Silicon solar cells
S. R. Wenham
Centre for Photovoltaic Devices and Systems, The University of New South Wales, Sydney 2052, Australia
Search for more papers by this authorM. A. Green
Centre for Photovoltaic Devices and Systems, The University of New South Wales, Sydney 2052, Australia
Search for more papers by this authorS. R. Wenham
Centre for Photovoltaic Devices and Systems, The University of New South Wales, Sydney 2052, Australia
Search for more papers by this authorM. A. Green
Centre for Photovoltaic Devices and Systems, The University of New South Wales, Sydney 2052, Australia
Search for more papers by this authorAbstract
The key attributes for achieving high-efficiency crystalline silicon solar cells are identified and historical developments leading to their realization discussed. Despite the achievement of laboratory cells with performance approaching the theoretical limit, commercial cell designs need to evolve significantly to realize their potential. In particular, the development of cell structures and processes that facilitate entirely activated device volumes in conjunction with well-passivated metal contacts a nd front and rear surfaces is essential (and yet not overly challenging) to achieve commercial devices of 20% efficiency from solar-grade substrates. The inevitable trend towards thinner substrates will force manufacturers to evolve their designs in this direction or else suffer substantial performance loss. Eventually, a thin-film technology will likely dominate, with thin-film crystalline silicon cells being a serious candidate. Present commercial techniques and processes are in general unsuitable for t hin-film fabrication, with even greater importance placed on the achievement of devices with entirely activated volumes (diffusion lengths much greater than device thicknesses), well-passivated metal contacts and surfaces and the important inclusion of li ght trapping. The recent achievement of 21.5% efficiency on a thin crystalline silicon cell (less than 50 μm thick) adds credibility to the pursuit of crystalline silicon in thin films, with a key attribute of this laboratory cell being its extremely good light trapping that nullifies the long-term criticism of crystalline silicon regarding its poor absorption properties and correspondingly perceived inability to achieve high-performance thin-film devices. For low-cost, low-quality polycrystalline sil icon material, the parallel-multijunction cell structure may provide a mechanism for achieving entirely activated cell volumes with the potential to achieve reasonable efficiencies at low cost over the next decade.
References
- 1 C. E. Fritts, Proc. Am. Assoc. Adv. Sci., 33, 97 (1983).
- 2 L. O. Grondahl, Rev. Mod. Phys., 5, 141 (1933).
- 3 R. S. Ohl, ‘Light sensitive electric device’, US Patent 240252, filed 27 March 1941. ‘Light-sensitive electric device including silicon’, US Patent 2443542, filed 27 May 1941.
- 4
E. F. Kingsbury and
R. S. Ohl,
‘Photoelectric properties of ionically bombarded silicon’,
Bell Syst. Tech. J.
31,
8092
(1952).
10.1002/j.1538-7305.1952.tb01407.x Google Scholar
- 5 D. M. Chapin, C. S. Fuller and G. L. Pearson, ‘A new silicon p-n junction photocell for converting solar radiation into electrical power’, J. Appl. Phys. 8, 676 (1954).
- 6 G. L. Pearson, ‘ PV founders award luncheon’, Conf: Record 18th IEEE Photovoltaic Specialists Conf., Las Vegas, 1985.
- 7 J. Lindmayer and J. Allison, COMSAT Tech. Rev., 3, 1–22 (1973).
- 8 J. Haynos, J. Allison, R. Arndt and A. Meulenberg, ‘ The Comsat non-reflective silicon solar cell: a second generation improved cell’, Int. Conf. on Photovoltaic Power Generation, Hamburg, September 1974, p. 487.
- 9 M. A. Green, ‘Limits on the open circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger processes’, IEEE Trans. Electron Devices, ED-31, 671–678 (1984).
- 10 A. W. Blakers, M. A. Green, S. Jiqun, E. M. Keller, S. R. Wenham, R. B. Godfrey, T. Szpitalak and M. R. Willison, ‘18% Efficient terrestrial silicon solar cell’ Electron Device Lett., EDL-5, 12–13 (1984).
- 11 A. W. Blakers and M. A. Green, ‘20% Efficiency silicon solar cells’, Appl. Phys. Lett., 48, 215–217 (1986).
- 12 T. Saitoh, T. Uematsu, Y. Kida, K. Matsukuma and K. Morita, ‘ Design and fabrication of 20% efficiency, medium-resistivity silicon solar cells’, Conf: Record 19th ZEEE Photovoltaic Specialists Conf., New Orleans, 1987, pp. 1518–1519.
