Digit Tip Injuries: Current Treatment and Future Regenerative Paradigms
Corresponding Author
Travis J. Miller
Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94304, USA stanford.edu
The Buncke Clinic, San Francisco, CA 94114, USA buncke.org
Search for more papers by this authorPeter L. Deptula
Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94304, USA stanford.edu
Search for more papers by this authorGregory M. Buncke
The Buncke Clinic, San Francisco, CA 94114, USA buncke.org
Search for more papers by this authorCorresponding Author
Zeshaan N. Maan
Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94304, USA stanford.edu
Search for more papers by this authorCorresponding Author
Travis J. Miller
Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94304, USA stanford.edu
The Buncke Clinic, San Francisco, CA 94114, USA buncke.org
Search for more papers by this authorPeter L. Deptula
Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94304, USA stanford.edu
Search for more papers by this authorGregory M. Buncke
The Buncke Clinic, San Francisco, CA 94114, USA buncke.org
Search for more papers by this authorCorresponding Author
Zeshaan N. Maan
Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94304, USA stanford.edu
Search for more papers by this authorAbstract
Over the past several decades there has been a profound increase in the understanding of tissue regeneration, driven largely by the observance of the tremendous regenerative capacity in lower order life forms, such as hydra and urodeles. However, it is known that humans and other mammals retain the ability to regenerate the distal phalanges of the digits after amputation. Despite the increased knowledge base on model organisms regarding regenerative paradigms, there is a lack of application of regenerative medicine techniques in clinical practice in regard to digit tip injury. Here, we review the current understanding of digit tip regeneration and discuss gaps that remain in translating regenerative medicine into clinical treatment of digit amputation.
References
- 1 Stern P. J., Subspecialty certification in hand surgery, Clinical Orthopaedics and Related Research. (2006) 449, 165–168, https://doi.org/10.1097/01.blo.0000224041.77215.b6, 2-s2.0-33747181097, 16735880.
- 2 Melvin J. L., Roles and functions of occupational therapy in hand rehabilitation, The American Journal of Occupational Therapy. (1985) 39, no. 12, 795–798, https://doi.org/10.5014/ajot.39.12.795, 2-s2.0-0022310485, 4083322.
- 3 Colwell A. S., Longaker M. T., and Lorenz H. P., Fetal wound healing, Frontiers in Bioscience. (2003) 8, no. 6, s1240–s1248, https://doi.org/10.2741/1183.
- 4 Michalopoulos G. K., Liver regeneration, Journal of Cellular Physiology. (2007) 213, no. 2, 286–300, https://doi.org/10.1002/jcp.21172, 2-s2.0-34848864570, 17559071.
- 5 Chan R. J. and Yoder M. C., The multiple facets of hematopoietic stem cells, Current Neurovascular Research. (2004) 1, no. 3, 197–206, https://doi.org/10.2174/1567202043362324, 2-s2.0-26944474490, 16181070.
- 6 Oates P.-S. and West A.-R., Heme in intestinal epithelial cell turnover, differentiation, detoxification, inflammation, carcinogenesis, absorption and motility, World Journal of Gastroenterology. (2006) 12, no. 27, 4281–4295, https://doi.org/10.3748/wjg.v12.i27.4281, 2-s2.0-33746906722, 16865768.
- 7 Gurtner G. C., Werner S., Barrandon Y., and Longaker M. T., Wound repair and regeneration, Nature. (2008) 453, no. 7193, 314–321, https://doi.org/10.1038/nature07039, 2-s2.0-43749088730, 18480812.
- 8 Petralia R. S., Mattson M. P., and Yao P. J., Aging and longevity in the simplest animals and the quest for immortality, Ageing Research Reviews. (2014) 16, 66–82, https://doi.org/10.1016/j.arr.2014.05.003, 2-s2.0-84903755582, 24910306.
- 9 Haas B. J. and Whited J. L., Advances in decoding axolotl limb regeneration, Trends in Genetics. (2017) 33, no. 8, 553–565, https://doi.org/10.1016/j.tig.2017.05.006, 2-s2.0-85021237164, 28648452.
