Effects of Ferric Hydroxide on Methanogenesis from Lipids and Long-Chain Fatty Acids in Anaerobic Digestion
Zhengkai Li
Search for more papers by this authorBrian A. Wrenn
Search for more papers by this authorAlbert D. Venosa
Search for more papers by this authorZhengkai Li
Search for more papers by this authorBrian A. Wrenn
Search for more papers by this authorAlbert D. Venosa
Search for more papers by this authorAbstract
The addition of ferric hydroxide to sludge from a municipal anaerobic digester stimulated the rate of methanogenesis from canola oil when the initial oil concentration was high (4600 mg/L; P < 0.002), but not when it was low (920 mg/L; P > 0.05). Similar trends were observed when oleic acid, a fatty acid that is a major component of canola oil triglycerides, was provided, but the effects were statistically significant only when the initial concentration of ferric hydroxide was also high (18 g/L; P = 0.015). Iron reduction occurred when ferric hydroxide was added to microcosms containing anaerobic digester sludge, but the extent of ferrous iron production was much less in acetate-amended microcosms than in those that were provided with canola oil or oleic acid. Methanogenesis and acetate consumption were completely inhibited when the initial acetate concentration was approximately 5000 mg/L, regardless of the initial ferric hydroxide concentration. The main effect of ferric hydroxide in this system appears to have been a result of stimulation of the rate of fatty acid oxidation.
References
- Alves, M. M.; Vieira, J. A. M.; Pereixa, R. M. A.; Pereixa, M. A.; Mota, M. (2001) Effects of Lipids and Oleic Acid on Biomass Development in Anaerobic Fixed-Bed Reactors. Part II: Oleic Acid Toxicity and Biodegradability. Water Res, 35 (1), 264 – 270.
10.1016/S0043-1354(00)00242-6 Google Scholar
- Angelidaki, I.; Ellegaard, L.; Ahring, B. K. (1999) A Comprehensive Model of Anaerobic Bioconversion of Complex Substrates to Biogas. Biotechnol. Bioeng., 63 (3), 363 – 372.
10.1002/(SICI)1097-0290(19990505)63:3<363::AID-BIT13>3.0.CO;2-Z CAS PubMed Web of Science® Google Scholar
- Angelidaki, I.; Petersen, S. P.; Ahring, B. K. (1990) Effects of Lipids on Thermophilic Anaerobic-Digestion and Reduction of Lipid Inhibition Upon Addition of Bentonite. Appl. Microbiol. Biotechnol., 33 (4), 469 – 472.
- Beccari, M.; Bonemazzi, F.; Majone, M.; Riccardi, C. (1996) Interaction Between Acidogenesis and Methanogenesis in the Anaerobic Treatment of Olive Oil Mill Effluents. Water Res., 30 (1), 183 – 189.
- Bell, G. H. (1971) The Action of Monocarboxylic Acids on Candida Tropicalis Growing on Hydrocarbon Substrates. Antonie van Leeuwenhoek, 37, 385 – 400.
- Boari, G.; Brunetti, A.; Passino, R.; Rozz, A. (1984) Anaerobic Digestion of Olive Oil Mill Wastewaters. Agric. Wastes, 10, 161 – 175.
- Coates, J. D.; Ellis, D. J.; Gaw, C. V.; Lovley, D. R. (1999) Geothrix fermentans gen. nov., sp nov., a Novel Fe(III)-Reducing Bacterium from a Hydrocarbon-Contaminated Aquifer. Int. J. Systematic Bacteriol., 49, 1615 – 1622.
- Cord-Ruwisch, R.; Lovley, D. R.; Schink, B. (1998) Growth of Geobacter sulfurreducens with Acetate in Syntrophic Cooperation with Hydrogen-Oxidizing Anaerobic Partners. Appl. Environ. Microbiol., 64 (6), 2232 – 2236.
- Dalla Torre, A.; Stephanopoulos, G. (1986) Mixed Culture Model of Anaerobic Digestion: Application to the Evaluation of Startup Procedures. Biotechnol. Bioeng., 28, 1106 – 1118.
