Irradiation Attenuates Systemic Lupus Erythematosus-Like Morbidity in NZBWF1 Mice: Focusing on CD180-Negative Cells
Corresponding Author
Kazuko Fujita
Department of Pathology, School of Medicine, Toho University, Ota-Ku, Tokyo 143-8540, Japan toho-u.ac.jp
Search for more papers by this authorTaku Kuwabara
Department of Molecular Immunology, School of Medicine, Toho University, Ota-Ku, Tokyo 143-8540, Japan toho-u.ac.jp
Search for more papers by this authorBing Wang
Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba-City, Chiba 263-8555, Japan nirs.go.jp
Search for more papers by this authorKaoru Tanaka
Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba-City, Chiba 263-8555, Japan nirs.go.jp
Search for more papers by this authorKei Ito
Department of Pathology, School of Medicine, Toho University, Ota-Ku, Tokyo 143-8540, Japan toho-u.ac.jp
Department of Medical Technology, Faculty of Health Sciences, Tsukuba International University, Ibaragi, Tsuchiura-City 305-8577, Japan ktt.ac.jp
Search for more papers by this authorYuri Akishima-Fukasawa
Department of Pathology, School of Medicine, Toho University, Ota-Ku, Tokyo 143-8540, Japan toho-u.ac.jp
Search for more papers by this authorTetuo Mikami
Department of Pathology, School of Medicine, Toho University, Ota-Ku, Tokyo 143-8540, Japan toho-u.ac.jp
Search for more papers by this authorYoshikiyo Akasaka
Department of Pathology, School of Medicine, Toho University, Ota-Ku, Tokyo 143-8540, Japan toho-u.ac.jp
Search for more papers by this authorToshiharu Ishii
Department of Pathology, Saiseikai Yokohamashi Tobu Hospital, Kanagawa, Yokohama-City 230-8765, Japan tobu.saiseikai.or.jp
Search for more papers by this authorCorresponding Author
Kazuko Fujita
Department of Pathology, School of Medicine, Toho University, Ota-Ku, Tokyo 143-8540, Japan toho-u.ac.jp
Search for more papers by this authorTaku Kuwabara
Department of Molecular Immunology, School of Medicine, Toho University, Ota-Ku, Tokyo 143-8540, Japan toho-u.ac.jp
Search for more papers by this authorBing Wang
Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba-City, Chiba 263-8555, Japan nirs.go.jp
Search for more papers by this authorKaoru Tanaka
Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba-City, Chiba 263-8555, Japan nirs.go.jp
Search for more papers by this authorKei Ito
Department of Pathology, School of Medicine, Toho University, Ota-Ku, Tokyo 143-8540, Japan toho-u.ac.jp
Department of Medical Technology, Faculty of Health Sciences, Tsukuba International University, Ibaragi, Tsuchiura-City 305-8577, Japan ktt.ac.jp
Search for more papers by this authorYuri Akishima-Fukasawa
Department of Pathology, School of Medicine, Toho University, Ota-Ku, Tokyo 143-8540, Japan toho-u.ac.jp
Search for more papers by this authorTetuo Mikami
Department of Pathology, School of Medicine, Toho University, Ota-Ku, Tokyo 143-8540, Japan toho-u.ac.jp
Search for more papers by this authorYoshikiyo Akasaka
Department of Pathology, School of Medicine, Toho University, Ota-Ku, Tokyo 143-8540, Japan toho-u.ac.jp
Search for more papers by this authorToshiharu Ishii
Department of Pathology, Saiseikai Yokohamashi Tobu Hospital, Kanagawa, Yokohama-City 230-8765, Japan tobu.saiseikai.or.jp
Search for more papers by this authorAbstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by the production of autoantibodies that can induce systemic inflammation. Ultraviolet-A and X-ray irradiation have been reported to have therapeutic effects in patients with SLE. We previously demonstrated that CD180-negative cells, these are radiosensitive, contribute to the development of SLE-like morbidity in NZBWF1 mice. In this study, the effects of irradiation on SLE-like morbidity manifestations in NZBWF1 mice and on CD180-negative cells were investigated. Whole-body irradiation, excluding the head, attenuated SLE-like morbidity in vivo, as indicated by the prevention of the renal lesion development, inhibition of anti-dsDNA antibody production, reduction of urinary protein levels, and prolongation of the lifespan. Irradiation also reduced the proportion of CD180-negative cells in the spleen. Although other immune cells or molecules may be triggered because of the whole-body irradiation treatment, previous research, and the current results suggest a strong relationship between the radiation-induced decrease in CD180-negative cells and the amelioration of SLE-like morbidities. Clinical trials assessing CD180-negative cells as a therapeutic target for SLE have been hampered by the lack of validated cell markers; nonetheless, the present findings suggest that radiotherapy may be a new therapeutic strategy for managing SLE symptoms.
