Abstract
Hydrogenases are enzymes that produce or consume hydrogen gas. Each type of hydrogenase contains, as a minimum, an iron atom, with CO and CN ligands which tune its redox potential and Lewis-acidity to optimize the binding of dihydrogen. The Fe-hydrogenase from methanogenic bacteria is the simplest hydrogenase and catalyzes a direct hydride transfer from H2 to its organic substrate. All other hydrogenases catalyze reduction of electron acceptors, according to the equation H2 = H+ + 2e−. The hydrogen-binding sites are of two types: the [NiFe(Se)]-hydrogenases, which contain a dinuclear center of nickel and iron, and the [FeFe]-hydrogenases, which contain a dinuclear iron site, the H cluster. In each case, the protein is arranged to leave a vacant position in the active site for binding H2, as well as separate channels for transfer of H2 and H+ to the surface. A chain of iron-sulfur clusters provides a pathway for electrons to a binding site on the surface for electron acceptors and donors. O2 and CO are inhibitors that bind to the vacant site and block access to H2; O2 also causes oxidation of the metal centers and sulfur ligands. Some hydrogenases from aerobic bacteria, which are resistant to this inhibition, are of interest for applications in biofuel cells.
Bibliography
- 1 M. Stephenson and L. H. Stickland, Biochem. J. 25, 205–214 (1931).
- 2 M. L. Ghirardi, M. C. Posewitz, P. C. Maness, A. Dubini, J. P. Yu, and M. Seibert, Annu. Rev. Plant Biol. 58, 71–91 (2007).
- 3 R. Cammack, M. Frey, and R. Robson, Hydrogen as a Fuel: Learning from Nature, Taylor and Francis, London, 2001.
- 4 W. Lubitz and W. Tumas, eds., 100th Thematic Issue: Hydrogen, American Chemical Society, Washington, D.C., 2007.
- 5 J. W. Olson and R. J. Maier, Science 298, 1788–1790 (2002).
- 6 R. J. Maier, A. Olczak, S. Maier, S. Soni, and J. Gunn, Infect. Immun. 72, 6294–6299 (2004).
- 7 R. P. Happe, W. Roseboom, A. J. Pierik, S. P. J. Albracht, and K. A. Bagley, Nature 385, 126–126 (1997).
- 8 P. M. Vignais, B. Billoud, and J. Meyer, FEMS Microbiol. Rev. 25, 455–501 (2001).
- 9(a) P. M. Vignais and B. Billoud, Chem. Rev. 107, 4206–4272 (2007). (b) B. Schworer, V. M Fernandez, C Zirngibl, and R. K. Thauer, Eur. J. Biochem. 212, 255–261 (1993).
- 10 T. Hiromoto, E. Warkentin, J. Moll, U. Ermler, and S. Shima, Angew. Chem., Int. Ed. 48, 6457–6460 (2009).
- 11 X. Z. Yang and M. B. Hall, J. Am. Chem. Soc. 131, 10901–10908 (2009).
- 12 E. C. Hatchikian, N. Forget, V. M. Fernandez, R. Williams, and R. Cammack, Eur. J. Biochem. 209, 357–365 (1992).
- 13 P. M. Vignais, Coord. Chem. Rev. 249, 1677–1690 (2005).
- 14 Y. Berlier, P. A. Lespinat, and B. Dimon, Anal. Biochem. 188, 427–431 (1990).
- 15 R. Cammack, V. M. Fernandez, and E. C. Hatchikian, in Methods in Enzymology, Inorganic Microbial Sulfur Metabolism, 1994, pp. 43–68.
- 16 M. Bernhard, T. Buhrke, B. Bleijlevens, A. L. De Lacey, V. M. Fernandez, S. P. J. Albracht, and B. Friedrich, J. Biol. Chem. 276, 15592–15597 (2001).
- 17 H. Ogata, W. Lubitz, and Y. Higuchi, Dalton Trans. 7577–7587 (2009).