- Forsberg, C. W. (1987) Production of 1,3-propandiol from Glycerol by Clostridium acetobutylicum and other Clostridium Species. Appl. Environ. Microbiol., 53 (4), 639 – 643.
- Forster, C. F. (1992) Oils, Fats and Greases in Waste-Water Treatment. J. Chem. Technol. Biotechnol., 55 (4), 402 – 404.
- Galbraith, H.; Miller, T. B. (1973) Physicochemical Effects of Long Chain Fatty Acids on Bacterial Cells and their Protoplasts. J. Appl. Bacteriol., 36, 647 – 658.
- Greenway, D. L. A.; Dyke, K. G. H. (1979) Mechanism of the Inhibitory Action of Linoleic Acid on the Growth of Staphylococcus aureus. J. General Microbiol., 115, 233 – 245.
- Groenewold, J. C.; Pico, R. F.; Watson, K. S. (1982) Comparison of BOD Relationships for Typical Edible and Petroleum Oils. J. Water Pollut. Control Fed., 54 (4), 398 – 405.
- Hanaki, K.; Matsuo, T.; Nagase, M. (1981) Mechanisms of Inhibition Caused by Long-Chain Fatty Acids in Anaerobic Digestion Process. Biotechnol. Bioeng., 23, 1591 – 1610.
- Hwu, C. S.; Donlon, B.; Lettinga, G. (1996) Comparative Toxicity of Long-Chain Fatty Acid to Anaerobic Sludges from Various Origins. Water Sci. Technol., 34 (5--6), 351 – 358.
- Ivanov, V. N.; Stabnikova, E. V.; Stabnikov, V. P.; Kim, I. S.; Zubair, A. (2002) Effects of Iron Compounds on the Treatment of Fat-Containing Wastewaters. Appl. Biochem. Microbiol., 38 (3), 255 – 258.
- Koster, I. W.; Cramer, A. (1987) Inhibition of Methanogenesis from Acetate in Granular Sludge by Long Chain Fatty Acids. Appl. Environ. Microbiol., 53, 403 – 409.
- Lalman, J.; Bagley, D. M. (2002) Effects of C18 Long Chain Fatty Acids on Glucose, Butyrate and Hydrogen Degradation. Water Res., 36 (13), 3307 – 3313.
10.1016/S0043-1354(02)00014-3 Google Scholar
- Lalman, J. A.; Bagley, D. M. (2001) Anaerobic Degradation and Methanogenic Inhibitory Effects of Oleic and Stearic Acids. Water Res., 35 (12), 2975 – 2983.
- Lalman, J. A.; Komjarova, I. (2004) Impact of Long Chain Fatty Acids on Glucose Fermentation Under Mesophilic Conditions. Environ. Technol., 25 (4), 391 – 401.
- Lalman, J. A.; Komjarova, I.; Jing, N. (2004) Lactose Fermentation in the Presence of C-18 Fatty Acids. J. Chem. Technol. Biotechnol., 79 (11), 1259 – 1267.
- Li, Z.; Wrenn, B. A. (2004) Effects of Ferric Hydroxide on the Anaerobic Biodegradation Kinetics and Toxicity of Vegetable Oil in Freshwater Sediments. Water Res., 38 (18), 3859 – 3868.
10.1016/j.watres.2004.07.010 Google Scholar
- Li, Z.; Wrenn, B. A.; Venosa, A. D. (2005) Anaerobic Biodegradation of Vegetable Oil and Its Metabolic Intermediates in Oil-Enriched Freshwater Sediments. Biodegradation, 16, 341 – 352.
- Lovley, D. R. (1991) Dissimilatory Fe(III) and Mn(IV) Reduction. Microbiol. Rev., 55 (2), 259 – 287.
- Lovley, D. R.; Phillips, E. J. P. (1986) Availability of Ferric Iron for Microbial Reduction in Bottom Sediments of the Freshwater Tidal Potomac River. Appl. Environ. Microbiol., 52, 751 – 757.
- Mackie, R. I.; White, B. A.; Bryant, M. P. (1991) Lipid-Metabolism in Anaerobic Ecosystems. Crit. Rev. Microbiol., 17 (6), 449 – 479.
