Abstract
Simple survival experiments provide little information to study the progress of different disease(s) and possible interaction between them. In serial sacrifice experiments, individual animals are randomly selected and killed (sacrificed) at fixed or adaptively selected time points, allowing the examination of presence or absence of the different diseases. Therefore, a serial sacrifice experiment, with interim observation on some individuals before natural death occurs, allows one to probe into the disease processes and the complex interrelationships between different diseases. Data from the sacrificed animals provides an estimate for prevalence p𝒜(t), the probability being that an alive animal has a particular disease combination 𝒜 at time t. On the other hand, death data provides an estimate of probability of death with the particular disease combination 𝒜, given by μ𝒜(t)p𝒜(t), where μ𝒜(t) denotes the mortality rate from disease combination 𝒜. In animal carcinogenicity experiments with serial sacrifice, in particular, the tumor occurrence time distribution is estimable. Design issues regarding the optimal sacrifice schedule are of some interest, but not much work has been done on this. There are few examples of serial sacrifice experiments, the ED01 study with 2-acetylamino-fluorene (2-AAF) conducted by the US national center for toxicological research (NCTR) being probably the largest.
References
- 1 Abdelbasit, K. M. & Plackett, R. L. (1983). Experimental design for binary data, Journal of the American Statistical Association 78, 90–98.
- 2 Archer, L. & Ryan, L. (1989). Accounting for misclassification in the cause-of-death test for carcinogenicity, Journal of the American Statistical Association 84, 787–791.
- 3 Bergman, S. W. & Turnbull, B. W. (1983). Efficient sequential designs for destructive life testing with application to animal serial sacrifice experiments, Biometrika 70, 305–314.
- 4 Berlin, B., Brodsky, J. & Clifford, P. (1979). Testing disease dependence in survival experiments with serial sacrifice, Journal of the American Statistical Association 74, 5–14.
- 5 Berry, G. (1975). Design of carcinogenesis experiments using Weibull distribution, Biometrika 62, 321–328.
- 6 Bishop, Y. M. M., Fienberg, S. E. & Holland, P. W. (1975). Discrete Multivariate Analysis: Theory and Practice. MIT Press, Cambridge, Mass.
- 7 Borgan, Ø., Liestøl, K. & Ebbesen, P. (1984). Efficiencies of experimental designs for an illness - death model, Biometrics 40, 627–638.
- 8
Chernoff, H.
(1972).
Sequential Analysis and Optimal Design.
SIAM,
Philadelphia.
10.1137/1.9781611970593 Google Scholar
- 9 Clifford, P. (1977). Nonidentifiability in stochastic models of illness and death, Proceedings of the National Academy of Sciences 74, 1338–1340.
- 10 David, H. A. (1974). Parametric approaches to the theory of competing risks, in Reliability and Biometry, Statistical Analysis of Lifelength, F. Proschan & R. J. Serfling, eds. SIAM, Philadelphia, pp. 275–290.
- 11
Dempster, A. P.,
Laird, N. M. &
Rubin, D. B.
(1977).
Maximum likelihood estimation from incomplete data via the EM algorithm,
Journal of the Royal Statistical Society, Series B
39,
1–22.
10.1111/j.2517-6161.1977.tb01600.x Google Scholar
- 12 Dewanji, A. & Kalbfleisch, J. D. (1986). Nonparametric methods for survival/sacrifice experiments, Biometrics 42, 325–341.
- 13 Dewanji, A., Krewski, D. & Goddard, M. J. (1993). A Weibull model for the estimation of tumorigenic potency, Biometrics 49, 367–377.
- 14 Dinse, G. E. (1988). Simple parametric analysis of animal tumorigenicity data, Journal of the American Statistical Association 83, 638–649.
- 15 Dinse, G. E. (1991). Constant risk differences in the analysis of animal tumorigenicity data, Biometrics 47, 681–700.
- 16 Dinse, G. E. & Lagakos, S. W. (1982). Nonparametric estimation of lifetime and disease onset distributions from incomplete observations, Biometrics 38, 921–932.
- 17 Ebbesen, P., Borgan, Ø. & Liestøl, K. (1983). Decreasing leukemia risk in old AKR mice, Experimental Gerontology 18, 347–353.
