Canonical Correlation
Shubhabrata Das
Indian Institute Of Management Bangalore, Bangalore, India
Search for more papers by this authorPranab K. Sen
University of North Carolina, Chapel Hill, NC, USA
Search for more papers by this authorShubhabrata Das
Indian Institute Of Management Bangalore, Bangalore, India
Search for more papers by this authorPranab K. Sen
University of North Carolina, Chapel Hill, NC, USA
Search for more papers by this authorAbstract
The article starts with the genesis of canonical correlation from the product moment correlation and defines canonical correlation from the various angles including algebraic and geometric approaches. The different issues related to interpreting canonical correlation analysis, for example, canonical coefficients, canonical loadings, and redundancy coefficients are highlighted. Relationship with other multivariate methods like principal component analysis, factor analysis, and MANOVA have also been outlined. Then the article dwells on the sampling distribution of the sample canonical correlation and the related inference problems, while touching upon the relevant resampling methods in this context. Various generalizations and extensions are taken up next, with emphasis on the treatment of dependence between more than two sets of variables as well as constrained dependence under problem specific restrictions on the coefficients. The article concludes with a narration of issues related to applications, specially in the field of Biostatistics and a reference to key articles in this domain.
References
- 1 Alterman, A. I., Kushner, H. & Holahan, J. M. (1990). Cognitive functioning and treatment outcome in alcoholics, Journal of Nervous Diseases 178, 494–499.
- 2 Anderson, T. W. (1984). An Introduction to Multivariate Statistical Analysis, 2nd Ed. Wiley, New York.
- 3 Armitage, P., Hoffmann, R., Fitch, T., Morel, C. & Bonato, R. (1995). A comparison of period amplitude and power spectral analysis of sleep EEG in normal adults and depressed outpatients, Psychiatric Research 56, 245–256.
- 4 Azais-Braesco, V., Moriniere, C., Guesne, B., Partier, A., Bellenand, P., Bagnelin, D., Grolier, P. & Alix, E. (1995). Vitamin A status in the institutionalized elderly. Critical analysis of four evaluation criteria: Vitamin A intake, Serum retinol, Relative dose-response test (RDR) and Impression cytology with transfer (ICT), International Journal for Vitamin and Nutrition Research 65, 151–161.
- 5 Baksalary, J. K., Puntanen, S. & Yanai, H. (1992). Canonical correlations associated with symmetric reflexive generalized inverses of the dispersion matrix, Linear Algebra and Applications 176, 61–74.
- 6 Bérubé, J., Hartwig, R. E. & Styan, G. P. H. (1991). On canonical correlations and the degree of nonorthogonality in the three-way layout, in Statistical Sciences and Data Analysis, Proceedings of the Third Pacific Area Statistical Conference, K. Matusita, ed. VSP, Netherlands, pp. 253–263.
- 7 Braun, C. M. J. & Richer, M. (1993). A comparison of functional indexes, derived from screening tests, of chronic alcoholic neurotoxicity in the cerebral cortex, retina and peripheral nervous system, Journal of Studies of Alcoholism 54, 11–16.
- 8 Brillinger, D. R. (1974). Time Series: Data Analysis and Theory. Holt, Rinehart & Winston, New York.
- 9 Clarke, G., Hops, H., Lewinsohn, P. M., Andrews, J., Seeley, J. R. & Williams, J. (1992). Cognitive-behavioral group treatment of adolescent depression: prediction of outcome, Behavior Therapy 23, 341–354.
- 10 Constantine, A. G. (1963). Some non-central distribution problems in multivariate analysis, Annals of Mathematical Statistics 34, 1270–1285.
- 11 Cserhatu, T. & Forgacs, E. (1995). Use of canonical correlation analysis for the evaluation of chromatographic retention data, Chemometric Intelligence Laboratory Systems 28, 305–313.
- 12 Culasso, F., Lenzi, A., Gandini, L., Lombardo, F. & Dondero, F. (1993). Statistical andrology: standard semen analysis and computer-assisted sperm motility analysis, Archives of Andrology 30, 105–110.
- 13 Das, S. & Sen, P. K. (1994). Restricted canonical correlations, Linear Algebra and Applications 210, 29–47.
- 14 Das, S. & Sen, P. K. (1995). Simultaneous spike-trains and stochastic dependence, Sankhyā, Series B 57, 32–47.
- 15 Das, S. & Sen, P. K. (1996). Asymptotic distributions of restricted canonical correlations and relevant resampling methods, Journal of Multivariate Analysis 56, 1–19.