- Mantzavinos, D.; Kalogerakis, N. (2005) Treatment of Olive Mill Effluents Part I. Organic Matter Degradation by Chemical and Biological Processes---An Overview. Environ. Int., 31 (2), 289 – 295.
10.1016/j.envint.2004.10.005 Google Scholar
- Mechich, T.; Sayadi, S. (2005) Evaluating Process Imbalance of Anaerobic Digestion of Olive Mill Wastewaters. Proc. Biochem., 40 (1), 139 – 145.
- Mosey, F. E. (1983) Mathematical Modeling of the Anaerobic Digestion Process: Regulatory Mechanisms for the Formation of Short-Chain Volatile Acids from Glucose. Water Sci. Technol., 15, 209 – 232.
- Owen, W. F.; Stuckey, D. C.; Healy, J. B.; Young, L. Y.; McCarty, P. L. (1979) Bioassay for Monitoring Biochemical Methane Potential and Anaerobic Toxicity. Water Res., 13, 485 – 492.
- Patterson, H. B. W. (1989) Handling and Storage of Oilseeds, Oils, Fats, and Meal. Elsevier Science Publishers, Ltd.: New York.
- Pereira, A.; Mota, M.; Alves, M. (2001) Degradation of Oleic Acid in Anaerobic Filters: The Effect of Inoculum Acclimatization and Biomass Recirculation. Water Environ. Res., 73 (5), 612 – 621.
10.2175/106143001X143349 Google Scholar
- Pereira, M. A.; Cavaleiro, A. J.; Mota, M.; Alves, M. M. (2003) Accumulation of Long Chain Fatty Acids Onto Anaerobic Sludge Under Steady State and Shock Loading Conditions: Effect on Acetogenic and Mehanogenic Activity. Water Sci. Technol., 48 (6), 33 – 40.
- Rinzema, A.; Boone, M.; Vanknippenberg, K.; Lettinga, G. (1994) Bactericidal Effect of Long-Chain Fatty-Acids in Anaerobic-Digestion. Water Environ. Res., 66 (1), 40 – 49.
- Rittmann, B. E.; McCarty, P. L. (2001) Environmental Biotechnology: Principles and Applications. McGraw-Hill: New York.
- Saatci, Y.; Arslan, E. I.; Konar, V. (2003) Removal of Total Lipids and Fatty Acids from Sunflower Oil Factory Effluent by UASB Reactor. Bioresource Technol., 87 (3), 269 – 272.
- Salminen, E.; Einola, J.; Rintala, J. (2001) Characterisation and Anaerobic Batch Degradation of Materials Accumulating in Anaerobic Digesters Treating Poultry Slaughterhouse Waste. Environ. Technol., 22 (5), 577 – 585.
- Schauder, R.; Schink, B. (1989) Anaerovibrio glycerini sp. nov, an Anaerobic Bacterium Fermenting Glycerol to Propionate, Cell Matter, and Hydrogen. Arch. Microbiol., 152 (5), 473 – 478.
- Shin, H. S.; Kim, S. H.; Lee, C. Y.; Nam, S. Y. (2003) Inhibitory Effects of Long-Chain Fatty Acids on VFA Degradation and Beta-Oxidation. Water Sci. Technol., 47 (10), 139 – 146.
- Tommaso, G.; Ribeiro, R.; Varesche, M. B. A.; Zaiat, M.; Foresti, E. (2003) Influence of Multiple Substrates on Anaerobic Protein Degradation in a Packed-Bed Bioreactor. Water Sci. Technol., 48 (6), 23 – 31.
- Zeeman, G.; Sanders, W. (2001) Potential of Anaerobic Digestion of Complex Waste(Water). Water Sci. Technol., 44 (8), 115 – 122.
- Zeikus, J. G. (1980) Microbial Populations in Digesters. In Anaerobic Digestion; D. A. Stafford, B. I. Wheatley, D. E. Hughes, Eds.; Applied Science Publishers, Ltd.: London, England, p. 61 – 87.