Bayesian Survival Analysis
Joseph G. Ibrahim
University of North Carolina, Chapel Hill, USA
Search for more papers by this authorDebajyoti Sinha
University of South Carolina, Columbia, SC, USA
Search for more papers by this authorJoseph G. Ibrahim
University of North Carolina, Chapel Hill, USA
Search for more papers by this authorDebajyoti Sinha
University of South Carolina, Columbia, SC, USA
Search for more papers by this authorAbstract
Great strides in the analysis of survival data using Bayesian methods have been made in the past ten years due to advances in Bayesian computation and the feasibility of such methods. In this chapter, we review Bayesian advances in survival analysis and discuss the various semiparametric modeling techniques that are now commonly used. We review parametric and semiparametric approaches to Bayesian survival analysis, with a focus on proportional hazards models. Reference to other types of models are also given.
References
- 1 Achcar, J. A., Bolfarine, H. & Pericchi, L. R. (1987) Transformation of survival data to an extreme value distribution, The Statistician 36, 229–234.
- 2 Achcar, J. A., Brookmeyer, R. & Hunter, W. G. (1985) An application of Bayesian analysis to medical follow-up data, Statistics in Medicine 4, 509–520.
- 3 Aitchison, J. & Dunsmore, I. R. (1975) Statistical Prediction Analysis. Cambridge University Press, New York.
- 4 Antoniak, C. (1974) Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems, The Annals of Statistics 2, 1152–1174.
- 5 Arjas, E. & Gasbarra, D. (1994) Nonparametric Bayesian inference from right censored survival data, using the Gibbs sampler, Statistica Sinica 4, 505–524.
- 6 Arjas, E. & Gasbarra, D. (1997) On prequential model assessment in life history analysis, Biometrika 84, 505–522.
- 7 Aslanidou, H., Dey, D. K. & Sinha, D. (1998) Bayesian analysis of multivariate survival data using Monte Carlo methods, Canadian Journal of Statistics 26, 33–48.
- 8 Berger, J. O. & Sun, D. (1993) Bayesian analysis for the poly-Weibull distribution, Journal of the American Statistical Association 88, 1412–1418.
- 9 Berzuini, C. & Clayton, D. G. (1994) Bayesian analysis of survival on multiple time scales, Statistics in Medicine 13, 823–838.
- 10 Brown, E. R. & Ibrahim, J. G. (2003a) A Bayesian semiparametric joint hierarchical model for longitudinal and survival data, Biometrics 59, 221–228.
- 11 Brown, E. R. & Ibrahim, J. G. (2003b) Bayesian approaches to joint cure rate and longitudinal models with applications to cancer vaccine trials, Biometrics 59, 686–693.
- 12 Brown, E. R., Ibrahim, J. G. & DeGruttola, V. (2005) A flexible joint Bayesian model of multiple longitudinal biomarkers and survival, Biometrics 61.
- 13 Burridge, J. (1981) Empirical Bayes analysis for survival time data, Journal of the Royal Statistical Society, Series B 43, 65–75.
- 14 Bush, C. A. & MacEachern, S. N. (1996) A semiparametric Bayesian model for randomized block designs, Biometrika 33, 275–285.
- 15 Carlin, B. P. & Banerjee, S. (2003) Hierarchical multivariate CAR models for spatio-temporally correlated survival data, (with discussion), in Bayesian Statistics 7, J. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith & M. West, eds. Clarendon Press, Oxford, pp. 45–63.
- 16 Carlin, B. P. & Hodges, J. S. (1999) Hierarchical proportional hazards regression models for highly stratified data, Biometrics 55, 1162–1170.
- 17 Carlin, B. P. & Louis, T. A. (1996) Bayes and Empirical Bayes Methods for Data Analysis. Chapman & Hall, London.
- 18 Chen, M. -H., Dey, D. K. & Sinha, D. (2000) Bayesian analysis of multivariate mortality data with large families, Applied Statistics 49, 129–144.
- 19 Chen, W. C., Hill, B. M., Greenhouse, J. B. & Fayos, J. V. (1985) Bayesian analysis of survival curves for cancer patients following treatment, in Bayesian Statistics 2 J. O. Berger, J. Bernardo & A. F. M. Smith, eds. North-Holland, Amsterdam, pp. 299–328.
- 20
Chen, M.-H.,
Shao, Q.-M. &
Ibrahim, J. G.
(2000)
Monte Carlo Methods in Bayesian Computation.
Springer-Verlag,
New York.
