Simvastatin Posttreatment Controls Inflammation and Improves Bacterial Clearance in Experimental Sepsis
Flora Magno de Jesus Oliveira
Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil fiocruz.br
Search for more papers by this authorCorresponding Author
Cassiano Felippe Gonçalves-de-Albuquerque
Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil fiocruz.br
Laboratório de Imunofarmacologia, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Brazil unirio.br
Search for more papers by this authorIsabel Matos Medeiros de Moraes
Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil fiocruz.br
Search for more papers by this authorPatrícia Alves Reis
Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil fiocruz.br
Search for more papers by this authorVinicius Novaes Rocha
Laboratório de Patologia e Histologia Veterinária, Departamento de Medicina Veterinária, Universidade Federal de Juiz de Fora, Brazil ufjf.br
Search for more papers by this authorPatrícia Torres Bozza
Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil fiocruz.br
Search for more papers by this authorAdriana Ribeiro Silva
Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil fiocruz.br
Search for more papers by this authorCorresponding Author
Hugo Caire de Castro Faria Neto
Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil fiocruz.br
Search for more papers by this authorFlora Magno de Jesus Oliveira
Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil fiocruz.br
Search for more papers by this authorCorresponding Author
Cassiano Felippe Gonçalves-de-Albuquerque
Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil fiocruz.br
Laboratório de Imunofarmacologia, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Brazil unirio.br
Search for more papers by this authorIsabel Matos Medeiros de Moraes
Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil fiocruz.br
Search for more papers by this authorPatrícia Alves Reis
Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil fiocruz.br
Search for more papers by this authorVinicius Novaes Rocha
Laboratório de Patologia e Histologia Veterinária, Departamento de Medicina Veterinária, Universidade Federal de Juiz de Fora, Brazil ufjf.br
Search for more papers by this authorPatrícia Torres Bozza
Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil fiocruz.br
Search for more papers by this authorAdriana Ribeiro Silva
Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil fiocruz.br
Search for more papers by this authorCorresponding Author
Hugo Caire de Castro Faria Neto
Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil fiocruz.br
Search for more papers by this authorAbstract
Sepsis is characterized by a life-threatening organ dysfunction caused by an unbalanced host response to microbe infection that can lead to death. Besides being currently the leading cause of death in intensive care units worldwide, sepsis can also induce long-term consequences among survivors, such as cognitive impairment. Statins (lipid-lowering drugs widely used to treat dyslipidemia) have been shown to possess pleiotropic anti-inflammatory and antimicrobial effects. These drugs act inhibiting 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, an enzyme that catalyzes the conversion of HMG-CoA to mevalonate, the limiting step in cholesterol biosynthesis. In this work, we evaluated the therapeutic effects of simvastatin in an animal model of sepsis. In previous study from our group, statin pretreatment avoided cognitive damage and neuroinflammation in sepsis survivors. Herein, we focused on acute inflammation where sepsis was induced by cecal ligation and puncture (CLP), and the animals were treated with simvastatin (2 mg/kg) 6 h after surgery. We measured plasma biochemical markers of organ dysfunction, cell migration, cell activation, bacterial elimination, production of nitric oxide 24 h after CLP, survival rate for 7 days, and cognitive impairment 15 days after CLP. One single administration of simvastatin 6 h after CLP was able to prevent both liver and kidney dysfunction. In addition, this drug decreased cell accumulation in the peritoneum as well as the levels of TNF-α, MIF, IL-6, and IL-1β. Simvastatin diminished the number of bacterial colony forming units (CFU) and increased the production of nitric oxide production in the peritoneum. Simvastatin treatment increased survival for the first 24 h, but it did not alter survival rate at the end of 7 days. Our results showed that posttreatment with simvastatin hampered organ dysfunction, increased local production of nitric oxide, improved bacterial clearance, and modulated inflammation in a relevant model of sepsis.
Conflicts of Interest
The authors declare that they have no conflict of interest.
Open Research
Data Availability
All data used to support the findings of this study are included within the article.