- 10 Vinarsky V., Atkinson D. L., Stevenson T. J., Keating M. T., and Odelberg S. J., Normal newt limb regeneration requires matrix metalloproteinase function, Developmental Biology. (2005) 279, no. 1, 86–98, https://doi.org/10.1016/j.ydbio.2004.12.003, 2-s2.0-13544253507.
- 11 Gomez S., Garcia A. J., Luna S., Kierdorf U., Kierdorf H., Gallego L., and Landete-Castillejos T., Labeling studies on cortical bone formation in the antlers of red deer (Cervus elaphus), Bone. (2013) 52, no. 1, 506–515, https://doi.org/10.1016/j.bone.2012.09.015, 2-s2.0-84870388983, 23000508.
- 12 Joseph J. and Dyson M., Tissue replacement in the rabbit’s ear, British Journal of Surgery. (1966) 53, no. 4, 372–380, https://doi.org/10.1002/bjs.1800530415, 2-s2.0-0013898390, 5931030.
- 13 Rinkevich Y., Lindau P., Ueno H., Longaker M. T., and Weissman I. L., Germ-layer and lineage-restricted stem/progenitors regenerate the mouse digit tip, Nature. (2011) 476, no. 7361, 409–413, https://doi.org/10.1038/nature10346, 2-s2.0-80052056733, 21866153.
- 14 Lehoczky J. A., Robert B., and Tabin C. J., Mouse digit tip regeneration is mediated by fate-restricted progenitor cells, Proceedings of the National Academy of Sciences of the United States of America. (2011) 108, no. 51, 20609–20614, https://doi.org/10.1073/pnas.1118017108, 2-s2.0-84855507663.
- 15 Borgens R. B., Mice regrow the tips of their foretoes, Science. (1982) 217, no. 4561, 747–750, https://doi.org/10.1126/science.7100922, 2-s2.0-0019991854, 7100922.
- 16 Chamberlain C. S., Jeffery J. J., Leiferman E. M., Yildirim T., Sun X., Baer G. S., Murphy W. L., and Vanderby R., Level-specific amputations and resulting regenerative outcomes in the mouse distal phalanx, Wound Repair and Regeneration. (2017) 25, no. 3, 443–453, https://doi.org/10.1111/wrr.12544, 2-s2.0-85021814601, 28493324.
- 17 Douglas B. S., Conservative management of guillotine amputation of the finger in children, Journal of Paediatrics and Child Health. (1972) 8, no. 2, 86–89, https://doi.org/10.1111/j.1440-1754.1972.tb01793.x, 2-s2.0-84993907183.
- 18 Illingworth C. M., Trapped fingers and amputated finger tips in children, Journal of Pediatric Surgery. (1974) 9, no. 6, 853–858, https://doi.org/10.1016/S0022-3468(74)80220-4, 2-s2.0-0016326401, 4473530.
- 19 McKim L. H., Regeneration of the distal phalanx, Canadian Medical Association Journal. (1932) 26, no. 5, 549–550, 20318716.
- 20 Singer M., Weckesser E. C., Géraudie J., Eberhardt Maier C., and Singer J., Open finger tip healing and replacement after distal amputation in rhesus monkey with comparison to limb regeneration in lower vertebrates, Anatomy and Embryology. (1987) 177, no. 1, 29–36, https://doi.org/10.1007/BF00325287, 2-s2.0-0023579226, 3439635.
- 21 Neufeld D. A. and Zhao W., Bone regrowth after digit tip amputation in mice is equivalent in adults and neonates, Wound Repair and Regeneration. (1995) 3, no. 4, 461–466, https://doi.org/10.1046/j.1524-475X.1995.30410.x, 2-s2.0-84989051360, 17147657.
- 22 Takeo M., Chou W. C., Sun Q., Lee W., Rabbani P., Loomis C., Taketo M. M., and Ito M., Wnt activation in nail epithelium couples nail growth to digit regeneration, Nature. (2013) 499, no. 7457, 228–232, https://doi.org/10.1038/nature12214, 2-s2.0-84880506919.
