A new anisotropic failure criterion for transversely isotropic solids
Corresponding Author
O. Cazacu
Department of Aerospace Engineering, Mechanics and Engineering Science, P.O. Box 116250, Gainesville, FL 32611-6250, U.S.A.
Department of Aerospace Engineering, Mechanics and Engineering Science, P.O. Box 116250, Gainesville, FL 32611-6250, U.S.A.Search for more papers by this authorN. D. Cristescu
Department of Aerospace Engineering, Mechanics and Engineering Science, 231 Aerospace Bldg., P.O. Box 116250, Gainesville, FL 32611-6250, U.S.A.
Search for more papers by this authorJ. F. Shao
Laboratoire de Mécanique de Lille, URA 1441 CNRS, Villeneuve d'Ascq, France
Search for more papers by this authorJ. P. Henry
Laboratoire de Mécanique de Lille, URA 1441 CNRS, Villeneuve d'Ascq, France
Search for more papers by this authorCorresponding Author
O. Cazacu
Department of Aerospace Engineering, Mechanics and Engineering Science, P.O. Box 116250, Gainesville, FL 32611-6250, U.S.A.
Department of Aerospace Engineering, Mechanics and Engineering Science, P.O. Box 116250, Gainesville, FL 32611-6250, U.S.A.Search for more papers by this authorN. D. Cristescu
Department of Aerospace Engineering, Mechanics and Engineering Science, 231 Aerospace Bldg., P.O. Box 116250, Gainesville, FL 32611-6250, U.S.A.
Search for more papers by this authorJ. F. Shao
Laboratoire de Mécanique de Lille, URA 1441 CNRS, Villeneuve d'Ascq, France
Search for more papers by this authorJ. P. Henry
Laboratoire de Mécanique de Lille, URA 1441 CNRS, Villeneuve d'Ascq, France
Search for more papers by this authorAbstract
A coordinate-free formulation of a failure criterion for transversely isotropic solids is proposed. In the three-dimensional stress space the criterion is represented by an elliptic paraboloid. The anisotropic form of the proposed criterion is based on generalization of the second invariant of the deviatoric stress and of the mean stress obtained through the introduction of a unique fourth-order tensor. For isotropic conditions, the criterion reduces to the Mises–Schleicher failure condition. It is shown that the criterion satisfactorily predicts the strength anisotropy of transversely isotropic rocks subjected to an axisymmetric stress state. The procedure for the identification of the parameters of the criterion from a few simple laboratory tests is outlined. © 1998 John Wiley & Sons, Ltd.
References
- 1 F. A. Donath, ‘ Strength variation and deformational behaviour in anisotropic rock’, in W. R. Judd, ed., State of Stress in the Earth's Crust, Elsevier, Amsterdam, pp. 281–297, 1964.
- 2
F. A. Donath,
‘ Effects of cohesion and granularity on deformational behavior of anisotropic rock’, in
B. R. Doc and
D. K. Smith, eds.,
Studies in Mineralogy and Precambrian Geology,
vol. 135,
Geological Society of America, Boulder, CO,
pp. 95–128,
1972.
10.1130/MEM135-p95 Google Scholar
- 3 M. Dayre and P. M. Syries, ‘Phénoménes de rupture fragile et de viscoélasticité des roches isotropes dt anisotropes’, C. R. Acad. Sci. Paris, 259, 1163–1166 (1964).
- 4 P. B. Attewell and M. R. Sandford, ‘Intrinsic shear strength of a brittle anisotropic rock. I. Experimental and mechanical interpretation. II. Textural data acquisition and processing. III. Textural interpretation of failure’, Int. J. Rock. Mech. Min. Sci., 11, 423–430, 431–438, 439–451 (1974).
- 5
J. C. Jaeger,
‘Shear failure of anisotropic rocks’,
Geol. Mag.,
97,
65–72
(1960).
10.1017/S0016756800061100 Google Scholar
- 6
M. E. Chenevert and
C. Gatlin,
‘Mechanical anisotropies of laminated sedimentary rocks’,
Soc. Petrol. Eng. J.,
5,
67–77
(1965).
