1H NMR conformational study on n-terminal nonapeptide sequences of HIV-1 Tat protein: a contribution to structure–activity relationships
Corresponding Author
Carmen Mrestani-Klaus
Department of Biochemistry and Biotechnology, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, Halle, Germany
Department of Biochemistry and Biotechnology, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120 Halle, GermanySearch for more papers by this authorAnnett Fengler
Department of Biochemistry and Biotechnology, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, Halle, Germany
Search for more papers by this authorWolfgang Brandt
Department of Biochemistry and Biotechnology, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, Halle, Germany
Search for more papers by this authorJürgen Faust
Department of Biochemistry and Biotechnology, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, Halle, Germany
Search for more papers by this authorSabine Wrenger
Center for Internal Medicine, Institute of Experimental Internal Medicine, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
Search for more papers by this authorDirk Reinhold
Center for Internal Medicine, Institute of Experimental Internal Medicine, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
Search for more papers by this authorSiegfried Ansorge
Center for Internal Medicine, Institute of Experimental Internal Medicine, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
Search for more papers by this authorKlaus Neubert
Department of Biochemistry and Biotechnology, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, Halle, Germany
Search for more papers by this authorCorresponding Author
Carmen Mrestani-Klaus
Department of Biochemistry and Biotechnology, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, Halle, Germany
Department of Biochemistry and Biotechnology, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120 Halle, GermanySearch for more papers by this authorAnnett Fengler
Department of Biochemistry and Biotechnology, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, Halle, Germany
Search for more papers by this authorWolfgang Brandt
Department of Biochemistry and Biotechnology, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, Halle, Germany
Search for more papers by this authorJürgen Faust
Department of Biochemistry and Biotechnology, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, Halle, Germany
Search for more papers by this authorSabine Wrenger
Center for Internal Medicine, Institute of Experimental Internal Medicine, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
Search for more papers by this authorDirk Reinhold
Center for Internal Medicine, Institute of Experimental Internal Medicine, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
Search for more papers by this authorSiegfried Ansorge
Center for Internal Medicine, Institute of Experimental Internal Medicine, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
Search for more papers by this authorKlaus Neubert
Department of Biochemistry and Biotechnology, Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, Halle, Germany
Search for more papers by this authorAbstract
On the basis of our recent results, the N-terminal sequence of HIV-1 Tat protein as a natural competitive inhibitor of dipeptidyl peptidase IV (DP IV) is supposed to interact directly with the active site of DP IV hence mediating its immunosuppressive effects via specific DP IV interactions. Of special interest is the finding that amino acid substitutions of the Tat(1–9) peptide (MDPVDPNIE) in position 5 with S-isoleucine and in position 6 with S-leucine led to peptides with strongly reduced inhibitory activity suggesting differences in the solution conformation of the three analogues. Therefore, 1H NMR techniques in conjunction with molecular modelling have been used here to determine the solution structure of Tat(1–9), I5-Tat(1–9) and L6-Tat(1–9) and to examine the influence of amino acid exchanges on structural features of these peptides. The defined structures revealed differences in the conformations what might be the reason for different interactions of these Tat(1–9) analogues with certain amino acids of the active site of DP IV. © 1998 European Peptide Society and John Wiley & Sons, Ltd.
References
- 1 F. Barre-Sinoussi, J. C. Chermann, F. Rey, M. T. Nugeyre, S. Chamaret, J. Gruest, C. Dauguet, C. Axler-Blin, F. Vezinet-Brun, C. Ronzioux, W. Rozenbaum and L. Montagnier (1983). Isolation of a Tlymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220, 868–871.
- 2 R. C. Gallo, S. Z. Salahuddin, M. Popovic, G. M. Shearer, M. Kaplan, B. F. Haynes, T. J. Palker, R. Redfield, J. Oleske, B. Safai, G. White, P. Foster and P. D. Markham (1984). Frequent detection and isolation of cytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS. Science 224, 500–503.
- 3 J. G. Sodroski, C. A. Rosen, W. C. Goh and W. A. Haseltine (1985). A transcriptional activator protein encoded by the x-lor region of the human T-cell leukemia virus. Science 228, 1430–1434.
- 4 A. I. Dayton, J. G. Sodroski, C. A. Rosen, W. C. Goh and W. A. Haseltine (1986). The trans-activator gene of the human T cell lymphotropic virus type III is required for replication. Cell 44, 941–947.