- 23 Lehoczky J. A., Are fingernails a key to unlocking the puzzle of mammalian limb regeneration?, Experimental Dermatology. (2017) 26, no. 6, 478–482, https://doi.org/10.1111/exd.13246, 2-s2.0-85013413507, 27761955.
- 24 Mohammad K. S., Day F. A., and Neufeld D. A., Bone growth is induced by nail transplantation in amputated proximal phalanges, Calcified Tissue International. (1999) 65, no. 5, 408–410, https://doi.org/10.1007/s002239900722, 2-s2.0-0032722762, 10541769.
- 25 Takeo M., Hale C. S., and Ito M., Epithelium-derived Wnt ligands are essential for maintenance of underlying digit bone, The Journal of Investigative Dermatology. (2016) 136, no. 7, 1355–1363, https://doi.org/10.1016/j.jid.2016.03.018, 2-s2.0-84992476998, 27021406.
- 26 Lehoczky J. A. and Tabin C. J., Lgr6 marks nail stem cells and is required for digit tip regeneration, Proceedings of the National Academy of Sciences of the United States of America. (2015) 112, no. 43, 13249–13254, https://doi.org/10.1073/pnas.1518874112, 2-s2.0-84945580377, 26460010.
- 27 Gong X., Carmon K. S., Lin Q., Thomas A., Yi J., and Liu Q., LGR6 is a high affinity receptor of R-spondins and potentially functions as a tumor suppressor, PLoS One. (2012) 7, no. 5, article e37137, https://doi.org/10.1371/journal.pone.0037137, 2-s2.0-84861218349, 22615920.
- 28 Han M., Yang X., Jangwoo L., Allan C. H., and Muneoka K., Development and regeneration of the neonatal digit tip in mice, Developmental Biology. (2008) 315, no. 1, 125–135, https://doi.org/10.1016/j.ydbio.2007.12.025, 2-s2.0-39249084246, 18234177.
- 29 Fernando W. A., Leininger E., Simkin J., Li N., Malcom C. A., Sathyamoorthi S., Han M., and Muneoka K., Wound healing and blastema formation in regenerating digit tips of adult mice, Developmental Biology. (2011) 350, no. 2, 301–310, https://doi.org/10.1016/j.ydbio.2010.11.035, 2-s2.0-79151470675, 21145316.
- 30 Wu Y., Wang K., Karapetyan A., Fernando W. A., Simkin J., Han M., Rugg E. L., and Muneoka K., Connective tissue fibroblast properties are position-dependent during mouse digit tip regeneration, PLoS One. (2013) 8, no. 1, article e54764, https://doi.org/10.1371/journal.pone.0054764, 2-s2.0-84872534511, 23349966.
- 31 Lévesque M., Gatien S., Finnson K., Desmeules S., Villiard É., Pilote M., Philip A., and Roy S., Transforming growth factor: β signaling is essential for limb regeneration in axolotls, PLoS One. (2007) 2, no. 11, article e1227, https://doi.org/10.1371/journal.pone.0001227, 2-s2.0-41149097772, 18043735.
- 32 Ho D. M. and Whitman M., TGF-β signaling is required for multiple processes during Xenopus tail regeneration, Developmental Biology. (2008) 315, no. 1, 203–216, https://doi.org/10.1016/j.ydbio.2007.12.031, 2-s2.0-39249083835, 18234181.
- 33 Xu X., Zheng L., Yuan Q., Zhen G., Crane J. L., Zhou X., and Cao X., Transforming growth factor-β in stem cells and tissue homeostasis, Bone Research. (2018) 6, no. 1, https://doi.org/10.1038/s41413-017-0005-4, 2-s2.0-85041350303.
- 34 Mu X., Bellayr I., Pan H., Choi Y., and Li Y., Regeneration of soft tissues is promoted by MMP1 treatment after digit amputation in mice, PLoS One. (2013) 8, no. 3, article e59105, https://doi.org/10.1371/journal.pone.0059105, 2-s2.0-84875074879, 23527099.
- 35 Caley M. P., Martins V. L. C., and O’Toole E. A., Metalloproteinases and wound healing, Advances in Wound Care. (2015) 4, no. 4, 225–234, https://doi.org/10.1089/wound.2014.0581, 25945285.