- 18 E. Garcin, X. Vernede, E. C. Hatchikian, A. Volbeda, M. Frey, and J. C. Fontecilla-Camps, Struct. Folding Design 7, 557–566 (1999).
- 19 A. Volbeda, E. Garcia, C. Piras, A. L. deLacey, V. M. Fernandez, E. C. Hatchikian, M. Frey, and J. C. Fontecilla-Camps, J. Am. Chem. Soc. 118, 12989–12996 (1996).
- 20 J. W. Van Der Zwaan, J. M. C. C. Coremans, E. C. M. Bouwens, and S. P. J. Albracht, Biochim. Biophys. Acta 1041, 101–110 (1990).
- 21 L. M. Roberts and P. A. Lindahl, J. Am. Chem. Soc. 117, 2565–2572 (1995).
- 22 A. Volbeda, L. Martin, C. Cavazza, M. Matho, B. W. Faber, W. Roseboom, S. P. J. Albracht, E. Garcin, M. Rousset, and J. C. Fontecilla-Camps, J. Biol. Inorg. Chem. 10, 239–249 (2005).
- 23 P. Jayapal, M. Sundararajan, I. H. Hillier, and N. A. Burton, Phys. Chem. Chem. Phys. 8, 4086–4094 (2006).
- 24 G. J. Kubas, Chem. Rev. 107, 4152–4205 (2007).
- 25 J. W. Peters, Science 283, 35 (1999).
- 26 Y. Nicolet, C. Piras, P. Legrand, E. C. Hatchikian, and J. C. Fontecilla-Camps, Structure 7, 13–23 (1999).
- 27 Y. Nicolet, B. J. Lemon, J. C. Fontecilla-Camps, and J. W. Peters, Trends Biochem. Sci. 25, 138–143 (2000).
- 28 A. Silakov, B. Wenk, E. Reijerse, and W. Lubitz, Phys. Chem. Chem. Phys. 11, 6592–6599 (2009).
- 29 J. C. Fontecilla-Camps, A. Volbeda, C. Cavazza, and Y. Nicolet, Chem. Rev. 107, 4273–4303 (2007).
- 30 C. C. Page, C. C. Moser, X. X. Chen, and P. L. Dutton, Nature 402, 47–52 (1999).
- 31 M. Rousset, Y. Montet, B. Guigliarelli, N. Forget, M. Asso, P. Bertrand, J. C. Fontecilla-Camps, and E. C. Hatchikian, Proc. Natl. Acad. Sc.i USA 95, 11625–11630 (1998).
- 32 T. Burgdorf, E. Van Der Linden, M. Bernhard, Q. Y. Yin, J. W. Back, A. F. Hartog, A. O. Muijsers, C. G. de Koster, S. P. J. Albracht, and B. Friedrich, J. Bacteriol. 187, 3122–3132 (2005).
- 33 K. A. Vincent and F. A. Armstrong, Inorg. Chem. 44, 798–809 (2005).
- 34 C. Leger, A. K. Jones, W. Roseboom, S. P. J. Albracht, and F. A. Armstrong, Biochemistry 41, 15736–15746 (2002).
- 35 K. A. Vincent, A. Parkin, O. Lenz, S. P. J. Albracht, J. C. Fontecilla-Camps, R. Cammack, B. Friedrich, and F. A. Armstrong, J. Am. Chem. Soc. 127, 18179–18189 (2005).
- 36 Y. Montet, P. Amara, A. Volbeda, X. Vernede, E. C. Hatchikian, M. J. Field, M. Frey, and J. C. Fontecilla-Camps, Nature Struct. Biol. 4, 523–526 (1997).