Conflicts of Interest
The authors declare that there is no conflict of interest regarding the publication of this paper.
Open Research
Data Availability
Data are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
jimr9969079-sup-0001-f1.pptxPowerPoint 2007 presentation , 66.8 KB | Supplementary Materials Figure S1: CD180-negative cells are radiosensitive compared with CD180-positive cells. ∗∗0.001 < p < 0.01, ∗∗∗p < 0.001. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Polderman M. C. A., Huizinga T. W. J., Le Cessie S., and Pavel S., UVA-1 cold light treatment of SLE: a double blind, placebo controlled crossover trial, Annals of the Rheumatic Disease. (2001) 60, no. 2, 112–115, https://doi.org/10.1136/ard.60.2.112, 2-s2.0-0035138349.
- 2 McGrathH.Jr., Martínez-Osuna P., and Lee F. A., Review: ultraviolet-A1 (340–400 nm) irradiation therapy in systemic lupus erythematosus, Lupus. (1996) 5, no. 4, 269–274, https://doi.org/10.1177/096120339600500405, 2-s2.0-9544220767.
- 3 McGrathH.Jr, Ultraviolet-A1 irradiation decreases clinical disease activity and autoantibodies in patients with systemic lupus erythematosus, Clinical and Experimental Rheumatology. (1994) 12, no. 2, 129–135.
- 4 McGrathH.Jr, Elimination of anticardiolipin antibodies and cessation of cognitive decline in a UV-A1-irradiated systemic lupus erythematosus patient, Lupus. (2005) 14, no. 10, 859–861, https://doi.org/10.1191/0961203305lu2164cr, 2-s2.0-27744462579.
- 5 Menon Y., McCarthy K., and McGrathH.Jr, Reversal of brain dysfunction with UV-A1 irradiation in a patient with systemic lupus, Lupus. (2003) 12, no. 6, 479–482, https://doi.org/10.1191/0961203303lu374oa, 2-s2.0-0037931554.
- 6 Ma J., Wang W., Shen J., Hou X., Lian X., Yan J., Sun S., Miao Z., Meng Q., Hu K., and Zhang F., Radiotherapy for cervical cancer in patients with systemic lupus erythematosus, Cancer Management and Research. (2020) 12, 8675–8683, https://doi.org/10.2147/CMAR.S264795.
- 7 Bae J. S., Roh J.-L., Lee S.-W., Kim S.-B., Kim J. S., Lee J. H., Choi S.-H., Nam S. Y., and Kim S. Y., Laryngeal edema after radiotherapy in patients with squamous cell carcinomas of the larynx and hypopharynx, Oral Oncology. (2012) 48, no. 9, 853–858, https://doi.org/10.1016/j.oraloncology.2012.02.023, 2-s2.0-84865177622.
- 8 Carrillo-Alascio P. L., Sabio J. M., Núñez-Torres M. I., López E., Muñoz-Gámez J. A., Hidalgo-Tenorio C., Jáimez L., Martín J., Jiménez-Alonso J., and for the Grupo Lupus Virgen De Las Nieves, In-vitro radiosensitivity in patients with systemic lupus erythematosus, Lupus. (2009) 18, no. 7, 645–649, https://doi.org/10.1177/0961203309103150, 2-s2.0-65649123789.
- 9 Pinn M. E., Gold D. G., Petersen I. A., Osborn T. G., Brown P. D., and Miller R. C., Systemic lupus erythematosus, radiotherapy, and the risk of acute and chronic toxicity: the Mayo Clinic experience, International Journal of Radiation Oncology, Biology and Physics. (2008) 71, no. 2, 498–506, https://doi.org/10.1016/j.ijrobp.2007.10.014, 2-s2.0-43049157567.
