Abstract
Actuarial methods overlap with biostatistics in a number of important areas including the development and application of the survival model, and its extensions—the multiple decrement and multiple state models; projections of populations that involve extrapolations of demographic and biostatistical rates and probabilities; parametric and nonparametric methods of smoothing and curve fitting (known as graduation); and risk classification. In each of these areas, actuarial science has followed the innovations in statistical and biostatistical theory and application and developed these further for specific actuarial applications.
References
- 1
Andersen, P. K.,
Borgan, Ø.,
Gill, R. D. &
Keiding, N.
(1993).
Statistical Models Based on Counting Processes.
Springer-Verlag,
New York.
10.1007/978-1-4612-4348-9 Google Scholar
- 2 Benjamin, B. & Pollard, J. H. (1993). The Analysis of Mortality and Other Actuarial Statistics, 3rd Ed. Institute and Faculty of Actuaries, Oxford.
- 3 Bowers, N. L., Gerber, H. U., Jones, D. A., Hickman, J. C. & Nesbitt, C. J. (1986). Actuarial Mathematics. Society of Actuaries, Chicago.
- 4 Brockett, P. L. (1991). Information theoretic approach to actuarial science: a unification and extension of relevant theory and applications, Transactions of the Society of Actuaries 43, 73–144.
- 5 Broffit, J. D. (1984). Maximum likelihood alternatives to actuarial estimators of mortality rates, Transactions of the Society of Actuaries 36, 77–142.
- 6 Build and Blood Pressure Study 1959 (1960). Society of Actuaries, Chicago.
- 7 Build and Blood Pressure Study 1979 (1980). Society of Actuaries, Chicago.
- 8 Continuous Mortality Investigation Bureau (1991). Continuous Mortality Investigation Report No. 12. Institute and Faculty of Actuaries, Oxford.
- 9
Copas, J. B. &
Haberman, S.
(1983).
Non-parametric graduation using kernel methods,
Journal of the Institute of Actuaries
110,
135–156.
10.1017/S0020268100041275 Google Scholar
- 10 Cox, D. R. (1972). Regression models and life tables, Journal of the Royal Statistical Society, Series B 34, 187–200.
- 11 Cox, D. R. & Miller, H. D. (1965). The Theory of Stochastic Processes. Chapman & Hall, London.
- 12 Cummins, J. D., Smith, B. E., Vance, R. N. & Van der Hei, H. L. (1982). Risk Classification in Life Insurance. Kluwer, Boston.
- 13
Daw, R. H.
(1979).
Smallpox and the double decrement table: A piece of actuarial pre-history,
Journal of the Institute of Actuaries
106,
299–318.
10.1017/S0020268100018904 Google Scholar
- 14
Daykin, C. D.,
Clark, P. N. S.,
Eves, M. J.,
Haberman, S.,
Lockyer, J.,
LeGrys, D. J.,
Michaelson, R. W. &
Wilkie, A. D.
(1988).
The impact of HIV infection and AIDS on insurance in the United Kingdom,
Journal of Institute of Actuaries
115,
727–837.
10.1017/S0020268100042943 Google Scholar
- 15
DeBoor, C.
(1978).
A Practical Guide to Splines.
Springer-Verlag,
New York.
10.1007/978-1-4612-6333-3 Google Scholar
- 16 Elandt-Johnson, R. G. & Johnson, N. L. (1980). Survival Models and Data Analysis. Wiley, New York.
- 17
Forfar, D. O.,
Wilkie, A. D. &
McCutcheon, J. J.
(1988).
On graduation by mathematical formula,
Journal of the Institute of Actuaries
115,
1–149.
10.1017/S0020268100042633 Google Scholar
- 18
Frees, E. W. &
Valdez, E. A.
(1998).
Understanding relationships using copulas.
North American Actuarial Journal
2(1),
1–25.
10.1080/10920277.1998.10595667 Google Scholar
- 19 Gavin, J., Haberman, S. & Verrall, R. J. (1993). Moving weighted average graduation using kernel estimation, Insurance: Mathematics and Statistics 12, 113–126.
- 20
Gavin, J.,
Haberman, S. &
Verrall, R. J.
(1994).
On the choice of bandwidth for kernel graduation,
Journal of the Institute of Actuaries
121,
119–134.
10.1017/S0020268100020102 Google Scholar
- 21
Gerber, H. U.
(1995).
Life Insurance Mathematics,
2nd Ed.
Springer-Verlag,
Zurich.
10.1007/978-3-662-03153-7 Google Scholar
- 22
Green, P. J. &
Silverman, B. W.
(1994).
Non Parametric Regression and Generalized Linear Models: A Roughness Penalty Approach.
Chapman & Hall,
London.
10.1007/978-1-4899-4473-3 Google Scholar
- 23 Greville, T. N. E. (1981). Moving weighted average smoothing extended to extremities of the data. I: Theory, Scandinavian Actuarial Journal 1981, 38–55.
- 24
Haberman S.
(1987).
Long-term sickness and invalidity benefits: Forecasting and other actuarial problems,
Journal of the Institute of Actuaries
114,
467–533.