- 36 Delaney K., Kasprzycka P., Ciemerych M. A., and Zimowska M., The role of TGF-β1 during skeletal muscle regeneration, Cell Biology International. (2017) 41, no. 7, 706–715, https://doi.org/10.1002/cbin.10725, 2-s2.0-85010216534, 28035727.
- 37 Han M., Digit regeneration is regulated by Msx1 and BMP4 in fetal mice, Development. (2003) 130, no. 21, 5123–5132, https://doi.org/10.1242/dev.00710, 2-s2.0-0242550694, 12944425.
- 38 Yu L., Han M., Yan M., Lee J., and Muneoka K., BMP2 induces segment-specific skeletal regeneration from digit and limb amputations by establishing a new endochondral ossification center, Developmental Biology. (2012) 372, no. 2, 263–273, https://doi.org/10.1016/j.ydbio.2012.09.021, 2-s2.0-84868300427, 23041115.
- 39 Simkin J., Sammarco M. C., Dawson L. A., Schanes P. P., Yu L., and Muneoka K., The mammalian blastema: regeneration at our fingertips, Regeneration. (2015) 2, no. 3, 93–105, https://doi.org/10.1002/reg2.36, 27499871.
- 40
Endo T.,
Yokoyama H.,
Tamura K., and
Ide H., Shh expression in developing and regenerating limb buds of Xenopus laevis, Developmental Dynamics. (1997) 209, no. 2, 227–232, https://doi.org/10.1002/(SICI)1097-0177(199706)209:2<227::AID-AJA8>3.0.CO;2-K, 9186057.
10.1002/(SICI)1097-0177(199706)209:2<227::AID-AJA8>3.0.CO;2-K CAS PubMed Web of Science® Google Scholar
- 41 Nacu E., Gromberg E., Oliveira C. R., Drechsel D., and Tanaka E. M., FGF8 and SHH substitute for anterior–posterior tissue interactions to induce limb regeneration, Nature. (2016) 533, no. 7603, 407–410, https://doi.org/10.1038/nature17972, 2-s2.0-84971010761, 27120163.
- 42 Rinkevich Y., Montoro D. T., Muhonen E., Walmsley G. G., Lo D., Hasegawa M., Januszyk M., Connolly A. J., Weissman I. L., and Longaker M. T., Clonal analysis reveals nerve-dependent and independent roles on mammalian hind limb tissue maintenance and regeneration, Proceedings of the National Academy of Sciences of the United States of America. (2014) 111, no. 27, 9846–9851, https://doi.org/10.1073/pnas.1410097111, 2-s2.0-84903975696, 24958860.
- 43 Fallon J. F., López A., Ros M. A., Savage M. P., Olwin B. B., and Simandl B. K., FGF-2: apical ectodermal ridge growth signal for chick limb development, Science. (1994) 264, no. 5155, 104–107, https://doi.org/10.1126/science.7908145, 2-s2.0-0028266824, 7908145.
- 44 Martin G. R., The roles of FGFs in the early development of vertebrate limbs, Genes & Development. (1998) 12, no. 11, 1571–1586, https://doi.org/10.1101/gad.12.11.1571, 2-s2.0-2642595047, 9620845.
- 45 Dunis D. A. and Namenwirth M., The role of grafted skin in the regeneration of X-irradiated axolotl limbs, Developmental Biology. (1977) 56, no. 1, 97–109, https://doi.org/10.1016/0012-1606(77)90157-9, 2-s2.0-0017360190.
- 46 Brockes J. P., The nerve dependence of amphibian limb regeneration, Journal of Experimental Biology. (1987) 132, 79–91, 3323408.
- 47 Kumar A. and Brockes J. P., Nerve dependence in tissue, organ, and appendage regeneration, Trends in Neurosciences. (2012) 35, no. 11, 691–699, https://doi.org/10.1016/j.tins.2012.08.003, 2-s2.0-84867918317, 22989534.