- 10 Molina J. F. and McGrathH.Jr., Longterm ultraviolet-A1 irradiation therapy in systemic lupus erythematosus, The Journal of Rheumatology. (1997) 24, no. 6, 1072–1074.
- 11 Szegedi A., Simics E., Aleksza M., Horkay I., Gaál K., Sipka S., Hunyadi J., and Kiss E., Ultraviolet-A1 phototherapy modulates Th1/Th2 and Tc1/Tc2 balance in patients with systemic lupus erythematosus, Rheumatology. (2005) 44, no. 7, 925–931, https://doi.org/10.1093/rheumatology/keh643, 2-s2.0-22844437671.
- 12 Polderman M. C. A., Van Kooten C., Smit N. P. M., Kamerling S. W. A., and Pavel S., Ultraviolet-A (UVA-1) radiation suppresses immunoglobulin production of activated B lymphocytes in vitro, Clinical and Experimental Immunology. (2006) 145, no. 3, 528–534, https://doi.org/10.1111/j.1365-2249.2006.03136.x, 2-s2.0-33645544923.
- 13 Nived O., Johansson I., and Sturfelt G., Effects of ultraviolet irradiation on natural killer cell function in systemic lupus erythematosus, Annals of the Rheumatic Diseases. (1992) 51, no. 6, 726–730, https://doi.org/10.1136/ard.51.6.726, 2-s2.0-0026777387.
- 14 Rosman A., Atsumi T., Khamashta M. A., Ames P. R. J., and Hughes G. R. V., Development of systemic lupus erythematosus after chemotherapy and radiotherapy for malignant thymoma, Rheumatology. (1995) 34, no. 12, 1175–1176, https://doi.org/10.1093/rheumatology/34.12.1175, 2-s2.0-0029583345.
- 15 Spinozzi F., Capodicasa E., Gerli R., Bertotto A., Rambotti P., and Grignani F., Systemic lupus erythematosus following total body irradiation for malignant lymphoma, Allergologia et Immunopathologia. (1986) 14, no. 3, 241–244.
- 16 Suwannaroj S., Lagoo A., Keisler D., and McMurray R. W., Antioxidants suppress mortality in the female NZB x NZW F1 mouse model of systemic lupus erythematosus (SLE), Lupus. (2001) 10, no. 4, 258–265, https://doi.org/10.1191/096120301680416940, 2-s2.0-0035059028.
- 17 Kotzin B. L. and Strober S., Reversal of nzb/nzw disease with total lymphoid irradiation, The Journal of Experimental Medicine. (1979) 150, no. 2, 371–378, https://doi.org/10.1084/jem.150.2.371, 2-s2.0-0018355647.
- 18 Moscovitch M., Rosenmann E., Neeman Z., and Slavin S., Successful treatment of autoimmune manifestations in MRLI and MRLn mice using total lymphoid irradiation (TLI), Experimental and Molecular Pathology. (1983) 38, no. 1, 33–47, https://doi.org/10.1016/0014-4800(83)90096-5, 2-s2.0-0020681896.
- 19 Fava A. and Petri M., Systemic lupus erythematosus: diagnosis and clinical management, Journal of Autoimmunity. (2019) 96, 1–13, https://doi.org/10.1016/j.jaut.2018.11.001, 2-s2.0-85059230293.
- 20 Gatto M., Zen M., Iaccarino L., and Doria A., New therapeutic strategies in systemic lupus erythematosus management, Nature Reviews Rheumatology. (2019) 15, 30–48, https://doi.org/10.1038/s41584-018-0133-2, 2-s2.0-85058224876.
- 21 van Vollenhoven R. F., Mosca M., Bertsias G., Isenberg D., Kuhn A., Lerstrøm K., Aringer M., Bootsma H., Boumpas D., Bruce I. N., Cervera R., Clarke A., Costedoat-Chalumeau N., Czirják László, Derksen R., Dörner T., Gordon C., Graninger W., Houssiau F., Inanc M., Jacobsen S., Jayne D., Jedryka-Goral A., Levitsky A., Levy R., Mariette X., Morand E., Navarra S., Neumann I., Rahman A., Rovenský J., Smolen J., Vasconcelos C., Voskuyl A., Voss A., Zakharova H., Zoma A., and Schneider M., Treat-to-target in systemic lupus erythematosus: recommendations from an international task force, Annals of the Rheumatic Diseases. (2014) 73, no. 6, 958–967, https://doi.org/10.1136/annrheumdis-2013-205139, 2-s2.0-84899937611.