- 37 S. Dementin, F. Leroux, L. Cournac, A. L. de Lacey, A. Volbeda, C. Leger, B. Burlat, N. Martinez, S. Champ, L. Martin, O. Sanganas, M. Haumann, V. M. Fernandez, B. Guigliarelli, J. C. Fontecilla-Camps, and M. Rousset, J. Am. Chem. Soc. 131, 10156–10164 (2009).
- 38 F. Leroux, S. Dementin, B. Burlat, L. Cournac, A. Volbeda, S. Champ, L. Martin, B. Guigliarelli, P. Bertrand, J. Fontecilla-Camps, M. Rousset, and C. Leger, Proc. Natl. Acad. Sci. USA. 105, 11188–11193 (2008).
- 39 I. F. Galvan, A. Volbeda, J. C. Fontecilla-Camps, and M. J. Field, Proteins—Struct. Funct. Bioinform. 73, 195–203 (2008).
- 40 S. P. J. Albracht, E. G. Graf, and R. K. Thauer, FEBS Lett. 140, 311–313 (1982).
- 41 J. LeGall, P. O. Ljungdahl, I. Moura, H. D. Peck, A. V. Xavier, J. J. G. Moura, M. Teixeira, B. H. Huynh, and D. V. DerVartanian, Biochem. Biophys. Res. Commun. 106, 610–616 (1982).
- 42
R. Cammack,
W. V. Lalla-Maharajh, and
K. Schneider, in
C. Ho, ed.,
Electron Transport and Oxygen Utilization,
Elsevier-North Holland,
New York,
1982, pp.
411–415.
10.1007/978-1-349-06491-5_58 Google Scholar
- 43 W. Roseboom, A. L. De Lacey, V. M. Fernandez, E. C. Hatchikian, and S. P. J. Albracht, J. Biol. Inorg. Chem. 11, 102–118 (2006).
- 44 K. A. Bagley, E. C. Duin, W. Roseboom, S. P. J. Albracht, and W. H. Woodruff, Biochemistry 34, 5527–5535 (1995).
- 45 A. L. De Lacey, V. M. Fernandez, M. Rousset, and R. Cammack, Chem. Rev. 107, 4304–4330 (2007).
- 46 A. Bock, P. W. King, M. Blokesch, and M. C. Posewitz, in R. K. Poole, ed. Advances in Microbial Physiology, Vol. 51, Elsevier, Amsterdam, 2006, pp. 1–71.
- 47 Z. J. Gu, J. Dong, C. B. Allan, S. B. Choudhury, R. Franco, J. J. G. Moura, J. Legall, A. E. Przybyla, W. Roseboom, S. P. J. Albracht, M. J. Axley, R. A. Scott, and M. J. Maroney, J. Am. Chem. Soc. 118, 11155–11165 (1996).
- 48 R. Cammack, D. S. Patil, E. C. Hatchikian, and V. M. Fernandez, Biochim. Biophys. Acta 912, 98–109 (1987).
- 49 M. Teixeira, I. Moura, A. V. Xavier, J. J. G. Moura, J. Legall, D. V. Dervartanian, H. D. Peck, and B. H. Huynh, J. Biol. Chem. 264, 16435–16450 (1989).
- 50 A. L. deLacey, E. C. Hatchikian, A. Volbeda, M. Frey, J. C. FontecillaCamps, and V. M. Fernandez, J. Am. Chem. Soc. 119, 7181–7189 (1997).
- 51 S. Fox, Y. Wang, A. Silver, and M. Millar, J. Am. Chem. Soc. 112, 3218–3220 (1990).
- 52 V. M. Fernandez, E. C. Hatchikian, and R. Cammack, Biochim. Biophys. Acta 832, 69–79 (1985).
- 53 S. E. Lamle, S. P. J. Albracht, and F. A. Armstrong, J. Am. Chem. Soc. 127, 6595–6604 (2005).
- 54 S. T. Stripp, G. Goldet, C. Brandmayr, O. Sanganas, K. A. Vincent, M. Haumann, F. A. Armstrong, and T. Happe, Proc. Natl. Acad. Sci. USA 106, 17331–17336 (2009).