Supporting Information
Filename | Description |
---|---|
mi1839762-sup-0001-f1.pdfPDF document, 174.8 KB | Supplementary Materials Supplemental Figure 1: simvastatin abrogates memory impairment in septic animals. The animals were submitted to CLP and received simvastatin (2 mg/kg dose) posttreatment. Step-down inhibitory avoidance test was performed to test aversive memory was tested 1.5 (A; short-) and 24 h (B; long term memory) after training by recording the time-to-platform latency (with a cutoff of 180 seconds). Data are expressed as individual values, and horizontal lines represent the mean latency in seconds. ∗p < 0.05, n = 5 − 17/group |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Singer M., Deutschman C. S., Seymour C. W., Shankar-Hari M., Annane D., Bauer M., Bellomo R., Bernard G. R., Chiche J. D., Coopersmith C. M., Hotchkiss R. S., Levy M. M., Marshall J. C., Martin G. S., Opal S. M., Rubenfeld G. D., van der Poll T., Vincent J. L., and Angus D. C., The third international consensus definitions for sepsis and septic shock (Sepsis-3), JAMA. (2016) 315, no. 8, 801–810, https://doi.org/10.1001/jama.2016.0287, 2-s2.0-84959273475, 26903338.
- 2 Adam N., Kandelman S., Mantz J., Chretien F., and Sharshar T., Sepsis-induced brain dysfunction, Expert Review of Anti-Infective Therapy. (2014) 11, no. 2, 211–221.
- 3 Stenkvist B., Bengtsson E., Dahlqvist B., Eriksson O., Jarkrans T., and Nordin B., Cardiac glycosides and breast cancer, revisited, The New England Journal of Medicine. (1982) 306, no. 8, 7057849.
- 4 Karasneh R. A., Murray L. J., and Cardwell C. R., Cardiac glycosides and breast cancer risk: a systematic review and meta-analysis of observational studies, International Journal of Cancer. (2017) 140, no. 5, 1035–1041, https://doi.org/10.1002/ijc.30520, 2-s2.0-85006054104, 27861859.
- 5 Didkowska J., Wojciechowska U., Manczuk M., and Lobaszewski J., Lung cancer epidemiology: contemporary and future challenges worldwide, Annals of Translational Medicine. (2016) 4, no. 8, https://doi.org/10.21037/atm.2016.03.11, 2-s2.0-84979200753, 27195268.
- 6 Blanco G., Na,K-ATPase subunit heterogeneity as a mechanism for tissue-specific ion regulation, Seminars in Nephrology. (2005) 25, no. 5, 292–303, https://doi.org/10.1016/j.semnephrol.2005.03.004, 2-s2.0-28644447041, 16139684.
- 7 Goldstein J. L. and Brown M. S., Regulation of the mevalonate pathway, Nature. (1990) 343, no. 6257, 425–430, https://doi.org/10.1038/343425a0, 2-s2.0-0025120211, 1967820.
- 8 Savas P., Hughes B., and Solomon B., Targeted therapy in lung cancer: IPASS and beyond, keeping abreast of the explosion of targeted therapies for lung cancer, Journal of Thoracic Disease. (2013) 5, no. Supplement 5, S579–S592.
- 9 Biasucci L. M., Biasillo G., and Stefanelli A., Inflammatory markers, cholesterol and statins: pathophysiological role and clinical importance, Clinical Chemistry and Laboratory Medicine. (2010) 48, no. 12, 1685–1691, https://doi.org/10.1515/CCLM.2010.277, 2-s2.0-78951485501, 20868311.
- 10 Durant R., Klouche K., Delbosc S., Morena M., Amigues L., Beraud J. J., Canaud B., and Cristol J. P., Superoxide anion overproduction in sepsis: effects of vitamin e and simvastatin, Shock. (2004) 22, no. 1, 34–39, https://doi.org/10.1097/01.shk.0000129197.46212.7e, 2-s2.0-9344242092.
- 11 Hennessy E., Adams C., Reen F. J., and O′Gara F., Is there potential for repurposing statins as novel antimicrobials?, Antimicrobial Agents and Chemotherapy. (2016) 60, no. 9, 5111–5121, https://doi.org/10.1128/AAC.00192-16, 2-s2.0-84983656454, 27324773.