- 5 B. Ensoli, L. Buonaguro, G. Barillari, V. Fiorelli, R. Gendelman, R. A. Morgan, P. Wingfield and R. C. Gallo (1993). Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation. J. Virol. 67, 277–287.
- 6 R. P. Viscidi, K. Mayur, H. M. Lederman and A. D. Frankel (1989). Inhibition of antigen-induced lymphocyte proliferation by Tat-protein from HIV-1. Science 246, 1606–1608.
- 7 M. Subramanyam, W. G. Gutheil, W. W. Bachovchin and B. T. Huber (1993). Mechanism of HIV-1 Tat induced inhibition of antigen-specific T-cell responsiveness. J. Immunol. 150, 2544–2553.
- 8 B. Fleischer (1994). CD26: A surface protease involved in T-cell activation. Immunol. Today 15, 180–184.
- 9 C. Callebaut, B. Krust, E. Jacotot and A. G. Hovanessian (1993). T-cell activation antigen, CD26, as a cofactor for entry of HIV in CD4+ cells. Science 262, 2045–2050.
- 10 W. G. Gutheil, M. Subramanyam, G. R. Flentke, D. G. Sanford, E. Munoz, B. T. Huber and W. W. Bachovchin (1994). Human immunodeficiency virus 1 Tat binds to dipeptidyl aminopeptidase IV (CD26): A possible mechanism for Tat's immunosuppressive activity. Proc. Natl. Acad. Sci. USA 91, 6594–6598.
- 11 D. Reinhold, S. Wrenger, U. Bank, F. Bühling, T. Hoffmann, K. Neubert, M. Kraft, R. Frank and S. Ansorge (1996). CD26 mediates the action of HIV-1 Tat protein on DNA synthesis and cytokine production in U937 cells. Immunobiology 195, 119–128.
- 12 S. Wrenger, D. Reinhold, T. Hoffmann, M. Kraft, R. Frank, J. Faust, K. Neubert and S. Ansorge (1996). The N-terminal X-X-Pro sequence of the HIV-1 Tat protein is important for the inhibition of dipeptidyl peptidase IV (DP IV:CD26) and the suppression of mitogen-induced proliferation of human T cells. FEBS Lett. 383, 145–149.
- 13 S. Wrenger, T. Hoffmann, J. Faust, C. Mrestani-Klaus, W. Brandt, K. Neubert, M. Kraft, S. Olek, R. Frank, S. Ansorge and D. Reinhold (1997). The N-terminal structure of HIV-1 Tat is required for suppression of CD26-dependent T cell growth. J. Biol. Chem. 272, 30283–30288.
- 14 A. Pardi, M. Billeter and K. Wüthrich (1984). Calibration of the angular dependence of the amide proton-Cα proton coupling constants, 3JHNα, in a globular protein. Use of 3JHNα for identification of helical secondary structure. J. Mol. Biol. 180, 741–751.
- 15 W. P. Aue, E. Bartholdi and R. R. Ernst (1976). Two-dimensional spectroscopy. Application to Nuclear Magnetic Resonance. J. Chem. Phys. 64, 2229–2246.
- 16 L. Braunschweiler and R. R. Ernst (1983). Coherence transfer by isotropic mixing. Application to proton correlation spectroscopy. J. Magn. Reson. 53, 521–528.
- 17 A. A. Bothner-By, R. L. Stephens, J. Lee, C. D. Warren and R. W. Jeanloz (1984). Structure determination of a tetrasaccharide: Transient Nuclear Overhauser effects in the rotating frame. J. Am. Chem. Soc. 106, 811–813.
- 18 L. Müller and R. R. Ernst (1979). Coherence transfer in the rotating frame. Application to heteronuclear crosscorrelation spectroscopy. Mol. Phys. 38, 963–992.
- 19 D. Marion and K. Wüthrich (1983). Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling constants in proteins. Biochem. Biophys. Res. Commun. 113, 967–974.
- 20 D. J. States, R. A. Haberkorn and D. J. Ruben (1982). A two-dimensional Nuclear Overhauser experiment with pure absorption phase in four quadrants. J. Magn. Reson. 48, 286–292.
