Transient performance of a two-dimensional salt gradient solar pond—A numerical study
Abstract
Solar ponds have recently become an important source of energy that is used in many different applications. The technology of the solar pond is based on storing solar energy in salt-gradient stratified zones. Many experimental and numerical investigations concerning the optimum operational conditions and economical feasibility of solar ponds have been published in the last few decades. In the present study, a novel two-dimensional mathematical model that uses derived variables is developed and presented. This model utilizes vorticity, dilatation, density, temperature and concentration as dependent variables. The resulting governing partial differential equations are solved numerically in order to predict the transient performance of a solar pond in the two-dimensional domain. The boundary conditions are based on measured ambient and ground temperatures at Kuwait city. Based on the present formulation, a computer code has been developed to solve the problem at different operating conditions. The results are compared with the available experimental data and one-dimensional numerical results. Two-dimensionality effects are found to depend mainly on the aspect ratio of the pond. A parametric study is conducted to determine the optimum pond dimensions and operating conditions.