- 12 Jerwood S. and Cohen J., Unexpected antimicrobial effect of statins, The Journal of Antimicrobial Chemotherapy. (2008) 61, no. 2, 362–364, https://doi.org/10.1093/jac/dkm496, 2-s2.0-38349103047, 18086693.
- 13 Kouroumichakis I., Papanas N., Proikaki S., Zarogoulidis P., and Maltezos E., Statins in prevention and treatment of severe sepsis and septic shock, European Journal of Internal Medicine. (2011) 22, no. 2, 125–133, https://doi.org/10.1016/j.ejim.2010.12.004, 2-s2.0-79952695193, 21402241.
- 14 Merx M. W., Liehn E. A., Janssens U., Lutticken R., Schrader J., Hanrath P., and Weber C., HMG-CoA reductase inhibitor simvastatin profoundly improves survival in a murine model of sepsis, Circulation. (2004) 109, no. 21, 2560–2565, https://doi.org/10.1161/01.CIR.0000129774.09737.5B, 2-s2.0-2642553075, 15123521.
- 15 Ando H., Takamura T., Ota T., Nagai Y., and Kobayashi K., Cerivastatin improves survival of mice with lipopolysaccharide-induced sepsis, The Journal of Pharmacology and Experimental Therapeutics. (2000) 294, no. 3, 1043–1046, 10945857.
- 16 Lingrel J. B., The physiological significance of the cardiotonic steroid/ouabain-binding site of the Na,K-ATPase, Annual Review of Physiology. (2010) 72, no. 1, 395–412, https://doi.org/10.1146/annurev-physiol-021909-135725, 2-s2.0-77951883450, 20148682.
- 17 Reis P. A., Estato V., da Silva T. I., d′Avila J. C., Siqueira L. D., Assis E. F., Bozza P. T., Bozza F. A., Tibirica E. V., Zimmerman G. A., and Castro-Faria-Neto H. C., Statins decrease neuroinflammation and prevent cognitive impairment after cerebral malaria, PLoS Pathogens. (2012) 8, no. 12, article e1003099, https://doi.org/10.1371/journal.ppat.1003099, 2-s2.0-84872013894, 23300448.
- 18 Kilkenny C., Browne W. J., Cuthill I. C., Emerson M., and Altman D. G., Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research, PLoS Biology. (2010) 8, no. 6, article e1000412, https://doi.org/10.1371/journal.pbio.1000412, 2-s2.0-85041813459, 20613859.
- 19 Goncalves-de-Albuquerque C. F., Medeiros-de-Moraes I. M., Oliveira F. M., Burth P., Bozza P. T., Castro Faria M. V., Silva A. R., and Castro-Faria-Neto H. C., Omega-9 oleic acid induces fatty acid oxidation and decreases organ dysfunction and mortality in experimental sepsis, PLoS One. (2016) 11, no. 4, article e0153607, https://doi.org/10.1371/journal.pone.0153607, 2-s2.0-84963934417, 27078880.
- 20 D′Avila H., Melo R. C., Parreira G. G., Werneck-Barroso E., Castro-Faria-Neto H. C., and Bozza P. T., Mycobacterium bovis bacillus Calmette-Guérin induces TLR2-mediated formation of lipid bodies: intracellular domains for eicosanoid synthesis in vivo, Journal of Immunology. (2006) 176, no. 5, 3087–3097, https://doi.org/10.4049/jimmunol.176.5.3087, 2-s2.0-33644534811, 16493068.
- 21 Green L. C., Wagner D. A., Glogowski J., Skipper P. L., Wishnok J. S., and Tannenbaum S. R., Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids, Analytical Biochemistry. (1982) 126, no. 1, 131–138, https://doi.org/10.1016/0003-2697(82)90118-X, 2-s2.0-0020448709, 7181105.
