Hydrogen Generation—Homogeneous
Laurenczy Gábor
EPFL, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
Search for more papers by this authorLaurenczy Gábor
EPFL, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
Search for more papers by this authorAbstract
Today industrial hydrogen production is dominated by processes based on heterogeneous catalysts, using fossil fuels as H2 sources. However, homogeneous catalysts are becoming more popular in the generation of H2 for hydrogen storage, delivery, and in mobile/on-site or small volume hydrogen applications. Generally for these applications, the H2 gas produced should be pure (eg, no CO contamination), the hydrogen generation should take place under mild conditions, and the H2 supply unit should be small. Most notably, research into homogeneous catalysis has focused on the chemical storage/delivery systems, based on sodium borohydride, ammonia-borane, hydrocarbons/alcohols, and formic acid. In the HCOOHCO2, cycle the greenhouse carbon dioxide gas is used as the hydrogen vector.
The use of solar energy in homogeneous catalytic H2 gas production from water and from other hydrogen sources is the subject of extensive studies. A direct photochemical process converts solar energy into hydrogen much more efficiently than the two-step electricity–water electrolysis/H2 gas route.
Bibliography
- 1 S. I. Dutch, Encyclopedia of Global Warming, 2010, Pasadena, CA, Salem Press.
- 2 N. Goldstein, Global Warming, 2009, New York, Facts on File.
- 3 B. Lovell, Challenged by Carbon, 2010, Cambridge, UK, Cambridge University Press.
- 4 D. Archer, The Long Thaw: How Humans Are Changing the Next 100,000 Years of Earth's Climate, 2009, Princeton, NJ, Princeton University Press.
- 5 M. Grätzel, Nature 414, 338 (2001).
- 6 L. Schlapbach and A. Züttel, Nature, 414, 353 (2001).
- 7 V. M. Schmidt, P. Bröcherhoff, B. Höhlein, R. Menzer, and U. Stimming, J. Power Sources 49, 299 (1994).
- 8 A. Ghenciu, Curr. Opin. Solid State Mater. Sci. 6, 389 (2002).
- 9 J. Ladebeck and J. Wagner, Handbook of Fuel Cells, W. Vielstich, A. Lamm, H. Gasteiger, Wiley, Chichester, UK, 2003, Vol. 3, p. 190.
- 10 S. Enthaler, ChemSusChem 1, 801–804 (2008).
- 11 F. Joo, ChemSusChem 1, 805–808 (2008).
- 12 B. H. Liu and Z. P. Li, J. Power Sources 187, 527–534 (2009).
- 13 H. I. Schlesinger, H. C. Brown, A. B. Finholt, J. R. Gilbreath, H. R. Hockstra, and E. K. Hydo, J. Am. Chem. Soc. 75, 215–219 (1953).
- 14 R. B. Pecsok, J. Am. Chem. Soc. 75, 2862–2864 (1953).
- 15 E. Keçeli and S. Özkar, J. Mol. Catal. A Chem. 286, 87–91 (2008).
- 16 http://www.hydrogen.energy.gov/; US Department of Energy, Hydrogen Program; 2008
- 17 U. B. Demirci and P. Miele, Energ. Env. Sci. 2, 627–637 (2009).
- 18 N. Mohajeri, A. T-Raissi, and O. Adebiyi, J. Power Sources 167, 482–485 (2007).
- 19 M. C. Denney, V. Pons, T. J. Hebden, D. M. Heinekey, and K. I. Goldberg, J. Am. Chem. Soc. 128, 12048–12049 (2006).
- 20 F. H. Stephens, V. Pons, and R. T. Baker, Dalton Trans. 2613–2626 (2007).
- 21 U. B. Demirci and P. Miele, J. Power Sources 13, 4030–4035 (2010).
- 22 V. Pons, R. T. Baker, N. K. Szymczak, D. J. Heldebrant, J. C. Linehan, M. H. Matus, D. J. Grant, and D. A. Dixon, Chem. Comm. 6597–6599 (2008).
- 23 M. Käss, A. Friedrich, M. Drees, and S. Schneider, Angew. Chem. Int. Ed. 48, 905–907 (2009).
- 24 A. Friedrich, M. Drees, and S. Schneider, Chem. Eur. J. 15, 10339–10342 (2009).
- 25 C. W. Hamilton, R. T. Baker, A. Staubitz, and I. Manners, Chem. Soc. Rev. 38, 279–293 (2009).
- 26 M. J. Burk and R. H. Crabtree, J. Am. Chem. Soc. 109, 8025–8032 (1987).
- 27 T. Fujii and Y. Saito, J. Chem. Soc., Chem. Commun. 757–758 (1990).
- 28 N.-X. Wang and J.-P. Zhang, J. Phys. Chem. 110, 6276–6278 (2006).
- 29 D. Morton, D. J. Cole-Hamilton, I. D. Utuk, M. Paneque-Sosa, and M. Lopez-Poveda, J. Chem. Soc., Dalton Trans. 489–495 (1989).
- 30 H. Junge, B. Loges, and M. Beller, Chem. Commun. 522–524 (2007).
- 31 A. Fujii, S. Hashiguchi, N. Uematsu, T. Ikariya, and R. Noyori, J. Am. Chem. Soc. 118, 2521–22 (1996).
- 32 Y. Watanabe, T. Ohta, and Y. Tsuji. Bull. Chem. Soc. Jpn. 55, 2441 (1982).
- 33 T. Yoshida, Y. Ueda, and S. Otsuka, J. Am. Chem. Soc. 100, 3941 (1978).