- 48 Johnston A. P. W., Yuzwa S. A., Carr M. J., Mahmud N., Storer M. A., Krause M. P., Jones K., Paul S., Kaplan D. R., and Miller F. D., Dedifferentiated Schwann cell precursors secreting paracrine factors are required for regeneration of the mammalian digit tip, Cell Stem Cell. (2016) 19, no. 4, 433–448, https://doi.org/10.1016/j.stem.2016.06.002, 2-s2.0-84992358086, 27376984.
- 49 Kumar A., Godwin J. W., Gates P. B., Garza-Garcia A. A., and Brockes J. P., Molecular basis for the nerve dependence of limb regeneration in an adult vertebrate, Science. (2007) 318, no. 5851, 772–777, https://doi.org/10.1126/science.1147710, 2-s2.0-38349023585.
- 50 Maden M. and Holder N., Axial characteristics of nerve induced supernumerary limbs in the axolotl, Wilehm Roux Arch Dev Biol. (1984) 193, no. 6, 394–401, https://doi.org/10.1007/BF00848230, 2-s2.0-0021149562, 28305105.
- 51 Rinkevich Y., Maan Z. N., Walmsley G. G., and Sen S. K., Injuries to appendage extremities and digit tips: a clinical and cellular update, Developmental Dynamics. (2015) 244, no. 5, 641–650, https://doi.org/10.1002/dvdy.24265, 2-s2.0-84929155945, 25715837.
- 52 Tsonis P. A., Stem cells and ßλατημa cells, Current Stem Cell Research & Therapy. (2008) 3, no. 1, 53–54, https://doi.org/10.2174/157488808783489408, 2-s2.0-39749145939, 18220923.
- 53 Christen B., Robles V., Raya M., Paramonov I., and Belmonte J., Regeneration and reprogramming compared, BMC Biology. (2010) 8, no. 1, https://doi.org/10.1186/1741-7007-8-5, 2-s2.0-77149139729, 20089153.
- 54 Tamura K., Ohgo S., and Yokoyama H., Limb blastema cell: a stem cell for morphological regeneration, Development, Growth & Differentiation. (2010) 52, no. 1, 89–99, https://doi.org/10.1111/j.1440-169x.2009.01144.x, 2-s2.0-74549180460.
- 55 Sousa S., Afonso N., Bensimon-Brito A., Fonseca M., Simoes M., Leon J., Roehl H., Cancela M. L., and Jacinto A., Differentiated skeletal cells contribute to blastema formation during zebrafish fin regeneration, Development. (2011) 138, no. 18, 3897–3905, https://doi.org/10.1242/dev.064717, 2-s2.0-80051949501, 21862555.
- 56 Park D., Spencer J. A., Koh B. I., Kobayashi T., Fujisaki J., Clemens T. L., Lin C. P., Kronenberg H. M., and Scadden D. T., Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration, Cell Stem Cell. (2012) 10, no. 3, 259–272, https://doi.org/10.1016/j.stem.2012.02.003, 2-s2.0-84863229757, 22385654.
- 57 Ono N., Ono W., Nagasawa T., and Kronenberg H. M., A subset of chondrogenic cells provides early mesenchymal progenitors in growing bones, Nature Cell Biology. (2014) 16, no. 12, 1157–1167, https://doi.org/10.1038/ncb3067, 2-s2.0-84927176172, 25419849.
- 58 Sandoval-Guzmán T. and Currie J. D., The journey of cells through regeneration, Current Opinion in Cell Biology. (2018) 55, 36–41, https://doi.org/10.1016/j.ceb.2018.05.008, 2-s2.0-85049989421, 30031323.
- 59 Vidal P. and Dickson M. G., Regeneration of the distal phalanx: a case report, Journal of Hand Surgery. (1993) 18, no. 2, 230–233, https://doi.org/10.1016/0266-7681(93)90116-W, 2-s2.0-0027469631.
- 60
Das S. K. and
Brown H. G., Management of lost finger tips in children, Hand. (1978) os-10, no. 1, 16–27, https://doi.org/10.1016/s0072-968x(78)80021-7, 2-s2.0-0017881124.
