Strategy for the Generation of Engineered Bone Constructs Based on Umbilical Cord Mesenchymal Stromal Cells Expanded with Human Platelet Lysate
Ingrid Silva-Cote
Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud (IDCBIS), Bogotá, Colombia idcbis.org.co
Search for more papers by this authorMónica Cruz-Barrera
Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud (IDCBIS), Bogotá, Colombia idcbis.org.co
Search for more papers by this authorMariana Cañas-Arboleda
Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud (IDCBIS), Bogotá, Colombia idcbis.org.co
Search for more papers by this authorLuz Correa-Araujo
Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud (IDCBIS), Bogotá, Colombia idcbis.org.co
Search for more papers by this authorLeidi Méndez
Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud (IDCBIS), Bogotá, Colombia idcbis.org.co
Search for more papers by this authorJoanna Jagielska
Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud (IDCBIS), Bogotá, Colombia idcbis.org.co
Search for more papers by this authorBernardo Camacho
Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud (IDCBIS), Bogotá, Colombia idcbis.org.co
Search for more papers by this authorCorresponding Author
Gustavo Salguero
Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud (IDCBIS), Bogotá, Colombia idcbis.org.co
Search for more papers by this authorIngrid Silva-Cote
Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud (IDCBIS), Bogotá, Colombia idcbis.org.co
Search for more papers by this authorMónica Cruz-Barrera
Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud (IDCBIS), Bogotá, Colombia idcbis.org.co
Search for more papers by this authorMariana Cañas-Arboleda
Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud (IDCBIS), Bogotá, Colombia idcbis.org.co
Search for more papers by this authorLuz Correa-Araujo
Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud (IDCBIS), Bogotá, Colombia idcbis.org.co
Search for more papers by this authorLeidi Méndez
Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud (IDCBIS), Bogotá, Colombia idcbis.org.co
Search for more papers by this authorJoanna Jagielska
Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud (IDCBIS), Bogotá, Colombia idcbis.org.co
Search for more papers by this authorBernardo Camacho
Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud (IDCBIS), Bogotá, Colombia idcbis.org.co
Search for more papers by this authorCorresponding Author
Gustavo Salguero
Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud (IDCBIS), Bogotá, Colombia idcbis.org.co
Search for more papers by this authorAbstract
Umbilical cord mesenchymal stromal cells (UC-MSC) are promising candidates for cell therapy due to their potent multilineage differentiation, enhanced self-renewal capacity, and immediate availability for clinical use. Clinical experience has demonstrated satisfactory biosafety profiles and feasibility of UC-MSC application in the allogeneic setting. However, the use of UC-MSC for bone regeneration has not been fully established. A major challenge in the generation of successful therapeutic strategies for bone engineering lies on the combination of highly functional proosteogenic MSC populations and bioactive matrix scaffolds. To address that, in this study we proposed a new approach for the generation of bone-like constructs based on UC-MSC expanded in human platelet lysate (hPL) and evaluated its potential to induce bone structures in vivo. In order to obtain UC-MSC for potential clinical use, we first assessed parameters such as the isolation method, growth supplementation, microbiological monitoring, and cryopreservation and performed full characterization of the cell product including phenotype, growth performance, tree-lineage differentiation, and gene expression. Finally, we evaluated bone-like constructs based on the combination of stimulated UC-MSC and collagen microbeads for in vivo bone formation. UC-MSC were successfully cultured from 100% of processed UC donors, and efficient cell derivation was observed at day 14 ± 3 by the explant method. UC-MSC maintained mesenchymal cell morphology, phenotype, high cell growth performance, and probed multipotent differentiation capacity. No striking variations between donors were recorded. As expected, UC-MSC showed tree-lineage differentiation and gene expression profiles similar to bone marrow- and adipose-derived MSC. Importantly, upon osteogenic and endothelial induction, UC-MSC displayed strong proangiogenic and bone formation features. The combination of hPL-expanded MSC and collagen microbeads led to bone/vessel formation following implantation into an immune competent mouse model. Collectively, we developed a high-performance UC-MSC-based cell manufacturing bioprocess that fulfills the requirements for human application and triggers the potency and effectivity of cell-engineered scaffolds for bone regeneration.