- 55 A. J. Pierik, W. R. Hagen, J. S. Redeker, R. B. G. Wolbert, M. Boersma, M. F. J. M. Verhagen, H. J. Grande, C. Veeger, P. H. A. Mutsaers, R. H. Sands, and W. R. Dunham, Eur. J. Biochem. 209, 63–72 (1992).
- 56 D. M. Heinekey, J. Organomet. Chem. 694, 2671–2680 (2009).
- 57 C. Tard, and C. J. Pickett, Chem. Rev. 109, 2245–2274 (2009).
- 58 M. Y. Darensbourg, E. J. Lyon, X. Zhao, and I. P. Georgakaki, Proc. Natl. Acad. Sci. USA 100, 3683–3688 (2003).
- 59 P. E. M. Siegbahn, J. W. Tye, and M. B. Hall, Chem. Rev. 107, 4414–4435 (2007).
- 60 J. W. Van Der Zwaan, S. P. J. Albracht, R. D. Fontijn, and E. C. Slater, FEBS Lett. 179, 271–277 (1985).
- 61 S. Foerster, M. Stein, M. Brecht, H. Ogata, Y. Higuchi, and W. Lubitz, J. Am. Chem. Soc. 125, 83–93 (2003).
- 62 M. Medina, E. C. Hatchikian, and R. Cammack, Biochim. Biophys. Acta—Bioenerg. 1275, 227–236 (1996).
- 63 P. Kellers, M. E. Pandelia, L. J. Currell, H. Gorner, and W. Lubitz, Phys. Chem. Chem. Phys. 11, 8680–8683 (2009).
- 64 Y. Berlier, G. D. Fauque, J. LeGall, E. S. Choi, H. D. J. r. Peck, and P. A. Lespinat, Biochem. Biophys. Res. Commun. 146, 147–154 (1987).
- 65 K. A. Vincent, J. A. Cracknell, J. R. Clark, M. Ludwig, O. Lenz, B. Friedrich, and F. A. Armstrong, Chem. Commun. 5033–5035 (2006).
- 66 A. Volbeda, M. H. Charon, C. Piras, E. C. Hatchikian, M. Frey, and J. C. Fontecillacamps, Nature 373, 580–587 (1995).
- 67 M. Saggu, I. Zebger, M. Ludwig, O. Lenz, B. Friedrich, P. Hildebrandt, and F. Lendzian, J. Biol. Chem. 284, 16264–16276 (2009).
- 68 R. Sapra, M. F. J. M. Verhagen, and M. W. W. Adams, J. Bacteriol. 182, 3423–3428 (2000).
- 69 J. W. Peters, W. N. Lanzilotta, B. J. Lemon, and L. C. Seefeldt, Science 282, 1853–1858 (1998).
- 70 J. W. Peters, Curr. Opin. Struct. Biol. 9, 670–676 (1999).
- 71 A. J. Pierik, M. Hulstein, W. R. Hagen, and S. P. J. Albracht, Eur. J. Biochem. 258, 572–578 (1998).
- 72 Y. Nicolet, A. L. de Lacey, X. Vernede, V. M. Fernandez, E. C. Hatchikian, and J. C. Fontecilla-Camps, J. Am. Chem. Soc. 123, 1596–1601 (2001).
- 73 S. Shima, O. Pilak, S. Vogt, M. Schick, M. S. Stagni, W. Meyer-Klaucke, E. Warkentin, R. K. Thauer, and U. Ermler, Science 321, 572–575 (2008).
- 74 S. Shima, and R. K. Thauer, Chem. Rec. 7, 37–46 (2007).
Further Reading
- R. Cammack, M. Frey, and R. Robson Eds (2001). Hydrogen as a fuel: learning from Nature (3).
Chemical Reviews Thematic Issue on Hydrogen (4).