- 18 Fisher, R. A. (1971). The Design of Experiments, 9th Ed. Oliver & Boyd, Edinburgh.
- 19 Gail, M. (1975). A review and critique of some models used in competing risk analysis, Biometrics 31, 209–222.
- 20 Hoel, D. G. & Walburg, H. E. (1972). Statistical analysis of survival experiments, Journal of the National Cancer Institute 49, 361–372.
- 21 Journal of Environmental Pathology and Toxicology (1980). 3, 1–246.
- 22 Kalbfleisch, J. D. & Prentice, R. L. (1980). The Statistical Analysis of Failure Time Data. Wiley, New York.
- 23
Kalbfleisch, J. D.,
Krewski, D. &
Van Ryzin, J.
(1983).
Dose - response models for time-to-response toxicity data,
Canadian Journal of Statistics
11,
25–49.
10.2307/3314709 Google Scholar
- 24 Kaplan, E. L. & Meier, P. (1958). Nonparametric estimation from incomplete observations, Journal of the American Statistical Association 53, 457–481.
- 25 Kennedy, A. R., McGundy, R. B. & Little, J. B. (1978). Serial sacrifice study of pathogenesis of 210Po-induced lung tumors in Syrian golden hamsters, Cancer Research 38, 1127–1135.
- 26 Kodell, R. L. & Nelson, C. J. (1980). An illness - death model for the study of the carcinogenic process using survival/sacrifice data, Biometrics 36, 267–277.
- 27 Kodell, R. L., Shaw, G. W. & Johnson, A. M. (1982). Nonparametric joint estimators for disease resistance and survival functions in survival/sacrifice experiments, Biometrics 38, 43–58.
- 28 Lagakos, S. W. & Mosteller, F. (1981). A case study of statistics in the regulatory process: the FD & C Red No. 40 experiments, Journal of the National Cancer Institute 66, 197–212.
- 29 Levitt, M. H., Harris, C. C., Squire, R., Springer, S., Wenk, M., Mollelo, C., Thomas, D., Kingsbury, E. & Newkirk, C. (1977). Experimental pancreatic carcinogenesis. I. Morphogenesis of pancreatic adenocarcinoma in the Syrian golden hamster induced by N-nitroso-bis(2-hydroxypropyl)amine, American Journal of Pathology 88, 5–28.
- 30 Lindsay, J. C. & Ryan, L. M. (1993). A three-state multiplicative model for rodent tumorigenicity experiments, Applied Statistics 42, 283–300.
- 31 Louis, T. A. (1987). Efficient monotone sequential design, Research Report No. MS-R8705. Centre for Mathematics and Computer Science, Amsterdam.
- 32 Louis, T. A. & Orav, E. J. (1985). Sacrifice plans for the carcinogen bioassay, in Proceedings of Long Term Animal Carcinogenicity Studies: A Statistical Perspective. American Statistical Association, Washington DC, pp. 36–41.
- 33 Malani, H. & Van Ryzin, J. (1986). Nonparametric estimates of the tumor incidence rate, the tumor lethality rate and the mortality rate in absence of tumors in animal carcinogenicity experiments, Columbia University Statistical Reports, Technical Report B-56. Department of Biostatistics, Columbia University, New York.
- 34 Malani, H. & Van Ryzin, J. (1988). Comparison of two treatments in animal carcinogenicity experiments, Journal of the American Statistical Association 83, 1171–1177.
- 35 Malani, H. M. & Lu, Y. (1993). Animal carcinogenicity experiments with and without serial sacrifice, Communications in Statistics—Theory and Methods 22, 1557–1584.
- 36 McKnight, B. (1988). A guide to the statistical analysis of long-term carcinogenicity assays, Fundamental and Applied Toxicology 10, 335–364.
- 37 McKnight, B. & Crowley, J. (1984). Tests for differences in tumor incidence based on animal carcinogenesis experiments, Journal of the American Statistical Association 79, 639–648.
- 38 Mitchell, T. J. & Turnbull, B. W. (1979). Log-linear models in the analysis of disease prevalence data from survival/sacrifice experiments, Biometrics 35, 221–234.