- 22 Miyake K., Yamashita Y., Ogata M., Sudo T., and Kimoto M., RP105, a novel B cell surface molecule implicated in B cell activation, is a member of the leucine-rich repeat protein family, The Journal of Immunology. (1995) 154, no. 7, 3333–3340, https://doi.org/10.4049/jimmunol.154.7.3333.
- 23 Yamashita Y., Miyake K., Miura Y., Kaneko Y., Yagita H., Suda T., Nagata S., Nomura J., Sakaguchi N., and Kimoto M., Activation mediated by RP105 but not CD40 makes normal B cells susceptible to anti-IgM-induced apoptosis: a role for Fc receptor coligation, The Journal of Experimental Medicine. (1996) 184, no. 1, 113–120, https://doi.org/10.1084/jem.184.1.113, 2-s2.0-8944262826.
- 24 Chan V. W. F., Mecklenbräuker I., Su I.-h., Texido G., Leitges M., Carsetti R., Lowell C. A., Rajewsky K., Miyake K., and Tarakhovsky A., The molecular mechanism of B cell activation by Toll-like receptor protein RP-105, The Journal of Experimental Medicine. (1998) 188, no. 1, 93–101, https://doi.org/10.1084/jem.188.1.93, 2-s2.0-2642708378.
- 25 Miyake K., Shimazu R., Kondo J., Niki T., Akashi S., Ogata H., Yamashita Y., Miura Y., and Kimoto M., Mouse MD-1, a molecule that is physically associated with RP105 and positively regulates its expression, The Journal of Immunology. (1998) 161, no. 3, 1348–1353, https://doi.org/10.4049/jimmunol.161.3.1348.
- 26 Roshak A. K., Anderson K. M., Holmes S. D., Jonak Z., Bolognese B., Terrett J., and Marshall L. A., Anti-human RP105 sera induces lymphocyte proliferation, Journal of Leukocyte Biology. (1999) 65, no. 1, 43–49, https://doi.org/10.1002/jlb.65.1.43, 2-s2.0-0032901582.
- 27 Ogata H., Su I.-h., Miyake K., Nagai Y., Akashi S., Mecklenbräuker I., Rajewsky K., Kimoto M., and Tarakhovsky A., The Toll-like receptor protein RP105 regulates lipopolysaccharide signaling in B cells, The Journal of Experimental Medicine. (2000) 192, no. 1, 23–30, https://doi.org/10.1084/jem.192.1.23, 2-s2.0-0034601022.
- 28 Leadbetter E. A., Rifkin I. R., Hohlbaum A. M., Beaudette B. C., Shlomchik M. J., and Marshak-Rothstein A., Chromatin–IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors, Nature. (2002) 416, 603–607, https://doi.org/10.1038/416603a, 2-s2.0-0037061453.
- 29 Miyake K., Yamashita Y., Hitoshi Y., Takatsu K., and Kimoto M., Murine B cell proliferation and protection from apoptosis with an antibody against a 105-kD molecule: unresponsiveness of X-linked immunodeficient B cells, The Journal of Experimental Medicine. (1994) 180, no. 4, 1217–1224, https://doi.org/10.1084/jem.180.4.1217, 2-s2.0-0028071612.
- 30 Arvaniti E., Ntoufa S., Papakonstantinou N., Touloumenidou T., Laoutaris N., Anagnostopoulos A., Lamnissou K., Caligaris-Cappio F., Stamatopoulos K., Ghia P., Muzio M., and Belessi C., Toll-like receptor signaling pathway in chronic lymphocytic leukemia: distinct gene expression profiles of potential pathogenic significance in specific subsets of patients, Haematologica. (2011) 96, no. 11, 1644–1652, https://doi.org/10.3324/haematol.2011.044792, 2-s2.0-80355126549.
- 31 Yamazaki K., Yamazaki T., Taki S., Miyake K., Hayashi T., Ochs H. D., and Agematsu K., Potentiation of TLR9 responses for human naïve B-cell growth through RP105 signaling, Clinical Immunology. (2010) 135, no. 1, 125–136, https://doi.org/10.1016/j.clim.2009.12.013, 2-s2.0-77649232387.