10.1016/S0072-968X(78)80021-7 Google Scholar
- 61 Champagne L., Hustedt J. W., Walker R., Wiebelhaus J., and Nystrom N. A., Digital tip amputations from the perspective of the nail, Advances in Orthopedics. (2016) 2016, 6, 1967192, https://doi.org/10.1155/2016/1967192, 2-s2.0-84999750709.
- 62 Yuan F., McGlinn E. P., Giladi A. M., and Chung K. C., A systematic review of outcomes after revision amputation for treatment of traumatic finger amputation, Plastic and Reconstructive Surgery. (2015) 136, no. 1, 99–113, https://doi.org/10.1097/PRS.0000000000001487, 2-s2.0-84940980900, 26111316.
- 63 Altizer A. M., Stewart S. G., Albertson B. K., and Borgens R. B., Skin flaps inhibit both the current of injury at the amputation surface and regeneration of that limb in newts, The Journal of Experimental Zoology. (2002) 293, no. 5, 467–477, https://doi.org/10.1002/jez.10141, 2-s2.0-0036783805, 12486807.
- 64 Reid B., Song B., and Zhao M., Electric currents in Xenopus tadpole tail regeneration, Developmental Biology. (2009) 335, no. 1, 198–207, https://doi.org/10.1016/j.ydbio.2009.08.028, 2-s2.0-70349784919, 19733557.
- 65
Neufeld D. A. and
Day F. A., Perspective: a suggested role for basement membrane structures during newt limb regeneration, The Anatomical Record. (1996) 246, no. 2, 155–161, https://doi.org/10.1002/(SICI)1097-0185(199610)246:2<155::AID-AR1>3.0.CO;2-0, 8888956.
10.1002/(SICI)1097-0185(199610)246:2<155::AID-AR1>3.0.CO;2-0 CAS PubMed Web of Science® Google Scholar
- 66 Hattori Y., Doi K., Ikeda K., and Estrella E. P., A retrospective study of functional outcomes after successful replantation versus amputation closure for single fingertip amputations, The Journal of Hand Surgery. (2006) 31, no. 5, 811–818, https://doi.org/10.1016/j.jhsa.2006.02.020, 2-s2.0-33646514513, 16713848.
- 67 Ugurlar M., Kabakas F., Purisa H., Sezer I., Celikdelen P., and Ozcelik I. B., Rehabilitation after successful finger replantation, Northern Clinics of Istanbul. (2016) 3, 22–26, https://doi.org/10.14744/nci.2016.19870.
- 68 Maricevich M., Carlsen B., Mardini S., and Moran S., Upper extremity and digital replantation, Hand. (2011) 6, no. 4, 356–363, https://doi.org/10.1007/s11552-011-9353-5, 2-s2.0-80855130879, 23204960.
- 69 Chen C.-T., Wei F.-C., Chen H.-C., Chuang C. C., Chen H. T., and Hsu W. M., Distal phalanx replantation, Microsurgery. (1994) 15, no. 1, 77–82, https://doi.org/10.1002/micr.1920150118, 2-s2.0-0028107199, 8133774.
- 70 Boulas J. H., Amputations of the fingers and hand: indications for replantation, Journal of the American Academy of Orthopaedic Surgeons. (1998) 6, no. 2, 100–105, https://doi.org/10.5435/00124635-199803000-00004, 2-s2.0-0032011802, 9682072.
- 71 Simkin J., Sammarco M. C., Dawson L. A., Tucker C., Taylor L. J., van Meter K., and Muneoka K., Epidermal closure regulates histolysis during mammalian (Mus) digit regeneration, Regeneration. (2015) 2, no. 3, 106–119, https://doi.org/10.1002/reg2.34, 27499872.
- 72 Lin B. W., A novel, simple method for achieving hemostasis of fingertip dermal avulsion injuries, The Journal of Emergency Medicine. (2015) 48, no. 6, 702–705, https://doi.org/10.1016/j.jemermed.2014.12.083, 2-s2.0-84930182275.
- 73 Strauss E. J., Weil W. M., Jordan C., and Paksima N., A prospective, randomized, controlled trial of 2-octylcyanoacrylate versus suture repair for nail bed injuries, The Journal of Hand Surgery. (2008) 33, no. 2, 250–253, https://doi.org/10.1016/j.jhsa.2007.10.008, 2-s2.0-39149118617.