Conflicts of Interest
The authors declare that they have no conflicts of interest.
Open Research
Data Availability
The data used to support the findings of this study are available upon request.
References
- 1 Pers Y. M., Ruiz M., Noël D., and Jorgensen C., Mesenchymal stem cells for the management of inflammation in osteoarthritis: state of the art and perspectives, Osteoarthritis and Cartilage. (2015) 23, no. 11, 2027–2035, https://doi.org/10.1016/j.joca.2015.07.004, 2-s2.0-84945267704, 26521749.
- 2
Carlsson P.-O. and
Svahn M., Wharton’s jelly derived allogeneic mesenchymal stromal cells for treatment of type 1 diabetes: study protocol for a double-blinded, randomized, parallel, placebo-controlled trial, Clinical Trials in Degenerative Diseases. (2018) 3, no. 2, 32–37, https://doi.org/10.4103/2542-3975.235141.
10.4103/2542-3975.235141 Google Scholar
- 3 Jorgensen C. and Noël D., Mesenchymal stem cells in osteoarticular diseases, Regenerative Medicine. (2011) 6, no. 6s, 44–51, https://doi.org/10.2217/rme.11.80, 2-s2.0-80054098557.
- 4
Chen Y.-S., Mesenchymal stem cell: considerations for manufacturing and clinical trials on cell therapy product, International Journal of Stem cell Research & Therapy. (2016) 3, no. 1, https://doi.org/10.23937/2469-570x/1410029.
10.23937/2469-570X/1410029 Google Scholar
- 5 Galipeau J., Krampera M., Barrett J., Dazzi F., Deans R. J., DeBruijn J., Dominici M., Fibbe W. E., Gee A. P., Gimble J. M., Hematti P., Koh M. B. C., LeBlanc K., Martin I., McNiece I. K., Mendicino M., Oh S., Ortiz L., Phinney D. G., Planat V., Shi Y., Stroncek D. F., Viswanathan S., Weiss D. J., and Sensebe L., International Society for Cellular Therapy perspective on immune functional assays for mesenchymal stromal cells as potency release criterion for advanced phase clinical trials, Cytotherapy. (2016) 18, no. 2, 151–159, https://doi.org/10.1016/j.jcyt.2015.11.008, 2-s2.0-84962117259, 26724220.
- 6 Lechanteur C., Briquet A., Giet O., Delloye O., Baudoux E., and Beguin Y., Clinical-scale expansion of mesenchymal stromal cells: a large banking experience, Journal of Translational Medicine. (2016) 14, no. 1, 145–145, https://doi.org/10.1186/s12967-016-0892-y, 2-s2.0-84974560144, 27207011.
- 7 Mizukami A. and Swiech K., Mesenchymal stromal cells: from discovery to manufacturing and commercialization, Stem Cells International. (2018) 2018, 13, 4083921, https://doi.org/10.1155/2018/4083921, 2-s2.0-85055422234, 30057622.
- 8 Jin H., Bae Y., Kim M., Kwon S.-J., Jeon H., Choi S., Kim S., Yang Y., Oh W., and Chang J., Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy, International Journal of Molecular Sciences. (2013) 14, no. 9, 17986–18001, https://doi.org/10.3390/ijms140917986, 2-s2.0-84883628131, 24005862.
- 9 Mattar P. and Bieback K., Comparing the immunomodulatory properties of bone marrow, adipose tissue, and birth-associated tissue mesenchymal stromal cells, Frontiers in Immunology. (2015) 6, https://doi.org/10.3389/fimmu.2015.00560, 2-s2.0-84949551824.
- 10 Karaöz E., Demircan P. Ç., Erman G., Güngörürler E., and Sarıboyacı A. E., Comparative Analyses of Immune -Suppressive Characteristics of Bone-Marrow, Wharton’s Jelly a nd Adipose-Tissue Derived Human MSCs, Turkish Journal of Hematology: The Official Journal of Turkish Society of Hematology. (2017) 34, no. 3, 213–225, https://doi.org/10.4274/tjh.2016.0171, 2-s2.0-85026761765.
