Abstract
Many categorical variables have a natural ordering of the categories. Special methods are available for such data that are more powerful and more parsimonious than methods that ignore the ordering. This article discusses ways of modeling association for ordered categorical data and gives examples of them. These include loglinear models, related association models for two-way tables that have row and column effects, and logit regression models for an ordinal response variable and a set of explanatory variables. The best-known logit model, called a proportional odds model, uses the same effect parameters for each set of logits of cumulative probabilities for the ordered categorical response variable.
References
- 1 Agresti, A. (1984). Analysis of Ordinal Categorical Data. Wiley, New York.
- 2 Agresti, A. (1988). A model for agreement between ratings on an ordinal scale, Biometrics 44, 539–548.
- 3 Agresti, A. (1990). Categorical Data Analysis. Wiley, New York.
- 4
Agresti, A.
(1992).
Modeling patterns of agreement and disagreement,
Statistical Methods in Medical Research
8,
201–218.
10.1177/096228029200100205 Google Scholar
- 5
Agresti, A.
(1992).
A survey of exact inference for contingency tables, with discussion,
Statistical Science
7,
131–153.
10.1214/ss/1177011454 Google Scholar
- 6 Agresti, A. & Kezouh, A. (1983). Association models for multidimensional cross-classifications of ordinal variables, Communications in Statistics—Theory and Methods 12, 1261–1276.
- 7 Agresti, A. & Lang, J. B. (1993). Quasi-symmetric latent class models, with application to rater agreement, Biometrics 49, 131–140.
- 8 Agresti, A. & Lang, J. B. (1993). A proportional odds model with subject-specific effects for repeated ordered categorical responses, Biometrika 80, 527–534.
- 9 Agresti, A., Chuang, C. & Kezouh, A. (1987). Order-restricted score parameters in association models for contingency tables, Journal of the American Statistical Association 82, 619–623.
- 10 Aitchison, J. & Silvey, S. (1957). The generalization of probit analysis to the case of multiple responses, Biometrika 44, 131–140.
- 11 Andersen, E. B. (1980). Discrete Statistical Models with Social Science Applications. North-Holland, Amsterdam.
- 12 Anderson, J. A. (1984). Regression and ordered categorical variables, with discussion, Journal of the Royal Statistical Society, Series B 46, 1–30.
- 13 Ashford, J. R. & Sowden, R. R. (1957). Multivariate probit analysis, Biometrics 26, 535–546.
- 14 Becker, M. P. (1989). Using association models to analyze agreement data: two examples, Statistics in Medicine 8, 1199–1207.
- 15 Becker, M. P. (1989). On the bivariate normal distribution and association models for ordinal categorical data, Statistics and Probability Letters 8, 435–440.
- 16 Becker, M. P. (1989). Models for the analysis of association in multivariate contingency tables, Journal of the American Statistical Association 84, 1014–1019.
- 17 Becker, M. P. (1990). Quasisymmetric models for the analysis of square contingency tables, Journal of the Royal Statistical Society, Series B 52, 369–378.
- 18 Becker, M. P. (1990). aximum likelihood estimation of the RC(M) association model, Applied Statistics 39, 152–166.
- 19 Becker, M. P. & Agresti, A. (1992). Loglinear modeling of pairwise interobserver agreement on a categorical scale, Statistics in Medicine 11, 101–114.
- 20 Becker, M. P. & Clogg, C. C. (1989). Analysis of sets of two-way contingency tables using association models, Journal of the American Statistical Association 84, 142–151.
- 21 Bishop, Y. M. M. (1969). Full contingency tables, logits, and split contingency tables, Biometrics 25, 119–128.
- 22 Clogg, C. C. (1982). Some models for the analysis of association in multiway contingency tables having ordered categories, Journal of the American Statistical Association 77, 803–815.
- 23 Clogg, C. C. & Shihadeh, E. S. (1994). Statistical Models for Ordinal Variables. Sage, Thousand Oaks.
- 24 Dale, J. R. (1984). Local versus global association for bivariate ordered responses, Biometrika 71, 507–514.
- 25 Dale, J. R. (1986). Global cross-ratios for bivariate, discrete, ordered responses, Biometrics 42, 909–917.
- 26
Darroch, J. N. &
McCloud, P. I.
(1986).
Category distinguishability and observer agreement,
Australian Journal of Statistics
28,
420–428.
10.1111/j.1467-842X.1986.tb00709.x Google Scholar
- 27 Ezzet, F. & Whitehead, J. (1991). A random effects model for ordinal responses from a crossover trial, Statistics in Medicine 10, 901–906. (Comment and Reply: 12 (1993) 2147–2151.
- 28 Gilula, Z. & Haberman, S. J. (1988). The analysis of multivariate contingency tables by restricted canonical and restricted association models, Journal of the American Statistical Association 83, 760–771.
- 29 Goodman, L. A. (1979). Simple models for the analysis of cross-classifications having ordered categories, Journal of the American Statistical Association 74, 537–552.
- 30 Goodman, L. A. (1981). Association models and the bivariate Normal for contingency tables with ordered categories, Biometrika 68, 347–355.
- 31 Goodman, L. A. (1983). The analysis of dependence in cross-classifications having ordered categories, using log-linear models for frequencies and log-linear models for odds, Biometrics 39, 149–160.