- 32 Eriksen A. B., Berge T., Gustavsen M. W., Spurkland A., Harbo H. F., and Blomhoff H. K., Retinoic acid enhances the levels of IL-10 in TLR-stimulated B cells from patients with relapsing–remitting multiple sclerosis, Journal of Neuroimmunology. (2015) 278, 11–18, https://doi.org/10.1016/j.jneuroim.2014.11.019, 2-s2.0-84920895475.
- 33 Hayden Z., Erdő-Bonyár S., Bóné B., Balázs N., Bodó K., Illes Z., Berki T., and Simon D., Toll-like receptor homolog CD180 expression is diminished on natural autoantibody-producing B cells of patients with autoimmune CNS disorders, Journal of Immunology Research. (2021) 2021, 11, https://doi.org/10.1155/2021/9953317, 9953317.
- 34 Yang Y., Wang C., Cheng P., Zhang X., Li X., Hu Y., Xu F., Hong F., Dong G., and Xiong H., CD180 ligation inhibits TLR7- and TLR9-mediated activation of macrophages and dendritic cells through the Lyn-SHP-1/2 axis in murine lupus, Frontiers in Immunology. (2018) 9, https://doi.org/10.3389/fimmu.2018.02643, 2-s2.0-85057395919, 2643.
- 35 Koarada S., Tada Y., Ushiyama O., Morito F., Suzuki N., Ohta A., Miyake K., Kimoto M., and Nagasawa K., B cells lacking RP105, a novel B cell antigen, in systemic lupus erythematosus, Arthritis and Rheumatism. (1999) 42, no. 12, 2593–2600, https://doi.org/10.1002/1529-0131(199912)42:12<2593::AID-ANR12>3.0.CO;2-G.
- 36 Kikuchia Y., Koaradaa S., Tadaa Y., Ushiyamaa O., Moritoa F., Suzukia N., Ohtab A., Horiuchid T., Miyakec K., and Nagasawaa K., Difference in B cell activation between dermatomyositis and polymyositis: analysis of the expression of RP105 on peripheral blood B cells, Annals of the Rheumatic Diseases. (2001) 60, no. 12, 1137–1140, https://doi.org/10.1136/ard.60.12.1137, 2-s2.0-0035189519.
- 37 Koarada S., Tada Y., Kikuchi Y., Ushiyama O., Suzuki N., Ohta A., and Nagasawa K., CD180 (RP105) in rheumatic diseases, Rheumatology. (2001) 40, no. 11, 1315–1316, https://doi.org/10.1093/rheumatology/40.11.1315, 2-s2.0-0035182535.
- 38 Kikuchi Y., Koarada S., Tada Y., Ushiyama O., Morito F., Suzuki N., Ohta A., Miyake K., Kimoto M., Horiuchi T., and Nagasawa K., RP105-lacking B cells from lupus patients are responsible for the production of immunoglobulins and autoantibodies, Arthritis and Rheumatism. (2002) 46, no. 12, 3259–3265, https://doi.org/10.1002/art.10672, 2-s2.0-0036899791.
- 39 Fujita K., Akasaka Y., Kuwabara T., Wang B., Tanaka K., Kamata I., Yokoo T., Kinoshita T., Iuchi A., Akishima-Fukasawa Y., Ishikawa Y., Kondo M., and Ishii T., Pathogenesis of lupus-like nephritis through autoimmune antibody produced by CD180-negative B lymphocytes in NZBWF1 mouse, Immunology Letters. (2012) 144, no. 1-2, 1–6, https://doi.org/10.1016/j.imlet.2012.02.012, 2-s2.0-84862820761.
- 40 Allen T. C., E. B. Prophet, B. Mills, J. B. Arrington, and L. H. Sobin, Hematoxylin and eosin, Armed Forces Institute of Pathology: Laboratory Methods in Histotechnology, 1994, The Armed Forces Institute of Pathology, American Registry of Pathology, Washington, DC, 53–54.
- 41 Gaffeny E., E. B. Prophet, B. Mills, J. B. Arrington, and L. H. Sobin, Periodic acid shiff procedure, Armed Forces Institute of Pathology: Laboratory Methods in Histotechnology, 1994, The Armed Forces Institute of Pathology, American Registry of Pathology, Washington, DC, 151–152.
