, 11531–11532 (2000).
- 188 T. Ollevier, V. Desyroy, and E. Nadeau, Arkivoc 10, 10–20 (2007).
- 189 H. Ohki, H. Wada, and K. Y. Akiba, Tetrahedron Lett. 29, 4719–4722 (1988).
- 190 Le C. Roux, H. Gaspard-Iloughmane, J. Dubac, J. Jaud, and P. Vignaux, J. Org. Chem. 58, 2238–2240 (1994).
- 191
C. Leroux,
L. Ciliberti,
H. Laurent-Robert,
A. Laporterie, and
J. Dubac,
Synlett
11,
1249–1251
(1998).
10.1055/s-1998-1907 Google Scholar
- 192 Y. J. Lee and T. H. Chan, Can. J. Chem. 81, 1406–1412 (2003).
- 193 T. Ollevier, V. Desyroy, B. Debailleul, and S. Vaur, Eur. J. Org. Chem. 23, 4971–4973 (2005).
- 194 M. P. Nguyen, J. N. Arnold, K. E. Peterson, and R. S. Mohan, Tetrahedron Lett. 45, 9369–9371 (2004).
- 195 T. Ollevier, J. E. Bouchard, and V. J. Desyroy, Org. Chem. 73, 331–334 (2008).
- 196 S. Kobayashi, T. Ogino, H. Shimizu, S. Ishkawa, K. Hamada, and K. Manabe, Org. Lett. 7, 4729- (2005).
- 197 N. G. Connelly, T. Damhus, R. M. Hartshorn, and A. T. Hutton, Eds., Nomenclature of Inorganic Chemistry, IUPAC Recommendations 2005, Royal Society of Chemistry, Cambridge, UK, 2005.
- 198 T. Imamoto, T. Kusumoto, and M. Yokoyama, Tetrahedron Lett. 24, 5233–5236 (1983).
- 199 A. E. Vougiokas and H. B. Kagan, Tetrahedron Lett. 45, 5513–5516 (1987).
- 200 S. Kobayashi, Chem. Lett. 20, 2187–2190 (1995).
- 201 S. Kobayashi and I. Hachiya, Tetrahedron Lett. 33, 1625–1628 (1992).
- 202 S. Kobayashi and I. Hachiya, J. Org. Chem. 59, 3590–3596 (1994).
- 203 R. W. Marshman, Aldrichim. Acta 28, 77–84 (1995).
- 204 S. Kobayashi, M. Sugiura, H. Kitagawa, and W. L. Lam, Chem. Rev. 102, 2227–2302 (2002).
- 205
S. Kobayashi,
I. Ichiya,
H. Ishitani, and
M. Araki,
Synlett
7,
472–474
(1993).
10.1055/s-1993-22495 Google Scholar
- 206 S. Kobayashi, T. Wakabayashi, S. Nagayama, and H. Oyamada, Tetrahedron Lett. 38, 4559–4562 (1997).
- 207 S. Ishikawa, T. Hamada, K. Manabe, and S. Kobayashi, J. Am. Chem. Soc. 126, 12236–12237 (2004).
- 208 F. Wang, X. H. Liu, Y. L. Zhang, L. L. Lin, and X. M. Feng, Chem. Commun. 47, 7297–7299 (2009).
- 209 T. Okano, Y. Satou, M. Tamura, and J. Kiji, Bull. Chem. Soc. Jpn. 70, 1879–1885 (1997).
- 210 Y. Sohtome, Y. Sato, S. Handa, N. Aoyama, S. Nagawa, S. Matsunaga, and M. Shibasaki, Org. Lett. 49, 4143–4137 (2008).
- 211 Y. Horiuchi, V. Gnanadesikan, T. Ohshima, H. Masu, K. Katagiri, Y. Sei, K. Yamaguchi, and M. M. Shibasaki, Chem. Eur. J. 11, 5195–5204 (2005).
- 212 N. Yoshikawa, Y. M. A. Yamada, J. Das, H. Sasai, and M. Shibasaki, J. Am. Chem. Soc. 121, 4168–4178 (1999).
- 213 Y. M. A. Yamada, N. Yoshikawa, H. Sasai, and M. Shibasaki, Angew. Chem., Int. Ed. 36, 1871–1873 (1997).
- 214 P. Fraisse, I. Hanna, J. Y. Lalleman, T. Prange, and L. Richard, Tetrahedron 55, 11819–11832 (1999).
- 215 K. Manabe, T. Hamade, and S. Kobayashi, Tetrahedron 59, 10439–40444 (2003).