- 32 Goodman, L. A. (1985). The analysis of cross-classified data having ordered and/or unordered categories: association models, correlation models, and asymmetry models for contingency tables with or without missing entries, Annals of Statistics 13, 10–69.
- 33 Goodman, L. A. (1986). Some useful extensions of the usual correspondence analysis approach and the usual log-linear models approach in the analysis of contingency tables, International Statistical Review 54, 243–309.
- 34 Graubard, B. I. & Korn, E. L. (1987). Choice of column scores for testing independence in ordered 2× K contingency tables, Biometrics 43, 471–476.
- 35 Haberman, S. J. (1974). Loglinear models for frequency tables with ordered classifications, Biometrics 29, 205–220.
- 36 Haberman, S. J. (1996). Computation of maximum likelihood estimates in association models, Journal of the American Statistical Association 90, 1438–1446.
- 37 Heagerty, P. & Zeger, S. L. (1996). Marginal regression models for clustered ordinal measurements, Journal of the American Statistical Association 91, 1024–1036.
- 38 Hedeker, D. & Gibbons, R. D. (1994). A random-effects ordinal regression model for multilevel analysis, Biometrics 50, 933–944.
- 39 Holland, P. W. & Wang, Y. J. (1987). Dependence functions for continuous bivariate densities, Communications in Statistics—Theory and Methods 16, 863–876.
- 40 Kenward, M. G., Lesaffre, E. & Molenberghs, G. (1994). An application of maximum likelihood and generalized estimating equations to the analysis of ordinal data from a longitudinal study with cases missing at random, Biometrics 50, 945–953.
- 41 Kim, K. (1995). A bivariate cumulative probit regression model for ordered categorical data, Statistics in Medicine 14, 1341–1352.
- 42 Koch, G. G. & Edwards, S. (1988). Clinical efficacy trials with categorical data, in Biopharmaceutical Statistics for Drug Development, K. E. Peace, ed. Marcel Dekker, New York, pp. 403–451.
- 43 Lang, J. B. & Agresti, A. (1994). Simultaneously modeling joint and marginal distributions of multivariate categorical data, Journal of the American Statistical Association 89, 625–632.
- 44 Lesaffre, E. & Molenberghs, G. (1991). Multivariate probit analysis: A neglected procedure in medical statistics, Statistics in Medicine 10, 1391–1403.
- 45 McCullagh, P. (1980). Regression models for ordinal data (with discussion), Journal of the Royal Statistical Society, Series B 42, 109–142.
- 46
Maddala, G. S.
(1983).
Limited-Dependent and Qualitative Variables in Econometrics.
Cambridge University Press,
Cambridge.
10.1017/CBO9780511810176 Google Scholar
- 47 Melia, M. B. & Diener-West, M. (1994). Modeling interrater agreement for pathologic features of choroidal melanoma, in Case Studies in Biometry, N. Lange, L. Ryan, L. Billard, D. Brillinger, L. Conquest & J. Greenhouse, eds. Wiley, New York, pp. 323–338.
- 48 Molenberghs, G. & Lesaffre, E. (1994). Marginal modeling or correlated ordinal data using a multivariate Plackett distribution, Journal of the American Statistical Association 89, 633–644.
- 49 National Cholesterol Education Program (1993). Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults: Summary of the second report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel II), Journal of the American Medical Association 269, 3015–3023.
- 50 Pearson, K. & Heron, D. (1913). On theories of association, Biometrika 9, 159–315.
- 51 Pron, G. E., Burch, J. D., Howe, G. R. & Miller, A. B. (1988). The reliability of passive smoking histories in a case–control study of lung cancer, American Journal of Epidemiology 127, 267–273.
- 52 Ritov, Y. & Gilula, Z. (1991). The order-restricted RC model for ordered contingency tables: estimation and testing for fit, Annals of Statistics 19, 2090–2101.
- 53 Srole, L., Langner, T. S., Michael, S. T., Kirkpatrick, P., Opler, M. K. & Rennie, T. A. C. (1978). Mental Health in the Metropolis: The Midtown Manhattan Study, Revised Ed. New York University Press, New York.
- 54 Stokes, M. E., Davis, C. E. & Koch, G. G. (1995). Categorical Data Analysis Using the SAS System. SAS Institute, Cary.
- 55 Stram, D. O., Wei, L. J. & Ware, J. H. (1988). Analysis of repeated ordered categorical outcomes with possibly missing observations and time-dependent data, Journal of the American Statistical Association 83, 631–637.
- 56 Tanner, M. A. & Young, M. A. (1985). Modeling agreement among raters, Journal of the American Statistical Association 80, 175–180.
- 57 Williamson, J. M., Kim, K. & Lipsitz, S. R. (1995). Analyzing bivariate ordinal data using a global odds ratio, Journal of the American Statistical Association 90, 1432–1437.
- 58 Yule, G. U. (1900). On the association of attributes in statistics, Philosophical Transactions of the Royal Society of London, Series A 194, 257–319.
- 59 Yule, G. U. (1912). On the methods of measuring association between two attributes (with discussion), Journal of the Royal Statistical Society 75, 579–642.