- 21 A. Bax and D. G. Davis (1985). MLEV-17-based two-dimensional homonuclear magnetization transfer spectroscopy. J. Magn. Reson. 65, 355–360.
- 22 D. Neuhaus and M. Williamson: The Nuclear Overhauser Effect in Structural and Conformational Analysis, p. 103–140, VCH Publishers Inc., Weinheim 1989.
- 23 TRIPOS Associates, Inc., 1699 S. Hanley Road, St. Louis, Missouri 63144–2913, 1996.
- 24 S. J. Weiner, P. A. Kollmann, D. A. Case, U. C. Singh, C. Ghio, G. Alagano, S. Profeta, Jr and P. Weiner (1984). A new force field for molecular mechanical simulation of nucleic acids and proteins. J. Am. Chem. Soc. 106, 765–784.
- 25 S. J. Weiner, P. A. Kollmann, D. T. Nguyen and D. A. Case (1986). An all atom force field for simulations of proteins and nucleic acids. J. Comput. Chem. 7, 230–252.
- 26 D. S. Wishart, B. D. Sykes, and F. M. Richards (1991). Relationship between Nuclear Magnetic Resonance chemical shift and protein secondary structure. J. Mol. Biol. 222, 311–333.
- 27 D. S. Wishart, B. D. Sykes and F. M. Richards (1992). The chemical shift index: A fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry 31, 1647–1651.
- 28 K. Wüthrich: NMR of Proteins and Nucleic Acids, p. 14–19, Wiley, New York 1996.
- 29 O. W. Howarth and D. M. J. Lilley (1978). Carbon-13-NMR of peptides and proteins. Prog. NMR Spectr. 12, 1–40.
- 30 H. J. Dyson and P. E. Wright (1991). Defining solution conformations of small linear peptides. Annu. Rev. Biophys. Biophys. Chem. 20, 519–538.
- 31 D. W. Urry, M. Ohnishi and R. Walter (1970). Secondary structure of the cyclic moiety of the peptide hormone oxytocin and its deamino analog. Proc. Natl. Acad. Sci. USA 66, 111–116.
- 32 D. A. Torchia, S. C. K. Wong, C. M. Deber and E. R. Blout (1972). Cyclic peptides. III. Solution conformations of cyclo (serylprolylglycylserylprolylglycyl) from Nuclear Magnetic Resonance. J. Am. Chem. Soc. 94, 616–620.
- 33 Y. A. Bara, A. Friedrich, H. Kessler and M. Molter (1978). 1H NMR investigation of the conformation of cyclo (-Phe3-Gly2-). Chem. Ber. 111, 1045–1057.
- 34 H. Kessler, W. Bermel, A. Müller and K.-H. Pook. Modern Nuclear Magnetic Resonance spectroscopy of peptides, in: The Peptides 1985, S. Udenfriend, J. Meienhofer and V. J. Hruby, Eds, p. 437–473, Academic Press, Orlando, FL 1985.
- 35 O. Jardetzky and G. C. K. Roberts: NMR in Molecular Biology, p. 166, Academic Press, New York 1981.
- 36 A. Bax and D. G. Davis (1985). Practical aspects of two-dimensional transverse NOE spectroscopy. J. Magn. Reson. 63, 207–213.
- 37 H. J. Dyson, M. Rance, R. A. Houghten, P. E. Wright and R. A. Lerner (1988). Folding of immunogenic peptide fragments of proteins in water solution. II. The nascent helix. J. Mol. Biol. 201, 201–217.
- 38 H. J. Dyson, M. Rance, R. A. Houghten, R. A. Lerner and P. E. Wright (1988). Folding of immunogenic peptide fragments of proteins in water solution. I. Sequence requirements for the formation of a reverse turn. J. Mol. Biol. 201, 161–200.
- 39 W. Brandt, T. Lehmann, I. Thondorf, I. Born, M. Schutkowski, J.-U. Rahfeld, K. Neubert and A. Barth (1995). A model of the active site of dipeptidyl peptidase IV predicted by comparative molecular field analysis and molecular modelling simulations. Int. J. Peptide Protein Res. 46, 494–507.
- 40 D. Klostermeier, P. Bayer, M. Kraft, R. W. Frank and P. Rösch (1997). Spectroscopic investigations of HIV-1 trans-activator and related peptides in aqueous solutions. Biophys. Chem. 63, 87–96.