- 22 Carter J. A., Neville B. G., and Newton C. R., Neuro-cognitive impairment following acquired central nervous system infections in childhood: a systematic review, Brain Research. Brain Research Reviews. (2003) 43, no. 1, 57–69, https://doi.org/10.1016/S0165-0173(03)00192-9, 2-s2.0-0141853761, 14499462.
- 23 Wink D. A., Hines H. B., Cheng R. Y., Switzer C. H., Flores-Santana W., Vitek M. P., Ridnour L. A., and Colton C. A., Nitric oxide and redox mechanisms in the immune response, Journal of Leukocyte Biology. (2011) 89, no. 6, 873–891, https://doi.org/10.1189/jlb.1010550, 2-s2.0-79957862375, 21233414.
- 24 Reis P. A., Alexandre P. C., D′Avila J. C., Siqueira L. D., Antunes B., Estato V., Tibirica E. V., Verdonk F., Sharshar T., Chretien F., Castro-Faria-Neto H. C., and Bozza F. A., Statins prevent cognitive impairment after sepsis by reverting neuroinflammation, and microcirculatory/endothelial dysfunction, Brain, Behavior, and Immunity. (2017) 60, 293–303, https://doi.org/10.1016/j.bbi.2016.11.006, 2-s2.0-85006789903.
- 25 Rittirsch D., Flierl M. A., and Ward P. A., Harmful molecular mechanisms in sepsis, Nature Reviews. Immunology. (2008) 8, no. 10, 776–787, https://doi.org/10.1038/nri2402, 2-s2.0-52949118458, 18802444.
- 26 O′BrienJ. M.Jr., Ali N. A., Aberegg S. K., and Abraham E., Sepsis, The American Journal of Medicine. (2007) 120, no. 12, 1012–1022, https://doi.org/10.1016/j.amjmed.2007.01.035, 2-s2.0-36448937494, 18060918.
- 27 Iwashyna T. J., Ely E. W., Smith D. M., and Langa K. M., Long-term cognitive impairment and functional disability among survivors of severe sepsis, JAMA. (2010) 304, no. 16, 1787–1794, https://doi.org/10.1001/jama.2010.1553, 2-s2.0-78049351929, 20978258.
- 28 Cannon C. P., Braunwald E., McCabe C. H., Rader D. J., Rouleau J. L., Belder R., Joyal S. V., Hill K. A., Pfeffer M. A., and Skene A. M., Intensive versus moderate lipid lowering with statins after acute coronary syndromes, The New England Journal of Medicine. (2004) 350, no. 15, 1495–1504, https://doi.org/10.1056/NEJMoa040583, 2-s2.0-11144355354, 15007110.
- 29 Mermis J. D. and Simpson S. Q., HMG-CoA reductase inhibitors for prevention and treatment of severe sepsis, Current Infectious Disease Reports. (2012) 14, no. 5, 484–492, https://doi.org/10.1007/s11908-012-0277-1, 2-s2.0-84870570450, 22843507.
- 30 Holly M. K., Dear J. W., Hu X., Schechter A. N., Gladwin M. T., Hewitt S. M., Yuen P. S., and Star R. A., Biomarker and drug-target discovery using proteomics in a new rat model of sepsis-induced acute renal failure, Kidney International. (2006) 70, no. 3, 496–506, https://doi.org/10.1038/sj.ki.5001575, 2-s2.0-33746537718, 16760904.
- 31 Delano M. J. and Ward P. A., Sepsis-induced immune dysfunction: can immune therapies reduce mortality?, The Journal of Clinical Investigation. (2016) 126, no. 1, 23–31, https://doi.org/10.1172/JCI82224, 2-s2.0-84956616365, 26727230.
- 32 Bochud P.-Y., Glauser M. P., and Calandra T., Antibiotics in sepsis, Intensive Care Medicine. (2001) 27, no. 14, S33–S48, https://doi.org/10.1007/PL00003796.
- 33 Klenzak J. and Himmelfarb J., Sepsis and the kidney, Critical Care Clinics. (2005) 21, no. 2, 211–222, https://doi.org/10.1016/j.ccc.2005.01.002, 2-s2.0-15244342409, 15781158.