- 11 Wu M., Zhang R., Zou Q., Chen Y., Zhou M., Li X., Ran R., and Chen Q., Comparison of the biological characteristics of mesenchymal stem cells derived from the human placenta and umbilical cord, Scientific Reports. (2018) 8, no. 1, https://doi.org/10.1038/s41598-018-23396-1, 2-s2.0-85044355512, 29568084.
- 12 Kim J.-H., Jo C. H., Kim H.-R., and Hwang Y.-i., Comparison of immunological characteristics of mesenchymal stem cells from the periodontal ligament, umbilical cord, and adipose tissue, Stem Cells International. (2018) 2018, 12, 8429042, https://doi.org/10.1155/2018/8429042, 2-s2.0-85056141943, 29760736.
- 13 Zajdel A., Kałucka M., Kokoszka-Mikołaj E., and Wilczok A., Osteogenic differentiation of human mesenchymal stem cells from adipose tissue and Wharton’s jelly of the umbilical cord, Acta Biochimica Polonica. (2017) 64, no. 2, 365–369, https://doi.org/10.18388/abp.2016_1488, 2-s2.0-85026524085, 28600911.
- 14 Ali H., Al-Yatama M. K., Abu-Farha M., Behbehani K., and Al Madhoun A., Multi-lineage differentiation of human umbilical cord Wharton’s jelly mesenchymal stromal cells mediates changes in the expression profile of stemness markers, PLoS One. (2015) 10, no. 4, https://doi.org/10.1371/journal.pone.0122465, 2-s2.0-84928905414, 25848763.
- 15 Hsieh J.-Y., Fu Y.-S., Chang S.-J., Tsuang Y.-H., and Wang H.-W., Functional module analysis reveals differential osteogenic and stemness potentials in human mesenchymal stem cells from bone marrow and Wharton’s jelly of umbilical cord, Stem Cells and Development. (2010) 19, no. 12, 1895–1910, https://doi.org/10.1089/scd.2009.0485, 2-s2.0-78149396432, 20367285.
- 16 Killington K., Mafi R., Mafi P., and Khan W. S., A systematic review of clinical studies investigating mesenchymal stem cells for fracture non-union and bone defects, Current Stem Cell Research & Therapy. (2018) 13, no. 4, 284–291, https://doi.org/10.2174/1574888x12666170915121137, 2-s2.0-85046735681, 28914208.
- 17 Bruder S. P., Kurth A. A., Shea M., Hayes W. C., Jaiswal N., and Kadiyala S., Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells, Journal of Orthopaedic Research. (1998) 16, no. 2, 155–162, https://doi.org/10.1002/jor.1100160202, 2-s2.0-0032029899, 9621889.
- 18 Uchida M., Agata H., Sagara H., Shinohara Y., Kagami H., and Asahina I., Mixing conditions for cell scaffolds affect the bone formation induced by bone engineering with human bone marrow stromal cells, β-tricalcium phosphate granules, and rhBMP-2, Journal of Biomedical Materials Research Part A. (2009) 91A, no. 1, 84–91, https://doi.org/10.1002/jbm.a.32200, 2-s2.0-70349103854.
- 19 Rozila I., Azari P., Munirah S.′b., Wan Safwani W. K. Z., Gan S. N., Nur Azurah A. G., Jahendran J., Pingguan-Murphy B., and Chua K. H., Differential osteogenic potential of human adipose-derived stem cells co-cultured with human osteoblasts on polymeric microfiber scaffolds, Journal of Biomedical Materials Research Part A. (2016) 104, no. 2, 377–387, https://doi.org/10.1002/jbm.a.35573, 2-s2.0-84955172039, 26414782.
- 20 Pittenger M. F., Mackay A. M., Beck S. C., Jaiswal R. K., Douglas R., Mosca J. D., Moorman M. A., Simonetti D. W., Craig S., and Marshak D. R., Multilineage potential of adult human mesenchymal stem cells, Science. (1999) 284, no. 5411, 143–147, https://doi.org/10.1126/science.284.5411.143, 2-s2.0-0033515827, 10102814.