- 39 Mitchell, T. J. & Turnbull, B. W. (1983). A computer program for the statistical analysis of disease prevalence data from survival/sacrifice experiments, Computer Methods and Programs in Biomedicine 17, 45–64.
- 40 Moeschberger, M. L. & David, H. A. (1971). Life tests under competing causes of failure and the theory of competing risks, Biometrics 27, 909–933.
- 41 Orav, E. J. & Louis, T. A. (1985). Adaptive terminal sacrifice plans for the rodent bioassay, Harvard Biostatistics Research Report.
- 42 Peto, R., Pike, M., Day, N., Gray, R., Lee, P., Parish, S., Peto, J., Richards, S. & Wahrendorf, J. (1980). Guidelines for simple, sensitive significance tests for carcinogenic effects in long-term animal experiments, in IARC Monograph on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, Supplement 2, Long-term and Short-term Screening Assays for Carcinogens: a Critical Appraisal. IARC, Lyon, pp. 311–346.
- 43 Portier, C. (1985). Optimal dose/animal allocation for terminal sacrifice carcinogenicity studies, in Proceedings of the ASA Conference on Long-Term Animal Carcinogenicity Studies. American Statistical Association, Washington, pp. 45–50.
- 44 Portier, C. J. (1986). Estimating the tumor onset distribution in animal carcinogenesis experiments, Biometrika 73, 371–378.
- 45 Portier, C. J. (1991). Design of two-year carcinogenicity experiments: dose allocation, animal allocation and sacrifice times, in Statistics in Toxicology. D. Krewski & C. Franklin, eds. Gordon & Breach, New York, pp. 457–469.
- 46 Portier, C. J. & Dinse, G. E. (1987). Semiparametric analysis of tumor incidence rates in survival/sacrifice experiments, Biometrics 43, 107–114.
- 47 Ryan, L. & Orav, E. J. (1988). On the use of covariates for rodent bioassay and screening experiments, Biometrika 75, 631–637.
- 48 Schuller, H. M., Smith, A. C., Gregg, M. & Boyd, M. R. (1985). Sequential pathological changes induced in rats with the anticancer drug 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), Experimental Lung Research 9, 327–339.
- 49 Staffa, J. A. & Mehlman, M. A. (1979). Innovations in Cancer Risk Assessment (ED01 Study). Pathotox, Park Forest South.
- 50 Tsiatis, A. (1975). A nonidentifiability aspect of the problem of competing risks, Proceedings of the National Academy of Sciences 72, 20–22.
- 51 Turnbull, B. W. & Mitchell, T. J. (1978). Exploratory analysis of disease prevalence data from survival/sacrifice experiments, Biometrics 34, 555–570.
- 52 Turnbull, B. W. & Mitchell, T. J. (1984). Nonparametric estimation of distributions of time to onset and time to death for specific diseases in survival/sacrifice experiments, Biometrics 40, 41–50.
- 53 Upton, A. C., Allen, R. C., Brown, R. C., Clapp, N. K., Conlin, J. W., Cosgrove, G. E., Darden, E. B. Jr, Kastenbaum, M. A., O'dell, P. T. Jr, Serrano, L. J., Tyndall, R. L. & Walburg, H. A. Jr (1969). Quantitative experimental study of low-level radiation carcinogenesis, in Radiation Induced Cancer. International Atomic Energy Agency, Vienna, pp. 425–438.
- 54 Van Nesselrooij, J. H., Hendriksen, G. J., Feron, V. J. & Bosland, M. C. (1992). Pathogenesis of blood-filled cavities in estrogen-induced anterior pituitary tumors in male Sprague - Dawley rats, Toxicologic Pathology 20, 71–80.
- 55 Williams, P. L. & Portier, C. J. (1992). Analytic expressions for maximum likelihood estimators in a nonparametric model of tumor incidence and death, Communications in Statistics—Theory and Methods 21, 711–732.
- 56 Williams, P. L. & Portier, C. J. (1992). Explicit solutions for constrained maximum likelihood estimators in survival/sacrifice experiments, Biometrika 79, 717–729.