- 216 T. Mukaiyama, H. Arai, and I. Shiina, Chem. Lett. 5, 580–581 (2000).
- 217 A. Caracoti and R. A. Flowers, Tetrahedron Lett. 41, 3039–3041 (2000).
- 218 J. M. Concellon, H. Rodriguez-Solla, and C. Concellon, J. Org. Chem. 71, 7919–7922 (2006).
- 219 K. Pudhom, H. Arai, K. Yamane, and T. Mukaiyama, Chem. Lett. 1, 82–83 (2002).
- 220 J. M. Concellon and C. Concellon, J. Org. Chem. 71, 4428–4432 (2006).
- 221 J. Zeitouni, S. Norsikian, D. Merlet, and A. Lubineau, Adv. Synth. Catal. 348, 1662–1670 (2006).
- 222 M. D. Helm, M. D. Silva, D. Sucunza, M. Helliwell, and D. J. Procter, Tetrahedron 65, 10816–10829 (2009).
- 223 J. Mlynarski and M. Mitura, Tetrahedron Lett. 45, 7549–7552 (2004).
- 224 J. Mlynarski, B. Rakiel, M. Stodulski, A. Suszczynska, and J. Frelek, Chem. Eur, J. 12, 8158–8167 (2006).
- 225 T. Mukaiyama, K. Inomata, and M. Muraki, J. Am. Chem. Soc. 95, 967–968 (1973).
- 226 L. Deloux and M. Srebnik, Chem. Rev. 93, 763–784 (1993).
- 227 A. Abiko, Acc. Chem. Soc. 37, 387–395 (2004).
- 228 K. M. Gergol and M. J. Coste,r Nature Protocols. 2, 2568–2573 (2007).
- 229 L. C. Dias and A. M. Aguilar, Chem. Soc. Rev. 37, 451–469 (2008).
- 230 A. Bernardi, A. M. Capelli, C. Gennari, J. M. Goodman, and I. Paterson, J. Org. Chem. 55, 3576–381 (1990).
- 231 J. Murga, E. Falomir, F. Gonzalez, M. Carda, and J. A. Marco, Tetrahedron 58, 9697–9707 (2002).
- 232 M. Watanabe, H. Kobayashi, and Y. Yoneda, Chem. Lett. 2, 163–163 (1995).
- 233 Y. Ruland, C. Zedde, M. Baltas, and L. Gorrichon, Tetrahedron Lett. 40, 7323–7327 (1999).
- 234 A. Abiko, J. F. Liu, D. C. Buske, S. Moriyama, and S. Masamune, J. Am. Chem. Soc. 121, 7168–7169 (1999).
- 235 L. C. Dias, R. Z. Baú, de M. A. Sousa, and J. Zukerman-Schpector, Org. Lett. 4, 4325–4327 (2002).
- 236 K. M. Cergol, P. Turner, and M. J. Coster, Tetrahedron Lett. 46, 1505–1509 (2005).
- 237
K. Ishihara,
N. Hananki, and
H. Yamamoto,
Synlett
8,
577–579
(1993).
10.1055/s-1993-22535 Google Scholar
- 238 Y. Mori, J. Kobayashi, K. Manabe, and S. Kobayashi, Tetrahedron 58, 8263–8268 (2002).
- 239 K. Aelvoet, A. S. Batsanov, A. J. Blatch, Grosjean, L. G. F. Patrick, C. A. Smethurst, and A. Whiting, Angew. Chem., Int. Ed. 47, 768–770 (2008).
- 240
T. D. Machajewski and
C. H. Wong,
Angew. Chem., Int. Ed.
39,
1352–1374
(2000).
10.1002/(SICI)1521-3773(20000417)39:8<1352::AID-ANIE1352>3.0.CO;2-J CAS PubMed Web of Science® Google Scholar
- 241 D. Lee, S. G. Newman, and M. S. Taylor, Org. Lett. 11, 5486–5489 (2009).
- 242
H. Groger,
E. M. Vogl, and
M. Shibasaki,
Chem. Eur. J.
4,
1137–1141
(1998).
10.1002/(SICI)1521-3765(19980710)4:7<1137::AID-CHEM1137>3.0.CO;2-Z CAS Web of Science® Google Scholar
- 243 M. Iwata, R. Yazaki, Y. Suzuki, N. Kumagai, and M. Shibasaki, J. Am. Chem. Soc. 131, 18244–18245 (2009).
- 244 B. M. Trost and H. Ito, J. Am. Chem. Soc. 122, 12003–12004 (2000).