10.1017/S0020268100019181 Google Scholar
- 25 Haberman, S. & Pitacco, E. (1999). Actuarial Models for Disability Insurance. CRC Press, Bocce Raton.
- 26 Haberman, S. & Renshaw, A. E. (1990). Generalized linear models and excess mortality from peptic ulcers, Insurance: Mathematics and Economics 9, 21–32.
- 27 Haberman, S. & Renshaw, A. E. (1996). Generalized linear-models and actuarial science, Statistician 45, 407–436.
- 28 Haberman, S. & Sibbett, T. (1995). History of Actuarial Science. Pickering & Chatto, London.
- 29
Hald, A.
(1990).
A History of Probability and Statistics and Their Applications Before 1750.
Wiley,
New York.
10.1002/0471725161 Google Scholar
- 30
Heligman, L. &
Pollard, J. H.
(1980).
The age pattern of mortality,
Journal of the Institute of Actuaries
107,
49–74.
10.1017/S0020268100040257 Google Scholar
- 31 Jones, B. L. (1994). Actuarial calculations using a Markov model, Transactions of the Society of Actuaries 46, 227–250.
- 32 Kimeldorf, G. S. & Jones, D. A. (1967). Bayesian graduation, Transactions of the Society of Actuaries 19, 66–112.
- 33 Knorr, F. E. (1984). Multidimensional Whittaker-Henderson graduation, Transactions of the Society of Actuaries 36, 213–240.
- 34
Lee, R. D.
(2000).
The Lee-Carter Method for forecasting mortality, with various extensions and applications.
North American Actuarial Journal
4(1),
80–93.
10.1080/10920277.2000.10595882 Google Scholar
- 35 Lee, R. D. & Carter, L. (1992). Modelling and Forecasting the time series of US mortality. Journal of the American Statistical Association, 87, 659–671.
- 36 London, D. (1985). Graduation: The Revision of Estimates. Actex, Winsted.
- 37 McCullagh, P. & Nelder, J. A. (1989). Generalized Linear Models, 2nd Ed. Chapman & Hall, London.
- 38 Olivieri, A. (2001). Uncertainty in mortality projections: an actuarial perspective, Insurance; Mathematics and Economics 29, 231–245.
- 39
Perks, W.
(1932).
On some experiments in the graduation of mortality statistics,
Journal of the Institute of Actuaries
63,
12–40.
10.1017/S0020268100046680 Google Scholar
- 40 Pitacco, E. (1995). Actuarial models for pricing disability benefits: Towards a unifying approach, Insurance: Mathematics and Economics 16, 39–62.
- 41
Ramlau-Hansen, H.
(1983).
The choice of a kernel function in the graduation of counting process intensities,
Scandinavian Actuarial Journal
1983,
165–182.
10.1080/03461238.1983.10408700 Google Scholar
- 42 Ramsay, C. M. (1989). AIDS and the calculation of life insurance functions, Transactions of the Society of Actuaries 41, 393–422.
- 43
Renshaw, A. E.
(1988).
Modelling excess mortality using GLIM,
Journal of the Institute of Actuaries
115,
299–315.
10.1017/S0020268100042682 Google Scholar
- 44 Renshaw, A. E. & Haberman, S. (2003). Lee-Carter mortality forecasting: a parallel generalized linear modeling approach for England and Wales mortality projections. Journal of the Royal Statistical Society Series C 52, 1–19.
- 45
Scott, D. W.
(1992).
Multivariate Density Estimation: Theory, Practice and Visualization.
Wiley,
New York.
10.1002/9780470316849 Google Scholar
- 46 Seal, H. L. (1977). Studies in the history of probability and statistics XXXV. Multiple decrements or competing risks, Biometrika 64, 429–439.
- 47 Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. Chapman & Hall, London.
- 48 Sithole, T. Z., Haberman, S. & Verrall, R. J. (2000). An investigation into parametric models for mortality projections, with applications to immediate annuitants' and life office pensioners' data. Insurance: Mathematics and Economics 27, 285–312.
- 49 Sklar A. (1973). Random variables, joint distribution functions and copulas. Kybernetika, 9, 449–460.
- 50 Stigler, S. M. (1978). Mathematical statistics in the early states, Annals of Statistics 6, 239–265.
- 51 Sverdrup, E. (1965). Estimates and test procedures in connection with stochastic models for deaths, recoveries and transfers between different states of health, Skandinavisk Aktuaritidskrift 48, 184–211.
- 52 Taylor, G. C. (1992). A Bayesian interpretation of Whittaker-Henderson graduation, Insurance: Mathematics and Economics 11, 7–16.
- 53 Verrall, R. J. (1993). A state space formulation of Whittaker graduation, with extensions, Insurance: Mathematics and Economics 13, 7–14.
- 54
Whittaker, E. T.
(1923).
On a new method of graduation,
Proceedings of the Edinburgh Mathematical Society
41,
63–75.
10.1017/S0013091500077853 Google Scholar
- 55 Wolfenden, H. H. (1925). On the development of formulae for graduation by linear compounding, with special reference to the work of Erastus L. De Forest, Transactions of the Actuarial Society of America 26, 81–121.