- 34 R. M. Laine, R. G. Rinker, and P. C. Ford, J. Am. Chem. Soc. 99, 252 (1977).
- 35 R. S. Paonessa and W. C. Trogler, J. Am. Chem. Soc. 104, 3529 (1982).
- 36 B. T. Khai and A. Arcelli, J. Organometal. Chem. 309, C63 (1986).
- 37 J.-C. Tsai and K. M. Nicholas, J. Am. Chem. Soc. 114, 5117 (1992).
- 38 Y. Gao, M. C. Jennings, and R. J. Puddephatt, Organometallics 20, 1882 (2001).
- 39 M. L. Man, Z. Zhou, S. M. Ng, and C. P. Lau, Dalton Trans. 19, 3727 (2003).
- 40 J. H. Shin, D. G. Churchill, and G. Parkin, J. Organometal. Chem. 642, 9 (2002).
- 41 A. Bényei and F. Joó, J. Mol. Catal. 58, 151 (1990).
- 42 Jószai, F. Joó, J. Mol. Catal. A: Chem. 224, 87 (2004).
- 43 S. Fukuzumi, T. Kobayashi, and T. Suenobu, ChemSusChem 1, 827–834 (2008).
- 44 B. Loges, A. Boddien, H. Junge, and M. Beller, Angew. Chem., Int. Ed. 47, 3962–3965 (2008).
- 45 A. Boddien, B. Loges, H. Junge, and M. Beller, ChemSusChem 1, 751–758 (2008).
- 46 H. Junge, A. Boddien, F. Capitta, B. Loges, J. R. Noyes, S. Gladiali, and M. Beller, Tetrahedron Lett. 50, 1603–1606 (2009).
- 47 B. Loges, A. Boddien, H. Junge, J. R. Noyes, W. Baumann, and M. Beller, Chem. Commun. 4185–4187 (2009).
- 48 D. J. Morris, G. J. Clarkson, and M. Wills, Organometallics 28, 4133–4140 (2009).
- 49Patent WO 2008047312, A1 20080424, (2006) G. Laurenczy, C. Fellay, and P. J. Dyson.
- 50 C. Fellay, P. J. Dyson, and G. Laurenczy, Angew. Chem., Int. Ed. 47, 3966 (2008).
- 51 C. Fellay, N. Yan, P. J. Dyson, and G. Laurenczy, Chem. Eur. J. 15, 3752 (2009).
- 52 H. Hukkanen and T. T. Pakkanen, J. Mol. Catal. 37, 297–307 (1986).
- 53 G. P. Rosini, S. Soubra, M. Vixamar, S. Wang, and A. S. Goldman, J. Organometal. Chem. 554, 41–47 (1998).
- 54 D. Zhang, L.-Z. Wu, L. Zhou, X. Han, Q.-Z. Yang, L.-P. Zhang, and C.-H. Tung, J. Am. Chem. Soc. 126, 3440–3441 (2004).
- 55 M. Grätzel, Acc. Chem. Res. 14, 376–384 (1981).
- 56 U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, and M. Grätzel, Nature 395, 583–585 (1998).
- 57 J. Hawecker, J.-M. Lehn, and R. Ziessel, Nouv. J. Chim. 7, 271–277 (1983).
- 58 M. Elvington, J. Brown, S. M. Arachchige, and K. J. Brewer, J. Am. Chem. Soc. 129, 10644–10645 (2007).
- 59 J. I. Goldsmith, W. R. Hudson, M. S. Lowry, T. H. Anderson, and S. Bernhard, J. Am. Chem. Soc. 127, 7502–7510 (2005).
- 60 E. D. Cline, S. E. Adamson, and S. Bernhard, Inorg. Chem. 47, 10378–10388 (2008).
- 61 K. Sakai and H. Ozawa, Coord. Chem. Rev. 251, 2753–2766 (2007), and references therein.
- 62 A. F. Heyduk and D. G. Nocera, Science 293, 1639–1641 (2001).
- 63 A. J. Esswein, A. S. Veige, and D. G. Nocera, J. Am. Chem. Soc. 127, 16641–16651 (2005).
- 64 P. Du, J. Schneider, G. Luo, W. W. Brennessel, and R. Eisenberg, Inorg. Chem. 48, 4952–4962 (2009).
General Reference
- L. O. Williams, An End to Global Warming, Pergamon Press, Oxford, UK, 2002.
- B. Sorensen, Hydrogen and Fuel Cells, Emerging technologies and applications, Elsevier, Amsterdam, The Netherlands, 2005.
- B. Sorensen, Renewable Energy, , Elsevier Academic Press, Amsterdam, The Netherlands, 2004.
- D. A. J. Rand and R. M. Dell, Hydrogen Energy, Challenges and Prospects, RSC Publishing, Cambridge, UK, 2008.
- A. Züttel, A. Borgschulte, and L. Schlapbach, Hydrogen as a Future Energy Carrier, Wiley-VCH, Weinheim, Germany, 2008.
- P. Makowski, A. Thomas, P. Kuhn, and F. Goettmann, Energy Environ. Sci. 2, 480–490 (2009).
- P. G. Jessop, F. Joó, C.-C. Tai, Coord. Chem. Rev. 248, 2425–2442 (2004).
-
M. Aresta,
Carbon Dioxide as Chemical Feedstock,
Wiley-VCH Verlag GmbH & Co.,
Weinheim, Germany,
2010.
10.1002/9783527629916 Google Scholar