- 42 Shang X., Ren L., Sun G., Yu T., Yao Y., Wang L., Liu F., Zhang L., He X., and Liu M., Anti-dsDNA, anti-nucleosome, anti-C1q, and anti-histone antibodies as markers of active lupus nephritis and systemic lupus erythematosus disease activity, Immunity, Inflammation and Disease. (2021) 9, no. 2, 407–418, https://doi.org/10.1002/iid3.401.
- 43 Zivkovic V., Stankovic A., Cvetkovic T., Mitic B., Kostic S., Nedovic J., and Stamenkovic B., Anti-dsDNA, anti-nucleosome and anti-C1q antibodies as disease activity markers in patients with systemic lupus erythematosus, Srpski Arhiv Za Celokupno Lekarstvo. (2014) 142, no. 7-8, 431–436, https://doi.org/10.2298/SARH1408431Z, 2-s2.0-84922620545.
- 44 Wang X. and Xia Y., Anti-double stranded DNA antibodies: origin, pathogenicity, and targeted therapies, Frontiers in Immunology. (2019) 10, https://doi.org/10.3389/fimmu.2019.01667, 2-s2.0-85069452450, 1667.
- 45 Yung S., Zhang Q., Chau M. K. M., and Chan T. M., Distinct effects of mycophenolate mofetil and cyclophosphamide on renal fibrosis in NZBWF1/J mice, Autoimmunity. (2015) 48, no. 7, 471–487, https://doi.org/10.3109/08916934.2015.1054027, 2-s2.0-84946562046.
- 46 Yung S., Ng C. Y. C., Au K. Y., Cheung K. F., Zhang Q., Zhang C., Yap D. Y. H., Chau M. K. M., and Chan T. M., Binding of anti-dsDNA antibodies to proximal tubular epithelial cells contributes to renal tubulointerstitial inflammation, Clinical Science. (2017) 131, no. 1, 49–67, https://doi.org/10.1042/CS20160421, 2-s2.0-85014003917.
- 47 Dent E. L., Taylor E. B., Sasser J. M., and Ryan M. J., Temporal hemodynamic changes in a female mouse model of systemic lupus erythematosus, American Journal of Physiology. Renal Physiology. (2020) 318, no. 5, F1074–F1085, https://doi.org/10.1152/ajprenal.00598.2019.
- 48 Mathias L. M. and Stohl W., Systemic lupus erythematosus (SLE): emerging therapeutic targets, Expert Opinion on Therapeutic Targets. (2020) 24, no. 12, 1283–1302, https://doi.org/10.1080/14728222.2020.1832464.
- 49 Wang Y., Xiao S., Xia Y., and Wang H., The therapeutic strategies for SLE by targeting Anti-dsDNA antibodies, Clinical Reviews in Allergy & Immunology. (2022) 63, 152–165, https://doi.org/10.1007/s12016-021-08898-7.
- 50
Koarada S.,
Tada Y.,
Suematsu R.,
Soejima S.,
Inoue H.,
Ohta A., and
Nagasawa K., Phenotyping of P105-negative B cell subsets in patients with systemic lupus erythematosus, Journal of Immunology Research. (2012) 2012, 8, https://doi.org/10.1155/2012/198206, 2-s2.0-81555209734, 198206.
10.1155/2012/198206 Google Scholar
- 51 Koarada S., Tashiro S., Suematsu R., Inoue H., Ohta A., and Tada Y., BCMA and autoantibody-producing RP105 B cells; possible new targets of B cell therapy in systemic lupus erythematosus, Nihon Rinsho Men’eki Gakkai Kaishi = Japanese Journal of Clinical Immunology. (2012) 35, no. 1, 38–45, https://doi.org/10.2177/jsci.35.38, 2-s2.0-85024731148.
- 52 Samotij D. and Reich A., Biologics in the treatment of lupus erythematosus: a critical literature review, BioMed Research International. (2019) 2019, 17, https://doi.org/10.1155/2019/8142368, 2-s2.0-85070095694, 8142368.
- 53
Koarada S. and
Tada Y., RP105-negative B cells in systemic lupus erythematosus, Journal of Immunology Research. (2012) 2012, 5, https://doi.org/10.1155/2012/259186, 2-s2.0-81555227848, 259186.
10.1155/2012/259186 Google Scholar