- 245 B. M. Trost, S. H. Shin, and J. A. Sclafani, J. Am. Chem. Soc. 127, 8602–8603 (2005).
- 246
M. Shibasaki,
S. Matsunaga, and
N. Kumagai, in
R. Mahrwald, Ed.
Modern Aldol Reactions,
Wiley-VCH,
Weinheim, Germany, Vol.2,
pp. 197–228
(2004).
10.1002/9783527619566.ch13 Google Scholar
- 247 U. Eder, G. Sauer, and R. Wiechert, Angew. Chem. Int. Ed. Engl. 10, 496–497 (1971).
- 248 Z. G. Hajos and D. R. Parrish, J. Org. Chem. 39, 1615–1621 (1974).
- 249 C. Allemann, R. Gordillo, F. R. Clemente, P. H. Y. Cheong, and K. N. Houk, Acc. Chem. Res. 37, 558–569 (2004).
- 250 S. Saito and H. Yamamoto, Acc. Chem. Res. 37, 570–579 (2004).
- 251 G. Guillena, C. Nájera, and D. J. Ramón, Tetrahedron:Asymmetry 18, 2249–2293 (2007).
- 252 A. Dondoni and A. Massi, Angew. Chem., Int. Ed. 47, 4638–4660 (2008).
- 253 Melchiorre, M. Marigo, A. Carlone, and G. Bartoli, Angew. Chem., Int. Ed. 47, 6138–6171 (2008).
- 254 K. Zumbansen, A. Dohring, and B. List, Adv. Synth. Catal. 352, 1135–1138 (2010).
- 255 N. Momiyama, and H. Yamamoto, J. Am. Chem. Soc. 127, 1080–1081 (2005).
- 256 A. Mielgo, I. Velilla, E. Gomez-Bengoa, and C. Palomo, Chem. Eur. J. 16, 7496–7502 (2010).
- 257 P. Hammar, C. Ghobril, Antheaume, A. Wagner, R. Baati, and F. Himo, J. Org. Chem. 75, 4728–4736 (2010).
- 258 R. P. Singh, B. M. Foxman, and L. Deng, J. Am. Chem. Soc. 132, 9558–9560 (2010).
- 259 T. Misaki, G. Takimoto, and T. Suigimura, J. Am. Chem. Soc. 132, 6286–6287 (2010).
- 260 B. Ma, J. L. Parkinson, and S. L. Castle, Tetrahedron Lett. 48, 2083–2086 (2007).
- 261 R. Varala, S. Nuvula, and S. R. Adapa, Tetrahedron Lett. 47, 877–880 (2006).
- 262 M. B. Andrus, Z. F. Ye, and J. F. Cannon, Org. Lett. 7, 3861–3864 (2005).
- 263 W. Zhou, L. W. Xu, H. Y. Qiu, G. Q. Lai, C. G. Xia, and J. X. Jiang, Helv. Chim. Acta. 91, 53–59 (2008).
- 264 L. W. Xu, Y. D. Ju, L. Li, H. Y. Qiu, J. X. Jiang, and G. Q. Lai, Tetrahedron Lett. 49, 7037–7041 (2008).
- 265 N. Mase, N. Noshiro, A. Mokuya, and K. Takabe, Adv. Synth. Catal. 351, 2791–2796 (2009).
- 266 B. List, R. A. Lerner, and C. F. Barbas III, J. Am. Chem. Soc. 122, 2395–2396 (2000).
- 267 L. W. Xu and Y. Lu, Org. Biomol. Chem. 6, 2047–2053 (2008).
- 268 L. W. Xu, J. Luo, and Y. Lu, Chem. Commun. 14, 1807–1821 (2009).
- 269 M. Markert, U. Scheffler, and R. Mahrwald, J. Am. Chem. Soc. 131, 16642–16643 (2009).
- 270 K. Sakthivel, W. Notz, T. Bui, and C. F. Barbas III, J. Am. Chem. Soc. 123, 5260–5267 (2001).
- 271 M. Nakadai, S. Saito, and H. Yamamoto, Tetrahedron 58, 8167–8177 (2002).
- 272 Z. Tang, Z. H. Yang, X. H. Chen, L. F. Lin, A. Q. Mi, Y. Z. Jiang, and L. Z. Liu, J. Am. Chem. Soc. 127, 9285–9289 (2005).
- 273 A. J. A. Cobb, D. M. Shaw, D. A. Longbottom, J. B. Gold, and S. V. Ley, Org. Biomol. Chem. 3, 84–96 (2005).