10.1007/978-1-4612-1276-8 Google Scholar
- 21 Chen, M. H., Ibrahim, J. G. & Lipsitz, S. R. (2002) Bayesian methods for missing covariates in cure rate models, Lifetime Data Analysis 8, 117–146.
- 22 Chen, M. -H., Ibrahim, J. G. & Shao, Q. M. (2004) On propriety of the posterior distribution and existence of the maximum likelihood estimator for regression models with covariates missing at random, Journal of the American Statistical Association 99, 421–438.
- 23 Christensen, R. & Johnson, W. (1988) Modelling accelerated failure time with a Dirichlet process, Biometrika 75, 693–704.
- 24 Clayton, D. G. (1991) A Monte Carlo method for Bayesian inference in frailty models, Biometrics 47, 467–485.
- 25 Congdon, P. (2001) Bayesian Statistical Modelling. John Wiley and Sons, New York.
- 26
Congdon, P.
(2003)
Applied Bayesian Modelling.
John Wiley and Sons,
New York.
10.1002/0470867159 Google Scholar
- 27 Cox, D. R. (1972) Regression models and life tables, Journal of the Royal Statistical Society, Series B 34, 187–220.
- 28 Cox, D. R. (1975) Partial likelihood, Biometrika 62, 269–276.
- 29 Damien, P., Laud, P. W. & Smith, A. F. M. (1996) Implementation of Bayesian non-parametric inference based on beta processes, Scandinavian Journal of Statistics 23, 27–36.
- 30 Dellaportas, P. & Smith, A. F. M. (1993) Bayesian inference for generalized linear and proportional hazards models via Gibbs sampling, Applied Statistics 42, 443–459.
- 31 Doss, H. (1994) Bayesian nonparametric estimation for incomplete data via successive substitution sampling, The Annals of Statistics 22, 1763–1786.
- 32 Doss, H. & Huffer, F. (1998) Monte Carlo Methods for Bayesian Analysis of Survival Data Using Mixtures of Dirichlet Priors, Technical Report, Department of Statistics, Ohio State University.
- 33
Doss, H. &
Narasimhan, B.
(1998)
Dynamic display of changing posterior in Bayesian survival analysis, in
Practical Nonparametric and Semiparametric Bayesian Statistics,
D. Dey,
P. Müller &
D. Sinha. eds.
Springer-Verlag,
New York,
pp. 63–84.
10.1007/978-1-4612-1732-9_4 Google Scholar
- 34 Dunson, D. B. (2001) Bayesian modeling of the level and duration of fertility in the menstrual cycle, Biometrics 57, 1067–1073.
- 35 Dunson, D. B., Chulada, P. & Arbes, S. J. (2003) Bayesian modeling of time-varying and waning exposure effects, Biometrics 59, 83–91.
- 36 Dunson, D. B. & Dinse, G. E. (2000) Distinguishing effects on tumor multiplicity and growth rate in chemoprevention experiments, Biometrics 56, 1068–1075.
- 37 Dunson, D. B. & Dinse, G. E. (2001) Bayesian incidence analysis of animal tumorigenicity data, Applied Statistics 50, 125–141.
- 38 Dykstra, R. L. & Laud, P. W. (1981) A Bayesian nonparametric approach to reliability, The Annals of Statistics 9, 356–367.
- 39 Escobar, M. D. (1994) Estimating normal means with a Dirichlet process prior, Journal of the American Statistical Association 89, 268–277.
- 40 Escobar, M. D. & West, M. (1995) Bayesian density estimation and inference using mixtures, Journal of the American Statistical Association 90, 578–588.
- 41
Faucett, C. J. &
Thomas, D. C.
(1996)
Simultaneously modelling censored survival data and repeatedly measured covariates: A Gibbs sampling approach,
Statistics in Medicine
15,
1663–1685.
10.1002/(SICI)1097-0258(19960815)15:15<1663::AID-SIM294>3.0.CO;2-1 CAS PubMed Web of Science® Google Scholar
- 42 Feigl, P. & Zelen, M. (1965) Estimation of exponential survival probabilities with concomitant information, Biometrics 21, 826–838.
- 43 Ferguson, T. S. (1973) A Bayesian analysis of some non-parametric problems, The Annals of Statistics 1, 209–230.
- 44 Ferguson, T. S. (1974) Prior distributions on spaces of probability measures, The Annals of Statistics 2, 615–629.
- 45 Ferguson, T. S. & Phadia, E. G. (1979) Bayesian nonparametric estimation based on censored data, The Annals of Statistics 7, 163–186.