- 13 D. B. Bickler and W. T. Callaghan, ‘ The economic payoff for a state-of-the-art high-efficiency flat-plate crystalline silicon solar cell technology’, Conf. Record 19th IEEE Photovoltaic Specialists Conf., New Orleans, 1987, pp. 1424–1429.
- 14 S. Khemthong, S. Cabbanis, J. Zhao and A. Wang, ‘ Low cost silicon solar cells with high efficiency at high concentrations’, Conf. Record 22nd IEEE Photovoltaic Specialists Conf., Las Vegas, 1991, pp. 268–272.
- 15 R. R. King, R. A. Sinton and R. M. Swanson, ‘ Front and back surface fields for point contact solar cells’, Conf. Record 20th IEEE Photovoltaic Specialists Conf., Las Vegas, 1988, p. 538.
- 16 R. R. King, R. A. Sinton and R. M. Swanson, One-Sun, Single-Crystalline Silicon Solar Cell Research, Sandia National Laboratories, Report SAND91-S003, 1991.
- 17 R. A. Sinton, PhD thesis, Stanford University, 1987.
- 18 P. Verlinden, F. Van de Wiele, G. Stehelin and J. P. David, ‘ Optimized interdigitated back contact (IBC) solar cell for high concentrated sunlight’, Conf: Record 18th ZEEE Photovoltaic Specialists Conf, Las Vegas, 1985, pp. 55–58.
- 19 R. A. Sinton, R. R. King and R. M. Swanson, ‘ Novel implementations of backside-contact silicon solar cell designs in one-sun and concentrator applications’ Conf: Record 4th Photovoltaic Science and Engineering Conf, Sydney, 1989, p. 142.
- 20 P. R. Campbell, ‘ Light trapping and reflection control in a crystalline silicon solar cell’, PhD Thesis, University of New South Wales, June 1989.
- 21 M. A. Green, S. R. Wenham, J. Zhao, S. Bowden, A. M. Milne, M. Taouk and F. Zhang, ‘ Present status of buried contact solar cells’, Conf. Record 22nd ZEEE Photovoltaic Specialists Conf., Las Vegas, October 1991, pp. 46–53.
- 22 T. Saitoh, R. Shimokawa and Y. Hayashi, ‘Recent progress in research and development of crystalline silicon solar cells in Japan’, Progr. Photovolt. 1, 11–24 (1993).
- 23 J. Metzdorf, T. Wittchen, K. Heidler, K. Dehne, F. Shimokawa, H. Nagamine, H. Ossenbrink, L. Fornarini, C. Goodbody, M. Davies, K. Emery and R. DeBlasio, ‘ Objectives and results of the PEPS 7 round-robin calibration of reference solar cells and module’, Conf. Record 21st IEEE Photovoltaic Specialists Conf., Kissimimee, May 1990, pp. 952–959.
- 24 A. G. Aberle, S. J. Robinson, A. Wang, J. Zhao, S. R. Wenham and M. A. Green, ‘High efficiency silicon solar cells: fill factor limitations and non-ideal diode behaviour due to voltage-dependent rear surface recombination velocity’, Prog. Photovolt. 1, 133–143 (1993).
- 25 S. J. Robinson, A. G. Aberle and M. A. Green, ‘Recombination saturation effects in silicon solar cells’, IEEE Trans. Electron Deoices, 41, 1556–1569 (1994).
- 26 S. J. Robinson, S. R. Wenham, P. P. Altermatt, A. G. Aberle, G. Heiser and M. A. Green, ‘Recombination rate saturation mechanisms at oxidized surfaces of high-efficiency silicon solar cells’, J. Appl. Phys., 78, 4740–4754 (1995).
- 27 S. R. Wenham, R. Robinson, X. Dai, J. Zhao, A. Wang, Y. H. Tang, A. Ebong, C. B. Honsberg and M. A. Green, ‘ Rear surface effects in high efficiency silicon solar cells’, Conf. Record 1st World Conference on Photovoltaic Energy Conuersion, December 1994, pp. 1278–1282.
- 28 A. Wang, J. Zhao, S. R. Wenham and M. A. Green, ‘21.5% Efficient thin silicon solar cell’ Prog. Photovolt., 4, 55–58 (1996).
- 29 A. Briglio, K. Dumas, M. Leipold and A. Morrison, Flat Plate Solar Array Project: Final Report: Vol. 3: Silicon Sheet: Wafers and Ribbons, Jet Propulsion Laboratory Publication 86–31, 1986.
- 30 M. Guelden and S. R. Wenham, University of New South Wales Centre for Photovoltaic Devices & Systems, Internal Report 9202, 1992.