- 16 Dempster, A. P. (1969). Continuous Multivariate Analysis. Addison-Wesley, Boston.
- 17 DeSarbo, W. S., Hausman, R. E., Lin, S. & Thompson, W. (1982). Constrained canonical correlation, Psychometrika 47, 489–516.
- 18 Dickson, K. L., Waller, W. T., Kennedy, J. H. & Ammann, L. P. (1992). Assessing the relationship between ambient toxicity and instream biological response, Environmental Toxicology and Chemometry 11, 1307–1322.
- 19 Dillion, W. R. & Goldstein, M. (1984). Multivariate Analysis: Methods and Applications. Wiley, New York.
- 20 Dishman, R. K., Darrcott, C. R. & Lambert, L. T. (1992). Failure to generalize determinants of self-reported physical activity to a motor sensor, Medicine and Science in Sports and Exercise 24, 904–910.
- 21 Eaton, M. L. (1983). Multivariate Statistics: A Vector Space Approach. Wiley, New York.
- 22 Fogle, L. L. & Glaros, A. G. (1995). Contributions of facial morphology, age, and gender to EMG activity under biting and resting conditions: a canonical analysis, Journal of Dental Research 74, 1496–1500.
- 23 Friman, O., Borga, P., Lundberg, P. & Knutsson, H. (2003). Adaptive analysis of fMRI data, NeuroImage 19(3), 837–845.
- 24 Gambus, P. L., Gregg, K. M. & Shafer, S. L. (1995). Validation of alfentanil canonical univariate parameter as a measure of opioid effect on the electroencephalogram, Anesthesia 83, 747–756.
- 25 Golub, G. H. & Zha, H. (1994). Perturbation analysis of the canonical correlations of matrix pairs, Linear Algebra and Applications 210, 3–28.
- 26 Gregg, K. M., Varvel, J. R. & Shafer, S. L. (1992). Application of semilinear canonical correlation to the measurement of opioid drug effect, Journal of Pharmacology and Biopharmacology 20, 611–635.
- 27
Hastie, T.,
Tibshirani, R. &
Friedman, J. H.
(2001).
The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer Series in Statistics.
10.1007/978-0-387-21606-5 Google Scholar
- 28 Horst, P. (1961). Generalized canonical correlations and their applications to experimental data, Journal of Clinical Psychology 14, 331–347.
- 29 Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components, Journal of Educational Psychology 24, 417–441, 498–520.
- 30 Hotelling, H. (1935). The most predictable criterion, Journal of Educational Psychology 26, 139–142.
- 31 Hotelling, H. (1936). Relation between two sets of variates, Biometrika 28, 321–377.
- 32
Hsu, P. L.
(1941).
On the limiting distribution of canonical correlations,
Biometrika
32,
38–45.
10.1093/biomet/32.1.38 Google Scholar
- 33 Jewell, N. P. & Bloomfield, P. (1983). Canonical correlations of past and future for time series: definitions and theory, Annals of Statistics 11, 837–847.
- 34 Kettenring, J. R. (1971). Canonical analysis of several sets of variables, Biometrika 58, 433–450.
- 35 Kettenring, J. R. (1983). Canonical analysis, in Encyclopedia of Statistical Sciences, Vol. 1, S. Kotz & N. L. Johnson eds. Wiley, New York, pp. 354–365.
- 36 Khatri, C. G. (1976). A note on multiple and canonical correlation for a singular covariance matrix, Psychometrika 41, 465–470.
- 37 Kshirsagar, A. (1972). Multivariate Analysis. Marcel Dekker, New York.
- 38 Lehmann, D., Grass, P. & Meier, B. (1995). Spontaneous conscious covert cognition states and brain electric spectral states in canonical correlation, International Journal of Psychophysics 19, 41–52.
- 39 Mardia, K. V., Kent, J. T. & Bibby, J. M. (1979). Multivariate Analysis. Academic Press, New York.
- 40 Meagher, T. R. (1992). The quantitative genetics of sexual dimorphism in Silene latifolia, Evolution 46, 445–457.
- 41 Moeur, M. & Stage, A. R. (1995). Most similar neighbor: an improved sampling inference procedure for natural resource planning, Forest Science 41, 337–359.
- 42 Morrison, D. F. (1967). Multivariate Statistical Methods. McGraw-Hill, New York.