- 46 Florens, J. P., Mouchart, M. & Rolin, J. M. (1999) Semi-and non-parametric Bayesian analysis of duration models with Dirichlet priors: A survey, International Statistical Review 67, 187–210.
- 47 French, J. L. & Ibrahim, J. G. (2002) Bayesian methods for a three-state model for rodent carcinogenicity studies, Biometrics 58, 906–916.
- 48 Gamerman, D. (1991) Dynamic Bayesian models for survival data, Applied Statistics 40, 63–79.
- 49 Gelfand, A. E. & Kuo, L. (1991) Nonparametric Bayesian bioassay including ordered polytomous response, Biometrika 78, 657–666.
- 50 Gelfand, A. E. & Mallick, B. K. (1995) Bayesian analysis of proportional hazards models built from monotone functions, Biometrics 51, 843–852.
- 51 Gray, R. J. (1994) A Bayesian analysis of institutional effects in a multicenter cancer clinical trial, Biometrics 50, 244–253.
- 52 Grieve, A. P. (1987) Applications of Bayesian software: two examples, The Statistician 36, 283–288.
- 53 Gustafson, P. (1997) Large hierarchical Bayesian analysis of multivariate survival data, Biometrics 53, 230–242.
- 54 Gustafson, P. (1998) Flexible Bayesian modelling for survival data, Lifetime Data Analysis 4, 281–299.
- 55 Hjort, N. L. (1990) Nonparametric Bayes estimators based on beta processes in models of life history data, The Annals of Statistics 18, 1259–1294.
- 56 Ibrahim, J. G., Chen, M.-H. & MacEachern, S. N. (1999) Bayesian variable selection for proportional hazards models, The Canadian Journal of Statistics 27, 701–717.
- 57
Ibrahim, J. G.,
Chen, M.-H. &
Sinha, D.
(2001)
Bayesian Survival Analysis.
Springer-Verlag,
New York.
10.1007/978-1-4757-3447-8 Google Scholar
- 58 Ibrahim, J. G., Chen, M.-H. & Sinha, D. (2004) Bayesian methods for joint modeling of longitudinal and survival data with applications to cancer vaccine studies, Statistica Sinica 14, 863–883.
- 59
Johnson, W. &
Christensen, R.
(1989)
Nonparametric Bayesian analysis of the accelerated failure time model,
Statistics and Probability Letters
7,
179–184.
10.1016/0167-7152(89)90014-X Google Scholar
- 60
Kalbfleisch, J. D.
(1978)
Nonparametric Bayesian analysis of survival time data,
Journal of the Royal Statistical Society, Series B
40,
214–221.
10.1111/j.2517-6161.1978.tb01666.x Google Scholar
- 61 Kaplan, E. L. & Meier, P. (1958) Nonparametric estimation from incomplete observations, Journal of the American Statistical Association 53, 457–481.
- 62 Kim, S. W. & Ibrahim, J. G. (2000) On Bayesian inference for parametric proportional hazards models using noninformative priors, Lifetime Data Analysis 6, 331–341.
- 63 Kleinman, K. P. & Ibrahim, J. G. (1998a) A semiparametric Bayesian approach to the random effects model, Biometrics 54, 921–938.
- 64
Kleinman, K. P. &
Ibrahim, J. G.
(1998b)
A semi-parametric Bayesian approach to generalized linear mixed models,
Statistics in Medicine
17,
2579–2596.
10.1002/(SICI)1097-0258(19981130)17:22<2579::AID-SIM948>3.0.CO;2-P CAS PubMed Web of Science® Google Scholar
- 65 Kuo, L. & Mallick, B. K. (1997) Bayesian semiparametric inference for the accelerated failure-time model, The Canadian Journal of Statistics 25, 457–472.
- 66 Kuo, L. & Smith, A. F. M. (1992) Bayesian computations in survival models via the Gibbs sampler, in Survival Analysis: State of the Art, J. P. Klein & P. K. Goel, eds. Kluwer Academic, Boston, pp. 11–24.
- 67
Laud, P. W.,
Damien, P. &
Smith, A. F. M.
(1998)
Bayesian nonparametric and covariate analysis of failure time data, in
Practical Nonparametric and Semiparametric Bayesian Statistics,
D. Dey,
P. Muller &
D. Sinha, eds.
Springer-Verlag,
New York,
pp. 213–225.
10.1007/978-1-4612-1732-9_11 Google Scholar
- 68 Laud, P. W., Smith, A. F. M. & Damien, P. (1996) Monte Carlo methods for approximating a posterior hazard rate process, Statistics and Computing 6, 77–83.