- 31 P. Campbell, S. R. Wenham and M. A. Green, ‘ Improved reflection and light trapping using tilted pyramids and grooves’, Proc. 4th International Photovoltaic Science and Engineering Conf., Sydney, February 1989, pp. 615–620.
- 32 S. R. Wenham and J. Gee, ‘ Advanced processing of silicon solar cells’, Tutorial Notes, 23rd IEEE Photovoltaics Specialists Conf., Louisville, May 1993.
- 33 C. M. Chong, ‘ Buried contact solar cells’ PhD Thesis, University of New South Wales, September 1989.
- 34 S. R. Wenham, C. B. Honsberg and M. A. Green, ‘Buried contact silicon solar cells’, Sol. Energy Mater. Sol. Cells, 34, 101–110 (1994).
- 35 N. B. Mason and D. Jordan, ‘ A high efficiency silicon solar cell technology’, 10th PV Solar Energy Conf., Lisbon, 1991.
- 36 J. Gee, ‘ Advanced processing of silicon solar cells’, Part 2, Tutorial Notes, 23rd IEEE Photovoltaics Specialists Conf., Louisville, May 1993.
- 37 J. P. Galica, W. H. Holley, S. C. Agro and R. S. Yorgensen, ‘ Advanced development of non-discoloring EVA encapsulants’, Conf. Record 13th European Photovoltaic Solar Eneergy Conf., Nice, October 1995.
- 38 J. E. Johnson, J. I. Hanoka and J. A. Gregory, ‘ Continuous mode hydrogen passivation’, Conf. Record 18th IEEE Photovoltaic Specialists Conf., Las Vegas, 1985, pp. 1112–1115.
- 39 K. Kimura, ‘ Recent developments in polycrystalline silicon solar cell’, Conf. Record 1st Int. Photovoltaic Science and Engineering Conference, Kobe, 1984, pp. 37–42.
- 40 J. Bigger and R. Taylor, ‘ PV system applications: today and tomorrow’, Tutorial Notes, 23rd IEEE Photovoltaics Specialists Conference, Louisville, May 1993.
- 41 S. Narayanan, S. R. Wenham and M. A. Green, ‘17.8 Percent efficiency polycrystalline silicon solar cells’, IEEE Trans. Electron Deoices 37, 382 (1990).
- 42 S. Hogan, G. Darkazalli and R. Wolfson, ‘ An analysis of high efficiency Si processing’, Conf. Record 10th EC Photovoltaic Solar Energy Conference, Lisbon, 1991, pp. 276–279.
- 43 E. A. de Meo, F. R. Goodman Jr., T. M. Peterson and J. C. Schaefer, ‘ Solar photovoltaic power: a US electric utility R&D perspective’, 21st IEEE Photovoltaics Specialists Conf., Kissimimee, May 1990, p. 16.
- 44 D. Jordan and J. P. Nagle, ‘New generation of high-efficiency solar cells: development, processing and marketing’, Prog. Photovolt. 2, 171 (1994).
- 45 M. A. Green, SOLAR CELLS Operating Principles, Technology and System Applications, Prentice-Hall, New Jersey, 1982.
- 46 J. Nijs, E. Demesmaeker, J. Szlufcik, J. Poortmans, L. Frisson, K. De Clercq, M. Ghannam, R. Mertens and R. Van Overstraeten, ‘ Latest efficiency results with the screenprinting technology and comparison with the buried contact structure’, 1994 IEEE First World Conf. on Photovoltaic Energy Conversion. Hawaii, December 1994, p. 1242.
- 47 T. Bruton, ‘ Buried grid solar cells’, 1st European Crystalline Silicon Workshop, Madrid, April 1994.
- 48 S. R. Wenham, ‘Buried-contact silicon solar cells’, Prog. Photovolt. 1, 3–10 (1993).
- 49 M. A. Green, S. R. Wenham and J. Zhao, ‘ Progress in high efficiency silicon solar cell and module research’, Conf. Record 23rd IEEE Photovoltaic Specialists Conf., Louisville, May 1993, invited plenary session paper, pp. 8–13.
- 50 N. B. Mason and D. Jordan, ‘ A high efficiency silicon solar cell production technology’, Conf. Record 10th EC Photovoltaic Solar Energy Conference, Lisbon, 1991, pp. 280–283.
- 51 F. Zhang, ‘ Buried contact silicon concentrator solar cells’, PhD Thesis, University of New South Wales, 1995.
- 52 K. Bucher and S. Kunzelmann, ‘ The FhG-ISE PV charts, assessment of PV device performance’ Conf. Proc. 13th European Photovoltaic Solar Energy Conference, October 1995.
- 53 T. F. Ciszek, ‘ Silicon material quality and throughput: the high and the low, the fast and the slow’, 20th IEEE Photovoltaic Specialists Conf., Las Vegas, September 1988, p. 31.