- 34 Maynard N. D., Bihari D. J., Dalton R. N., Beale R., Smithies M. N., and Mason R. C., Liver function and splanchnic ischemia in critically III patients, Chest. (1997) 111, no. 1, 180–187, https://doi.org/10.1378/chest.111.1.180, 2-s2.0-0031030272, 8996014.
- 35
Slotta J. E.,
Laschke M. W.,
Wang Y.,
Schilling M. K.,
Menger M. D., and
Thorlacius H., Inhibition of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase reduces leukocyte recruitment and hepatocyte apoptosis in endotoxin-induced liver injury, Journal of Investigative Medicine. (2015) 57, no. 5, 645–649.
10.2310/JIM.0b013e3181a23cb0 Google Scholar
- 36 Yasuda H., Yuen P. S., Hu X., Zhou H., and Star R. A., Simvastatin improves sepsis-induced mortality and acute kidney injury via renal vascular effects, Kidney International. (2006) 69, no. 9, 1535–1542, https://doi.org/10.1038/sj.ki.5000300, 2-s2.0-33646519915, 16557230.
- 37 Terblanche M., Almog Y., Rosenson R. S., Smith T. S., and Hackam D. G., Statins and sepsis: multiple modifications at multiple levels, The Lancet Infectious Diseases. (2007) 7, no. 5, 358–368, https://doi.org/10.1016/S1473-3099(07)70111-1, 2-s2.0-34247150706, 17448939.
- 38 Rezaie-Majd A., Prager G. W., Bucek R. A., Schernthaner G. H., Maca T., Kress H. G., Valent P., Binder B. R., Minar E., and Baghestanian M., Simvastatin reduces the expression of adhesion molecules in circulating monocytes from hypercholesterolemic patients, Arteriosclerosis, Thrombosis, and Vascular Biology. (2003) 23, no. 3, 397–403, https://doi.org/10.1161/01.ATV.0000059384.34874.F0, 2-s2.0-0037339680.
- 39 Prasad R., Giri S., Nath N., Singh I., and Singh A. K., Inhibition of phosphoinositide 3 kinase-Akt (protein kinase B)-nuclear factor-kappa B pathway by lovastatin limits endothelial-monocyte cell interaction, Journal of Neurochemistry. (2005) 94, no. 1, 204–214, https://doi.org/10.1111/j.1471-4159.2005.03182.x, 2-s2.0-21344437272, 15953363.
- 40 Freitas F., Estato V., Reis P., Castro-Faria-Neto H. C., Carvalho V., Torres R., Lessa M. A., and Tibirica E., Acute simvastatin treatment restores cerebral functional capillary density and attenuates angiotensin II-induced microcirculatory changes in a model of primary hypertension, Microcirculation. (2017) 24, no. 8, https://doi.org/10.1111/micc.12416, 2-s2.0-85032975306.
- 41 Mishra N. K., Peleg Y., Cirri E., Belogus T., Lifshitz Y., Voelker D. R., Apell H. J., Garty H., and Karlish S. J., FXYD proteins stabilize Na,K-ATPase: amplification of specific phosphatidylserine-protein interactions, The Journal of Biological Chemistry. (2011) 286, no. 11, 9699–9712, https://doi.org/10.1074/jbc.M110.184234, 2-s2.0-79953219753, 21228272.
- 42 Bozza P. T., Magalhaes K. G., and Weller P. F., Leukocyte lipid bodies - biogenesis and functions in inflammation, Biochimica et Biophysica Acta. (2009) 1791, no. 6, 540–551, https://doi.org/10.1016/j.bbalip.2009.01.005, 2-s2.0-67349265997, 19416659.
- 43 Bozza P. T. and Bandeira-Melo C., Mechanisms of leukocyte lipid body formation and function in inflammation, Memórias do Instituto Oswaldo Cruz. (2005) 100, no. Supplement 1, 113–120, https://doi.org/10.1590/S0074-02762005000900020, 2-s2.0-18844415854.