10.2118/890-PA Google Scholar
- 7 R. McLamore and K. E. Gray, ‘The mechanical behavior of anisotropic sedimentary rocks’, Journal of Engineering for Industry, Trans. of the ASME, 89, 62–73 (1967).
- 8 D. Allirot and J. P. Boehler, ‘ Volution des propriétés mécaniques d'une roche stratifiée sous pression de confinement’, Proc. 4th Int. Soc. Rock. Mech., vol. 1, Montreaux, Balkema, Rotterdam, pp. 15–22, 1979.
- 9 F. Homand, E. Morel, J. P. Henry, P. Cuxac and E. Hammade, ‘Characterization of the moduli of elasticity of an anisotropic rock using dynamic and static methods’, Int. J. Rock. Mech. Min. Sci. & Geomech. Abstr., 30, 527–535 (1993).
- 10 H. Niandou, ‘ Étude de comportement reéologique et modélisation de l'argilite de Tournemire. Application á la stabilité des ouvrages souterrains’, Ph.D. Thesis, USTL, Université de Lille 1, 1994.
- 11 T. Ramamurthy, ‘ Strength and modulus responses of anisotropic rocks’, in J. A. Hudson, ed., Comprehensive Rock Engineering, Pergamon Press, Oxford, vol. 1, pp. 313–329, 1993.
- 12 M. A. Kwasniewski, ‘ Mechanical behavior of anistropic rocks’, in J. A. Hudson, ed., Comprehensive Rock Engineering, Pergamon Press, Oxford, vol. 1, pp. 285–312, 1993.
- 13 E. Hoek, ‘Fractures of anisotropic rock’, J. S. Afr. Inst. Min. Metall., 64, 501–518 (1964)
- 14 J. B. Walsh and W. F. Bruce, ‘A fracture criterion for brittle anisotropic rocks’, Journal of Geophysical Research, 69, 3449–3456 (1964).
- 15 K. Baron, ‘Brittle fracture initiation in and ultimate failure of rocks. I. Isotropic rock. II, Anisotropic rocks, theory. III. Anisotropic rocks, experimental results’, Int. J. Rock. Mech. Min. Sci. 8, 541–551, 553–563, 565–575 (1971).
- 16
I. I. Goldenblat and
V. A. Kopnov,
‘Strength of Glass-reinforced plastics in the complex stress-state’,
Polymer Mechanics,
1,
54
(1966).
10.1007/BF00860685 Google Scholar
- 17 S. W. Tsai and E. Wu, ‘A general theory of strength of anisotropic materials’, J. Composite Materials, 5, 58–80 (1971).
- 18 W. G. Pariseau, ‘Plasticity theory for anisotropic rocks and soils’, Proc. 10th Symposium on Rock Mechanics, AIME, pp. 267–295, 1972.
- 19 R. Hill, ‘A theory of yielding and plastic flow of anisotropic metals’, Proceedings of the Royal Society (London) Ser. A, 193, 281–297 (1948)
- 20 J. P. Boehler and A. Sawczuk, ‘Équilibre limite des sols anisotropes’, Journal de Mécanique, 9, 5–33 (1970).
- 21 J. P. Boehler and A. Sawczuk, ‘On yielding of orientated solids’, Acta Mechanica, 27, 185–206 (1977).
- 22
J. P. Boehler,
‘ Yielding and failure of transversely isotropic solids’, in
J. P. Bochler, ed.,
Applications of Tensor Functions in Solid Mechanics,
CISM Courses and Lectures No 292,
Springer-Verlag, Berlin,
pp. 3–140,
1987.
10.1007/978-3-7091-2810-7_1 Google Scholar
- 23 J. P. Boehler and J. Raclin, ‘Failure criteria for glass-fiber reinforced composites under confining pressure’, J. Struct. Mech., 13, 371–393.
- 24 J. P. Boehler, ‘ Contributions théoriques et éxpérimentales á l'étude des milieux plastiques unisostropes’, Thése de Doctorat ès Sciences, Grenoble, 1975.
- 25 R. Nova and G. A. Sacchi, ‘ A generalized failure condition for orthotropic solids’, EUROMECH 115-Mechanical Behavior of Anisotropic Solids, Villard de Lans, 1979.