- 21 Hass R., Kasper C., Böhm S., and Jacobs R., Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC, Cell Communication and Signaling. (2011) 9, no. 1, https://doi.org/10.1186/1478-811x-9-12, 2-s2.0-79955795428.
- 22 Bentivegna A., Roversi G., Riva G., Paoletta L., Redaelli S., Miloso M., Tredici G., and Dalprà L., The effect of culture on human bone marrow mesenchymal stem cells: focus on DNA methylation profiles, Stem Cells International. (2016) 2016, 12, 5656701, https://doi.org/10.1155/2016/5656701, 2-s2.0-84955492412, 26880970.
- 23 Smith J. R., Pfeifer K., Petry F., Powell N., Delzeit J., and Weiss M. L., Standardizing umbilical cord mesenchymal stromal cells for translation to clinical use: selection of GMP-compliant medium and a simplified isolation method, Stem Cells International. (2016) 2016, 14, https://doi.org/10.1155/2016/6810980, 2-s2.0-84959378305, 26966439, 6810980.
- 24 Oliver-Vila I., Coca M. I., Grau-Vorster M., Pujals-Fonts N., Caminal M., Casamayor-Genescà A., Ortega I., Reales L., Pla A., Blanco M., García J., and Vives J., Evaluation of a cell-banking strategy for the production of clinical grade mesenchymal stromal cells from Wharton′s jelly, Cytotherapy. (2016) 18, no. 1, 25–35, https://doi.org/10.1016/j.jcyt.2015.10.001, 2-s2.0-84955390800, 26549383.
- 25 Schneider R. K., Puellen A., Kramann R., Raupach K., Bornemann J., Knuechel R., Pérez-Bouza A., and Neuss S., The osteogenic differentiation of adult bone marrow and perinatal umbilical mesenchymal stem cells and matrix remodelling in three-dimensional collagen scaffolds, Biomaterials. (2010) 31, no. 3, 467–480, https://doi.org/10.1016/j.biomaterials.2009.09.059, 2-s2.0-70449084690, 19815272.
- 26 Kargozar S., Mozafari M., Hashemian S. J., Brouki Milan P., Hamzehlou S., Soleimani M., Joghataei M. T., Gholipourmalekabadi M., Korourian A., Mousavizadeh K., and Seifalian A. M., Osteogenic potential of stem cells-seeded bioactive nanocomposite scaffolds: a comparative study between human mesenchymal stem cells derived from bone, umbilical cord Wharton’s jelly, and adipose tissue, Journal of Biomedical Materials Research Part B: Applied Biomaterials. (2018) 106, no. 1, 61–72, https://doi.org/10.1002/jbm.b.33814, 2-s2.0-85002701880, 27862947.
- 27 Jamalpoor Z., Taromi N., Soleimani M., Koudehi M. F., and Asgari A., In vitro interaction of human Wharton’s jelly mesenchymal stem cells with biomimetic 3D scaffold, Journal of Biomedical Materials Research Part A. (2019) 107, no. 6, 1166–1175, https://doi.org/10.1002/jbm.a.36608, 30636089.
- 28 Karadas O., Yucel D., Kenar H., Kose G. T., and Hasirci V., Collagen scaffolds with in situ-grown calcium phosphate for osteogenic differentiation of Wharton’s jelly and menstrual blood stem cells, Journal of Tissue Engineering and Regenerative Medicine. (2014) 8, no. 7, 534–545, https://doi.org/10.1002/term.1555, 2-s2.0-84903815929.
- 29 Wittig O., Diaz-Solano D., and Cardier J., Viability and functionality of mesenchymal stromal cells loaded on collagen microspheres and incorporated into plasma clots for orthopaedic application: effect of storage conditions, Injury. (2018) 49, no. 6, 1052–1057, https://doi.org/10.1016/j.injury.2018.04.005, 2-s2.0-85045555183, 29678307.
- 30 Chen C., Qu Z., Yin X., Shang C., Ao Q., Gu Y., and Liu Y., Efficacy of umbilical cord-derived mesenchymal stem cell-based therapy for osteonecrosis of the femoral head: a three-year follow-up study, Molecular Medicine Reports. (2016) 14, no. 5, 4209–4215, https://doi.org/10.3892/mmr.2016.5745, 2-s2.0-84992431065, 27634376.