- 54 A. Goetzberger and A. Rauber, ‘ Progress in non-Czochralski growth of silicon for solar cells’, 4th Photovoltaic Science and Engineering Conf., Sydney, February 1989, p. 135.
- 55 J. Levine, G. B. Hotchkiss and M. D. Hammerbacher, ‘ Basic properties of the spheral solar cell’, Conf. Record 22nd IEEE Photovoltaic Specialists Conf., Las Vegas, 1991, pp. 1045–1048.
- 56 H. Mori, ‘Radiation energy transducing device’, US Patent 3.278.811, October 1966 (priority date, October 1960).
- 57 A. M. Barnett, ‘ Thin polycrystalline silicon solar cells on low cost substrates’, Conf. Record 6th International Photovoltaic Science and Engineering Conf., New Delhi, 1992, pp. 737–744.
- 58 A. M. Barnett, ‘ Thin silicon-film solar cells on ceramic substrates’, Conf. Record 4th Photovoltaic Science and Engineering Conf., Sydney, 1989, pp. 151–158.
- 59 T. Matsuyama, T. Baba, T. Takahama, S. Tsuda, H. Nishiwaki and S. Nakano, ‘ Development of thin-film polycrystalline silicon solar cells by a solid phase crystallization method’, Conf. Record 12th European Photovoltaic Solar Energy Conf., Amsterdam, April, 1994, pp. 1827–1834.
- 60 I. Wei Wu, ‘ Polycrystalline silicon thin-film transistors for liquid crystal displays’, Conf. Record Polyse 1993, St Malo, France, September 1993.
- 61 U. Rau and M. Goldbach, ‘ Modelling of the electronic transport in multijunction solar cells’, Con8 Record 1st World Conference on Photovoltaic Energy Conversion, December 1994, pp. 1421–1424.
- 62 M. J. Stocks and A. W. Blakers, ‘ Junction recombination in multilayer silicon solar cells’, Conf. Record 13th European Photovoltaic Solar Energy Conf., Nice, October 1995.
- 63 S. R. Wenham, M. A. Green, S. Edmiston, P. Campbell, L. Koschier, C. B. Honsberg, A. B. Sproul, D. Thorpe, Z. Shi and G. Heiser, ‘ Limits to the efficiency of silicon multilayer solar cells’, Con5 Record 1st World Conference on Photovoltaic Energy Conversion, December 1994, pp, 1234–1241.
- 64 M. Goldbach, U. Rau and J. Parisi, ‘ Numerical optimisation of the multijunction solar cell’, Conf. Record 13th European Photovoltaic Solar Energy Conf., Nice, October 1995.
- 65 A. B. Sproul, Z. Shi, J. Zhao, A. Wang, Y. H. Tang, F. Yun, T. Young, Y. Huang, S. Edmiston, S. R. Wenham and M. A. Green, ‘ Characterization and analysis of multilayer solar cells’, Conf. Record 1st World Conference on Photovoltaic Energy Conversion, December 1994, pp. 1410–1412.
- 66 C. B. Honsberg, S. Edmiston, S. R. Wenham, A. B. Sproul and M. A. Green, ‘ Capitalizing on two dimensional minority carrier injection in silicon solar cell design’, Con5 Record 1st World Conference on Photovoltaic Energy Conversion, December 1994, pp. 1413–1416.
- 67 A. B. Sproul, S. Edmiston, S. R. Wenham, G. H. Heiser and M. A. Green, ‘ Innovative structures for thin film crystalline silicon solar cells to give high efficiencies from low quality silicon’, Con5 Record 1st World Conference on Photovoltaic Energy Conversion, December 1994, pp. 1563–1566.
- 68 S. A. Edmiston, A. B. Sproul, M. A. Green and S. R. Wenham, ‘Modelling of thin-film crystalline silicon parallel multijunction solar cells’, Prog. Photovolt., 3, 333–350 (1995).
- 69 M. A. Green, Silicon Solar Cells: Advanced Principles and Practice, Bridge Printery, Sydney, 1995.
- 70 J. Zhao, G. F. Zhang, A. Wang, S. R. Wenham and M. A. Green, ‘ Improved performance of multilayer silicon solar cells’, Conf. Proc. 13th European Photovoltaic Solar Energy Conf., Nice, October 1995.
- 71 S. Edmiston, M. A. Green and S. R. Wenham, ‘ Bypass Zener diode protection for thin film crystalline silicon multilayer solar cells’, Conf. Proc. 13th European Photovoltaic Solar Energy Conf., Nice, October 1995.