- 44 Merx M. W., Liehn E. A., Graf J., van de Sandt A., Schaltenbrand M., Schrader J., Hanrath P., and Weber C., Statin treatment after onset of sepsis in a murine model improves survival, Circulation. (2005) 112, no. 1, 117–124, https://doi.org/10.1161/CIRCULATIONAHA.104.502195, 2-s2.0-21844463540, 15998696.
- 45 Chaudhry M. Z., Wang J. H., Blankson S., and Redmond H. P., Statin (cerivastatin) protects mice against sepsis-related death via reduced proinflammatory cytokines and enhanced bacterial clearance, Surgical Infections. (2008) 9, no. 2, 183–194, https://doi.org/10.1089/sur.2006.077, 2-s2.0-42449120103, 18426351.
- 46 Gaur U. and Aggarwal B. B., Regulation of proliferation, survival and apoptosis by members of the TNF superfamily, Biochemical Pharmacology. (2003) 66, no. 8, 1403–1408, https://doi.org/10.1016/S0006-2952(03)00490-8, 2-s2.0-0642283970, 14555214.
- 47 Gordon A. C., Lagan A. L., Aganna E., Cheung L., Peters C. J., McDermott M. F., Millo J. L., Welsh K. I., Holloway P., Hitman G. A., Piper R. D., Garrard C. S., and Hinds C. J., TNF and TNFR polymorphisms in severe sepsis and septic shock: a prospective multicentre study, Genes and Immunity. (2004) 5, no. 8, 631–640, https://doi.org/10.1038/sj.gene.6364136, 2-s2.0-19944369381, 15526005.
- 48 Roger T., David J., Glauser M. P., and Calandra T., MIF regulates innate immune responses through modulation of Toll-like receptor 4, Nature. (2001) 414, no. 6866, 920–924, https://doi.org/10.1038/414920a, 2-s2.0-0035924325, 11780066.
- 49
Roger T.,
Glauser M. P., and
Calandra T., Macrophage migration inhibitory factor (MIF) modulates innate immune responses induced by endotoxin and Gram-negative bacteria, Journal of Endotoxin Research. (2016) 7, no. 6, 456–460.
10.1177/09680519010070061101 Google Scholar
- 50 Calandra T., Echtenacher B., Roy D. L., Pugin J., Metz C. N., Hultner L., Heumann D., Mannel D., Bucala R., and Glauser M. P., Protection from septic shock by neutralization of macrophage migration inhibitory factor, Nature Medicine. (2000) 6, no. 2, 164–170, https://doi.org/10.1038/72262, 2-s2.0-0001611329.
- 51 Leon L. R., White A. A., and Kluger M. J., Role of IL-6 and TNF in thermoregulation and survival during sepsis in mice, The American Journal of Physiology. (1998) 275, 1, Part 2, R269–R277.
- 52 Hack C. E., De Groot E. R., Felt-Bersma R. J., Nuijens J. H., Strack Van Schijndel R. J., Eerenberg-Belmer A. J., Thijs L. G., and Aarden L. A., Increased plasma levels of interleukin-6 in sepsis, Blood. (1989) 74, no. 5, 1704–1710, https://doi.org/10.1182/blood.V74.5.1704.1704, 2790194.
- 53 Trzeciak S., Cinel I., Dellinger R. P., Shapiro N. I., Arnold R. C., Parrillo J. E., Hollenberg S. M., and on behalf of the Microcirculatory Alterations in Resuscitation and Shock (MARS) Investigators, Resuscitating the microcirculation in sepsis: the central role of nitric oxide, emerging concepts for novel therapies, and challenges for clinical trials, Academic Emergency Medicine. (2008) 15, no. 5, 399–413, https://doi.org/10.1111/j.1553-2712.2008.00109.x, 2-s2.0-44049093984, 18439194.
- 54 Teixeira-da-Cunha M. G., Gomes R. N., Roehrs N., Bozza F. A., Prescott S. M., Stafforini D., Zimmerman G. A., Bozza P. T., and Castro-Faria-Neto H. C., Bacterial clearance is improved in septic mice by platelet-activating factor-acetylhydrolase (PAF-AH) administration, PLoS One. (2013) 8, no. 9, article e74567, https://doi.org/10.1371/journal.pone.0074567, 2-s2.0-84884186134, 24069320.