- 274 A. Córdova, W. Zou, I. Ibrahem, E. Reyes, M. Engqvist, and W. W. Liao, Chem. Commun. ( 28), 2586–3588 (2005).
- 275 J. R. Chen, H. H. Lu, X. Y. Li, L. Cheng, J. Wan, and W. J. Xiao, Org. Lett. 7, 4543–4545 (2005).
- 276 N. Mase, Y. Nakai, N. Ohara, H. Yoda, K. Takabe, F. Tanaka, and C. F. Barbas III, J. Am. Chem. Soc. 128, 734–735 (2006).
- 277 P. Dinér and M. Amedjkouh, Org. Biomol. Chem. 4, 2091–2096 (2006).
- 278 Q. Gu, X. F. Wang, L. Wang, X. Y. Wu, and Q. L. Zhou, Tetrahedron: Asymmetry 17, 1537–1540 (2006).
- 279 C. Cheng and S. Wei, J. Sun, Synlett 15, 2419–2422 (2006).
- 280 L. Gu, M. Yu, X. Wu, Y. Zhang, and G. Zhao, Adv. Synth. Catal. 348, 2223–2228 (2006).
- 281 Y. Wang, S. Wei, and J. Sun, Synlett 19, 3319–3323 (2006).
- 282 E. Lacoste, E. Vaique, M. Berlande, I. Pianet, J. M. Vincent, and Y. Landais, Eur. J. Org. Chem. 1, 167–177 (2007).
- 283 A. Russo, G. Botta, and A. Lattanzi, Synlett 5, 795–799 (2007).
- 284 V. Maya, M. Raj, and V. K. Singh, Org. Lett. 9, 2593–2595 (2007).
- 285 D. Gryko and W. J. Saletra, Org. Biomol. Chem. 5, 2148–2153 (2007).
- 286 Y. C. Teo, Tetrahedron: Asymmetry 18, 1155–1158 (2007).
- 287 S. Sathapornvajana and T. Vilaivan, Tetrahedron 63, 10253–10259 (2007).
- 288 L. Zu, H. Xie, H. Li, J. Wang, and W. Wang, Org. Lett. 10, 1211–1214 (2008).
- 289 J. Liu, Z. Yang, Z. Wang, F. Wang, X. Chen, X. Liu, X. Feng, Z. Su, and C. Hu, J. Am. Chem. Soc. 130, 5654–5655 (2008).
- 290 S. Doherty, J. G. Knight, A. McRae, R. W. Harrington, and W. Clegg, Eur. J. Org. Chem. 10, 1759–1766 (2008).
- 291 S. Aratake, T. Itoh, T. Okano, N. Nagae, T. Sumiya, M. Shoji, and Y. Hayashi, Chem. Eur. J. 13, 10246–10256 (2007).
- 292 J. F. Zhao, L. He, J. Jiang, Z. Tang, L. F. Cun, and L. Z. Gong, Tetrahedron Lett. 49, 3372–3375 (2008).
- 293 Tzeng, Z H, H. Y. Chen, C. T. Huang, and K. Chen, Tetrahedron Lett. 49, 4134–4137 (2008).
- 294 H. Yang and R. G. Carter, Org. Lett. 19, 2276–2284 (2008).
- 295 S. Gandhi, and V. K. Singh, J. Org. Chem. 73, 9411–9416 (2008).
- 296 F. Z. Peng, Z. H. Shao, X. W. Pu, and H. B. Zhang, Adv. Synth. Catal. 350, 2199–2204 (2008).
- 297 S. P. Zhang, X. K. Fu, and S. D. Fu,Tetrahedron Lett. 50, 1173–1176 (2009).
- 298 J. N. Moorthy and S. Saha, Eur. J. Org. Chem. 5, 739–748 (2009).
- 299 L. Li, L. W. Xu, Y. D. Ju, and G. Q. Lai,Synth. Commun. 39, 764–774 (2009).
- 300 Z. Jiang, Z. Liang, X. Wu, and Y. Lu, Chem. Commun. 26, 2801–2803 (2006).
- 301 B. L. Zheng, Q. Z. Liu, C. S. Guo, X. L. Wang, and L. He, Org. Biomol. Chem. 5, 2913–2915 (2007).
- 302 S. Luo, H. Xu, J. Li, L. Zhang, and J. P. Cheng, J. Am. Chem. Soc. 129, 3074–3075 (2007).