- 69 Law, N. J., Taylor, J. M. G. & Sandler, H. (2002) The joint modeling of a longitudinal disease progression marker and the failure time process in the presence of cure, Biostatistics 3, 547–563.
- 70
Leonard, T.
(1978)
Density estimation, stochastic processes and prior information,
Journal of the Royal Statistical Society, Series B
40,
113–146.
10.1111/j.2517-6161.1978.tb01655.x Google Scholar
- 71 MacEachern, S. N. (1994) Estimating normal means with a conjugate style Dirichlet process prior, Communications in Statistics – Theory and Methods 23, 727–741.
- 72 Mallick, B. K., Denison, D. G. T. & Smith, A. F. M. (1999) Bayesian survival analysis using a MARS model, Biometrics 55, 1071–1077.
- 73 Newton, M. A., Czado, C. & Chappell, R. (1996) Bayesian inference for semiparametric binary regression, Journal of the American Statistical Association 91, 142–153.
- 74 Nieto-Barajas, L. E. & Walker, S. G. (2000) Markov Beta and Gamma Processes for Modeling Hazard Rates, Technical Report, Imperial College, London.
- 75 Qiou, Z., Ravishanker, N. & Dey, D. K. (1999) Multivariate survival analysis with positive frailties, Biometrics 55, 637–644.
- 76 Ramgopal, P., Laud, P. W. & Smith, A. F. M. (1993) Nonparametric Bayesian bioassay with prior constraints on the shape of the potency curve, Biometrika 80, 489–498.
- 77 Sahu, S. K., Dey, D. K., Aslanidou, H. & Sinha, D. (1997) A Weibull regression model with gamma frailties for multivariate survival data, Lifetime Data Analysis 3, 123–137.
- 78 Sargent, D. J. (1998) A general framework for random effects survival analysis in the Cox proportional hazards setting, Biometrics 54, 1486–1497.
- 79 Shih, J. A. & Louis, T. A. (1995) Assessing gamma frailty models for clustered failure time data, Lifetime Data Analysis 1, 205–220.
- 80 Sinha, D. (1998) Posterior likelihood methods for multivariate survival data, Biometrics 54, 1463–1474.
- 81 Sinha, D. (1993) Semiparametric Bayesian analysis of multiple event time data, Journal of the American Statistical Association 88, 979–983.
- 82 Sinha, D. (1997) Time-discrete beta process model for interval-censored survival data, Canadian Journal of Statistics 25, 445–456.
- 83 Sinha, D., Chen, M.-H. & Ghosh, S. K. (1999) Bayesian analysis and model selection for interval-censored survival data, Biometrics 55, 585–590.
- 84 Sinha, D. & Dey, D. K. (1997) Semiparametric Bayesian analysis of survival data, Journal of the American Statistical Association 92, 1195–1212.
- 85 Sinha, D., Ibrahim, J. G. & Chen, M.-H. (2002) Bayesian models for survival data from cancer prevention studies, Journal of the Royal Statistical Society, Series B 63, 467–477.
- 86 Sinha, D., Ibrahim, J. G. & Chen, M.-H. (2003) A Bayesian justification of Cox's partial likelihood, Biometrika 90, 629–641.
- 87 Stangl, D. K. (1995) Prediction and decision making using Bayesian hierarchical models, Statistics in Medicine 14, 2173–2190.
- 88 Stangl, D. K. & Greenhouse, J. B. (1998) Assessing placebo response using Bayesian hierarchical survival models, Lifetime Data Analysis 4, 5–28.
- 89 Susarla, V. & Van Ryzin, J. (1976) Nonparametric Bayesian estimation of survival curves from incomplete observations, Journal of the American Statistical Association 71, 897–902.
- 90 Walker, S. G., Damien, P., Laud, P. W. & Smith, A. F. M. (1999) Bayesian nonparametric inference for random distributions and related functions (with discussion), Journal of the Royal Statistical Society, Series B 61, 485–528.
- 91 Walker, S. G. & Mallick, B. K. (1996) Hierarchical generalized linear models and frailty models with Bayesian nonparametric mixing, Journal of the Royal Statistical Society, Series B 59, 845–860.
- 92 Walker, S. G. & Mallick, B. K. (1999) A Bayesian semiparametric accelerated failure time model, Biometrics 55, 477–483.
- 93 Wang, Y. & Taylor, J. M. G. (2001) Jointly modelling longitudinal and event time data, with applications to AIDS studies, Journal of the American Statistical Association 96, 895–905.