- 55 Gomes R. N., Teixeira-Cunha M. G., Figueiredo R. T., Almeida P. E., Alves S. C., Bozza P. T., Bozza F. A., Bozza M. T., Zimmerman G. A., and Castro-Faria-Neto H. C., Bacterial clearance in septic mice is modulated by MCP-1/CCL2 and nitric oxide, Shock. (2013) 39, no. 1, 63–69, https://doi.org/10.1097/SHK.0b013e31827802b5, 2-s2.0-84871975602, 23247123.
- 56 Chen C. H., Lee R. P., Wu W. T., Liao K. W., Hsu N., and Hsu B. G., Fluvastatin ameliorates endotoxin induced multiple organ failure in conscious rats, Resuscitation. (2007) 74, no. 1, 166–174, https://doi.org/10.1016/j.resuscitation.2006.12.002, 2-s2.0-34250004335, 17353078.
- 57 Greenwood J. and Mason J. C., Statins and the vascular endothelial inflammatory response, Trends in Immunology. (2007) 28, no. 2, 88–98, https://doi.org/10.1016/j.it.2006.12.003, 2-s2.0-33846639179, 17197237.
- 58 Chow O. A., von Kockritz-Blickwede M., Bright A. T., Hensler M. E., Zinkernagel A. S., Cogen A. L., Gallo R. L., Monestier M., Wang Y., Glass C. K., and Nizet V., Statins enhance formation of phagocyte extracellular traps, Cell Host & Microbe. (2010) 8, no. 5, 445–454, https://doi.org/10.1016/j.chom.2010.10.005, 2-s2.0-78349277280, 21075355.
- 59 Araki S., Dobashi K., Asayama K., and Shirahata A., Simvastatin enhances induction of inducible nitric oxide synthase in 3T3-L1 adipocytes, Free Radical Research. (2009) 41, no. 9, 1028–1034.
- 60 Habara K., Hamada Y., Yamada M., Tokuhara K., Tanaka H., Kaibori M., Kamiyama Y., Nishizawa M., Ito S., and Okumura T., Pitavastatin up-regulates the induction of iNOS through enhanced stabilization of its mRNA in pro-inflammatory cytokine-stimulated hepatocytes, Nitric Oxide. (2008) 18, no. 1, 19–27, https://doi.org/10.1016/j.niox.2007.08.005, 2-s2.0-37349074077, 17936042.
- 61 Parihar S. P., Guler R., and Brombacher F., Statins: a viable candidate for host-directed therapy against infectious diseases, Nature Reviews. Immunology. (2019) 19, no. 2, 104–117, https://doi.org/10.1038/s41577-018-0094-3, 2-s2.0-85057553147, 30487528.
- 62 Ye Y., Martinez J. D., Perez-Polo R. J., Lin Y., Uretsky B. F., and Birnbaum Y., The role of eNOS, iNOS, and NF-kappaB in upregulation and activation of cyclooxygenase-2 and infarct size reduction by atorvastatin, American Journal of Physiology. Heart and Circulatory Physiology. (2008) 295, no. 1, H343–H351, https://doi.org/10.1152/ajpheart.01350.2007, 2-s2.0-49849083778, 18469150.
- 63 Pasin L., Landoni G., Castro M. L., Cabrini L., Belletti A., Feltracco P., Finco G., Carozzo A., Chiesa R., and Zangrillo A., The effect of statins on mortality in septic patients: a meta-analysis of randomized controlled trials, PLoS One. (2013) 8, no. 12, article e82775, https://doi.org/10.1371/journal.pone.0082775, 2-s2.0-84894248128, 24391721.
- 64 Boyd A. R., Hinojosa C. A., Rodriguez P. J., and Orihuela C. J., Impact of oral simvastatin therapy on acute lung injury in mice during pneumococcal pneumonia, BMC Microbiology. (2012) 12, no. 1, https://doi.org/10.1186/1471-2180-12-73, 2-s2.0-84860911049.