- 303 X. Wu, Z. Jiang, H. M. Shen, and Y. Lu, Adv. Synth. Catal. 349, 812–816 (2007).
- 304 X. Ma, C. S. Da, L. Yi, Y. N. Jia, Q. P. Guo, L. P. Che, F. C. Wu, J. R. Wang, and W. P. Li, Tetrahedron: Asymmetry 20, 1419–1424 (2009).
- 305 M. D. Nisco, S. Pedatella, H. Ullah, J. H. Zaidi, D. Naviglio, Ö. Özdamar, and R. Caputo, J. Org. Chem. 74, 9564–9565 (2009).
- 306 C. Isart, J. Burés, and J. Vilarrasa, Tetrahedron Lett. 49, 5414–5418 (2008).
- 307 T. Kano, Y. Yamaguchi, and K. Maruoka, Chem. Eur. J. 15, 6678–6687 (2009).
- 308 J. Y. Li, S. Z. Luo, and J. P. Cheng, J. Org. Chem. 74, 1747–1750 (2009).
- 309 A. P. Fu, H. L. Li, F. H. Tian, S. P. Yuan, H. P. Si, and Y. B. Duan, Tetrahedron: Asymmetry 19, 1288–1296 (2008).
- 310 M. Markert, M. Mulzer, B. Schetter, and R. Mahrwald, J. Am. Chem. Soc. 129, 7258–7259 (2007).
- 311 S. E. Denmark, r. R. A. Stavenge, and K. T. Wong, J. Org. Chem. 63, 918–919 (1998).
- 312 S. E. Denmark and G. L. Beuter, xJ. Am. Chem. Soc. 125, 7800–7801 (2003).
- 313 S. E. Denmark, B. M. Eklov, P. J. Yao, and M. D. Eastgate, J. Am. Chem. Soc. 131, 11770–11787 (2009).
- 314 P. García-García, F. Lay, P. García-García, C. Rabalakos, and B. List, Angew. Chem., Int. Ed. 48, 4363–4366 (2009).
- 315 V. B. Gondi, M. Gravel, and V. H. Rawal, Org. Lett. 7, 5657–5660 (2005).
- 316 J. D. McGilvra, A. K. Unni, K. Modi, and V. H. Rawal, Angew. Chem., Int. Ed. 45, 6130–6133 (2006).
- 317 G. Pousse, F. L. Cavelier, L. Humphreys, J. Rouden, and J. Blanchet, Org. Lett. 12, 3582–3585 (2010).
- 318 C. H. Cheon and H. Yamamoto, Org. Lett. 12, 2476–2479 (2010).
- 319 T. Ooi, M. Kameda, M. Taniguchi, and K. Maruoka, J. Am. Chem. Soc. 126, 9685–9694 (2004).
- 320 R. Nagase, J. Osada, H. Tamagaki, and Y. Tanabe, Adv. Synth. Catal. 352, 1128–2234 (2010).
- 321 H. Yanai, Y. Yoshino, A. Takahashi, and T. Taguchi, J. Org. Chem. 75, 5375–5378 (2010).
- 322 C. W. Downey, M. W. John, D. H. Lawrence, A. S. Fleisher, and K. J. Tracy, J. Org. Chem. 75, 5351–5354 (2010).
- 323 A. Mielgo, I. Velilla, E. Gomez-Bengoa, and C. Palomo, Chem. Eur. J. 16, 7496–7502 (2010).
- 324 S. G. Zlotin, A. S. Kucherenko, and I. P. Beletskaya, Russ. Chem. Rev. 78, 737–784 (2009).
- 325 B. M. Trost and C. S. Brindle, Chem. Soc. Rev. 39, 1600–1632 (2010).
- 326 R. Yazaki, N. Kumagai, and M. Shibasaki, J. Am. Chem. Soc. 132, 5522–5531 (2010).
- 327 S. Mouri, Z. H. Chen, S. Matsunaga, and M. Shibasaki, Chem. Commun. 34, 5138–5140 (2010).
- 328 D. B. Zha, K. Oisaki, M. Kanai, and M. Shibasaki, J. Am. Chem. Soc. 128, 14440–14441 (2006).
- 329 M. K. Vecchione, L. Li, and D. Seidel, Chem. Commun. 46, 4604–4606 (2010).
- 330 Y. Yamaoka and H. Yamamoto, J. Am. Chem. Soc. 132, 5354–5356 (2010).
- 331 M. R. Sonawane, I. Cisarova, and I. M. Lyapkalo, Chem. Commun. 46: 2656–2658 (2010).