- 26 R. Nova, ‘The failure of transversely anisotropic rocks in triaxial compression’, Int. J. Rock. Mech. Min. Sci. & Geomech. Abstr., 17, 325–332 (1980).
- 27 P. S. Theocaris, ‘The elliptic paraboloid failure surface for transversely isotropic materials off-axis loaded’, Rheologica Acta, 28, 154–165 (1989).
- 28 P. S. Theocaris, ‘The paraboloid failure surface for the general orthotropic material’, Acta Mechanica, 79, 53–79 (1989).
- 29 P. S. Theocaris, ‘The elliptic paraboloid failure criterion for cellular solids and brittle foams’, Acta Mechanica, 89, 93–121 (1991).
- 30 W. Noll, ‘A new mathematical theory of simple materials’, Arch. Rat. Mech. Anal., 48, 1–50 (1972).
- 31 A. J. M. Spencer, ‘ Theory of invariants in continuum physics’, in C. Eringen, ed., Academic Press, pp. 239–353, 1971.
- 32 C. C. Wang, ‘Corrigendum 43’, Arch. Rat. Mech. Anal., 36, 392–395 (1971).
- 33 J. P. Boehler, ‘Lois de comportement anisotrope des milieux continus’, Journal de Mécanique, 17, 153–190 (1978).
- 34 S. I. Liu, ‘On representation of anisotropic invariants’, Int. J. Engng. Sci., 20, 1099–1109 (1982).
- 35 O. Cazacu, ‘ Contribution à la modélisation élasto-viscoplastique d'une roche anisotrope’, Ph.D. Thesis, Univérsité de Lille 1, 1995.
- 36 O. Cazacu and N. D. Cristescu, ‘Failure of anistropic compressive shale’, in R. C. Batra, A. K. Mal and G. P. MacSithigh, eds., Proc. Joint Applied Mechanics and Materials Summer Meeting, ASME–AMD, Impact, Waves and Fracture, vol. 205, pp. 1–8, 1995.
- 37 J. Lubliner, Plasticity Theory, Macmillan Publishing Company, New York, 1990.
- 38 S. W. Tsai and H. T. Hahn, Introduction to Composite Materials, Technomic Publishing Co., Westport, Connecticut, 1980.
- 39 S. C. Cowin, ‘On the strength anisotropy of bone and wood’, Journal of Applied Mechanics, 46, 832–836 (1979)
- 40
R. Y. Wu and
Z. Stachurski,
‘Evaluation of the normal stress interaction parameter in the tensor polynomial theory for anisotropic materials’,
Journal of Composite Materials,
18,
456–463
(1984).
10.1177/002199838401800505 Google Scholar
- 41 P. Labossière and K. W. Neale, ‘Macroscopic failure criteria for fibre-reinforced composite materials’, SM Archiv., 12, 65–92 (1987).
- 42
M. Aubertin and
R. Simon,
‘A damage initiation criterion for low porosity rocks’,
Int. J. Rock. Mech. Min. Sci. & Geomech. Abstr.,
34,
(1997), in press.
10.1016/S1365-1609(97)00145-7 Google Scholar
- 43 O. Cazacu ‘ Macroscopic failure criteria for anistropic rocks’, in N. D. Cristescu and U. Hunsche eds., Time Effects in Rock Mechanics, Wiley-Interscience-Europe, Chichester, pp. 169–179, 1998.
- 44 P. Cuxac, ‘ Propagation et attenuation des ondes ultrasoniques dans des roches fissurées et anistropes’, Thèse de doctorat, INPL, ENSG de Nancy, 1991.
- 45 R. D. Lama and V. S. Vutukuri, Handbook on Mechanical Properties of Rocks, Vol. II: Testing Techniques and Results, Trans. Tech. Publ., pp. 57–148, 254–282, 1978.
- 46 N. D. Cristescu and O. Cazacu, ‘ Viscoplasticity of anisotropic rocks’, Proceedings of Plasticity '95, The 5th International Symposium on Plasticity and its Current Applications, Gordon and Breach, Science Publ. Inc., pp. 409–503, 1995.