- 43 Mueller, W. H., Marbella, A., Harrist, R. B., Kaplowitz, H. J., Grubaum, J. A. & Labarthe, D. R. (1990). Body circumferences as measures of body fat distribution in 10 to 14-year-old schoolchildren, American Journal of Human Biology 2, 117–124.
- 44 Muirhead, R. J. & Waternaux, C. M. (1980). Asymptotic distributions in canonical correlation analysis and other multivariate procedures for non-normal populations, Biometrika 67, 31–43.
- 45 Nilsson, A. N. & Svensson, B. W. (1995). Assemblages of dytiscid predators and culicid prey in relation to environmental factors in natural and clear-cut boreal swamp forest pools, Hydrobiologia 308, 183–196.
- 46 Pearson, K. (1901). On lines and planes of closest fit to systems of points in space, Philosophical Magazine 2(sixth series), 559–572.
- 47 Puri, M. L. & Sen, P. K. (1971). Nonparametric Methods in Multivariate Analysis. Wiley, New York.
- 48 Rao, B. R. (1969). Partial canonical correlations, Trabajos Estadistica y Investigationes Operationes 20, 211–219.
- 49
Rao, C. R.
(1973).
Linear Statistical Inference and its Application,
2nd Ed.
Wiley,
New York.
10.1002/9780470316436 Google Scholar
- 50 Rao, C. R. (1981). A lemma on g-inverse of a matrix and computation of correlation coefficients in the singular case, Communications in Statistics—Theory and Methods 10, 1–10.
- 51 Roy, S. N. (1957). Some Aspects of Multivariate Analysis. Wiley, New York.
- 52 Saama, P. M., Mao, I. L. & Holter, J. B. (1995). Nutrition, feeding, and calves, Journal of Dairy Science 78, 1945–1953.
- 53 Sen, P. K. (1993). Statistical perspectives in clinical and health sciences: the broad way to modern applied statistics, Journal of Applied Statistical Science 1, 1–50.
- 54 Sengupta, A. (1983). Generalized canonical variables, in Encyclopedia of Statistical Sciences, Vol. 3, S. Kotz & N. L. Johnson, eds. Wiley, New York, pp. 326–330.
- 55 Sengupta, A. (1991). Generalized correlations in the singular case, Journal of Statistical Planning and Inference 28, 241–245.
- 56 Smith, L. W., Patterson, T. L. & Grant, I. (1990). Avoidant coping predicts psychological disturbance in the elderly, Journal of Nervous Diseases 178, 525–530.
- 57 Stewart, D. K. & Love, W. A. (1968). A general canonical correlation index, Psychological Bulletin 70, 160–163.
- 58 Styan, G. P. H. (1986). Canonical correlations in three way layout, in Pacific Statistical Congress, I. S. Francis, B. F. J. Manly & F. C. Lam, eds. North-Holland, Amsterdam, pp. 433–438.
- 59 Takeuchi, K., Yanai, H. & Mukherjee, B. N. (1982). The Foundations of Multivariate Analysis. Halsted Press, New York.
- 60 Tielemans, E., Heederik, D. & van Pelt, W. (1994). Changes in ventilatory function in grain processing and animal feed workers in relation to exposure to organic dust, Scandinavian Journal of Work and Environmental Health 20, 435–443.
- 61 Timm, N. H. & Carlson, J. E. (1976). Part and bipartial canonical correlation analysis, Psychometrika 41, 159–176.
- 62 Vicario, A., Mazon, L. I., Agurre, A., Estomba, A. & Lostao, C. (1989). Relationships between environmental factors and morph polymorphism in Cepaea nemoralis, using canonical correlation analysis, Genome 32, 908–912.
- 63 Wade, J. B., Dougherty, L. M., Hart, R. P., Rafii, A. & Price, D. D. (1992). A canonical correlation analysis of the influence of neuroticism and extraversion on chronic pain, suffering, and pain behavior, Pain 51, 67–73.
- 64 Whaley, M. H., Kaminsky, L. A., Dwyer, G. B., Getchell, L. H. & Nortin, J. A. (1992). Predictors of over and underachievement of age-predicted maximal heart rate, Medicine and Science in Sports and Exercise 24, 1173–1179.
- 65 Williams, J. G. & Kleinfekter, K. J. (1989). Perceived problem-solving skills and drinking patterns among college students, Psychological Reports 65, 1235–1244.
- 66 Yanai, H. & Takane, Y. (1992). Canonical correlation analysis in linear constraints, Linear Algebra and Applications 176, 75–89.