- 74 Matter-Parrat V., Severac F., Xavier F., Facca S., Hidalgo Diaz J. J., and Liverneaux P., Fixation of the nail plate by tension band suture versus 2-octyl-cyanoacrylate gluing for traumatic nail bed injuries reduced without suture: a retrospective study of 27 cases, Hand Surgery and Rehabilitation. (2018) 37, no. 3, 180–185, https://doi.org/10.1016/j.hansur.2017.12.007, 2-s2.0-85044141453.
- 75 Sammarco M. C., Simkin J., Fassler D., Cammack A. J., Wilson A., van Meter K., and Muneoka K., Endogenous bone regeneration is dependent upon a dynamic oxygen event, Journal of Bone and Mineral Research. (2014) 29, no. 11, 2336–2345, https://doi.org/10.1002/jbmr.2261, 2-s2.0-84923822860.
- 76 Wietecha M. S., Cerny W. L., and DiPietro L. A., E. Heber-Katz and D. L. Stocum, Mechanisms of vessel regression: toward an understanding of the resolution of angiogenesis, New Perspectives in Regeneration, 2013, Springer, Berlin, Heidelberg, 3–32, Current Topics in Microbiology and Immunology, https://doi.org/10.1007/82_2012_287.
- 77 Yu L., Yan M., Simkin J., Ketcham P. D., Leininger E., Han M., and Muneoka K., Angiogenesis is inhibitory for mammalian digit regeneration, Regeneration. (2014) 1, no. 3, 33–46, https://doi.org/10.1002/reg2.24, 27499862.
- 78 Sammarco M. C., Simkin J., Cammack A. J., Fassler D., Gossmann A., Marrero L., Lacey M., van Meter K., and Muneoka K., Hyperbaric oxygen promotes proximal bone regeneration and organized collagen composition during digit regeneration, PLoS One. (2015) 10, no. 10, article e0140156, https://doi.org/10.1371/journal.pone.0140156, 2-s2.0-84948687232, 26452224.
- 79 Goldman R. J., Hyperbaric oxygen therapy for wound healing and limb salvage: a systematic review, PM&R. (2009) 1, no. 5, 471–489, https://doi.org/10.1016/j.pmrj.2009.03.012, 2-s2.0-65549167693.
- 80 Shieh S. and Cheng T., Regeneration and repair of human digits and limbs: fact and fiction, Regeneration. (2015) 2, no. 4, 149–168, https://doi.org/10.1002/reg2.41, 27499873.
- 81 Poon B., Kha T., Tran S., and Dass C. R., Bone morphogenetic protein-2 and bone therapy: successes and pitfalls, Journal of Pharmacy and Pharmacology. (2016) 68, no. 2, 139–147, https://doi.org/10.1111/jphp.12506, 2-s2.0-84958759266, 26727402.
- 82 de Lau W. B., Snel B., and Clevers H. C., The R-spondin protein family, Genome Biology. (2012) 13, no. 3, https://doi.org/10.1186/gb-2012-13-3-242, 2-s2.0-84858111175, 22439850.
- 83 Mazza G., Rombouts K., Rennie Hall A., Urbani L., Vinh Luong T., al-Akkad W., Longato L., Brown D., Maghsoudlou P., Dhillon A. P., Fuller B., Davidson B., Moore K., Dhar D., de Coppi P., Malago M., and Pinzani M., Decellularized human liver as a natural 3D-scaffold for liver bioengineering and transplantation, Scientific Reports. (2015) 5, no. 1, https://doi.org/10.1038/srep13079, 2-s2.0-84938855249, 26248878.
- 84 Means K. R., Rinker B. D., Higgins J. P., Houston PayneS.Jr., Merrell G. A., and Shaw Wilgis E. F., A multicenter, prospective, randomized, pilot study of outcomes for digital nerve repair in the hand using hollow conduit compared with processed allograft nerve, Hand. (2016) 11, no. 2, 144–151, https://doi.org/10.1177/1558944715627233, 2-s2.0-85009279325, 27390554.