- 31 Šponer P., Filip S., Kučera T., Brtková J., Urban K., Palička V., Kočí Z., Syka M., Bezrouk A., and Syková E., Utilizing Autologous Multipotent Mesenchymal Stromal Cells and -Tricalcium Phosphate Scaffold in Human Bone Defects: A Prospective, Controlled Feasibility Trial, BioMed Research International. (2016) 2016, 12, 2076061, https://doi.org/10.1155/2016/2076061, 2-s2.0-84965149669, 27144159.
- 32 Daltro G. C., Fortuna V., de Souza E. S., Salles M. M., Carreira A. C., Meyer R., Freire S. M., and Borojevic R., Efficacy of autologous stem cell-based therapy for osteonecrosis of the femoral head in sickle cell disease: a five-year follow-up study, Stem Cell Research & Therapy. (2015) 6, no. 1, https://doi.org/10.1186/s13287-015-0105-2, 2-s2.0-84931266091.
- 33 Gjerde C., Mustafa K., Hellem S., Rojewski M., Gjengedal H., Yassin M. A., Feng X., Skaale S., Berge T., Rosen A., Shi X.-Q., Ahmed A. B., Gjertsen B. T., Schrezenmeier H., and Layrolle P., Cell therapy induced regeneration of severely atrophied mandibular bone in a clinical trial, Stem Cell Research & Therapy. (2018) 9, no. 1, https://doi.org/10.1186/s13287-018-0951-9, 2-s2.0-85051277681, 30092840.
- 34 Redondo L. M., García V., Peral B., Verrier A., Becerra J., Sánchez A., and García-Sancho J., Repair of maxillary cystic bone defects with mesenchymal stem cells seeded on a cross-linked serum scaffold, Journal of Cranio-Maxillofacial Surgery. (2018) 46, no. 2, 222–229, https://doi.org/10.1016/j.jcms.2017.11.004, 2-s2.0-85041374815, 29229365.
- 35 Castillo-Cardiel G., López-Echaury A. C., Saucedo-Ortiz J. A., Fuentes-Orozco C., Michel-Espinoza L. R., Irusteta-Jiménez L., Salazar-Parra M., and González-Ojeda A., Bone regeneration in mandibular fractures after the application of autologous mesenchymal stem cells, a randomized clinical trial, Dental Traumatology. (2017) 33, no. 1, 38–44, https://doi.org/10.1111/edt.12303, 2-s2.0-84987621413, 27513920.
- 36 Khojasteh A., Eslaminejad M. B., Nazarian H., Morad G., Dashti S. G., Behnia H., and Stevens M., Vertical bone augmentation with simultaneous implant placement using particulate mineralized bone and mesenchymal stem cells: a preliminary study in rabbit, Journal of Oral Implantology. (2013) 39, no. 1, 3–13, https://doi.org/10.1563/aaid-joi-d-10-00206, 2-s2.0-84875536851, 21568719.
- 37 Zanwar K., Bhongade M. L., Ganji K. K., Koudale S. B., and Gowda P., Comparative evaluation of efficacy of stem cells in combination with PLA/PGA membrane versus sub-epithelial connective tissue for the treatment of multiple gingival recession defects: a clinical study, Journal of Stem Cells. (2014) 9, no. 4, 253–267.
- 38 Oryan A., Kamali A., Moshiri A., and Baghaban Eslaminejad M., Role of mesenchymal stem cells in bone regenerative medicine: what is the evidence?, Cells Tissues Organs. (2017) 204, no. 2, 59–83, https://doi.org/10.1159/000469704, 2-s2.0-85021669700, 28647733.
- 39 Perez J. R., Kouroupis D., Li D. J., Best T. M., Kaplan L., and Correa D., Tissue engineering and cell-based therapies for fractures and bone defects, Frontiers in Bioengineering and Biotechnology. (2018) 6, https://doi.org/10.3389/fbioe.2018.00105.
- 40 Mennan C., Wright K., Bhattacharjee A., Balain B., Richardson J., and Roberts S., Isolation and characterisation of mesenchymal stem cells from different regions of the human umbilical cord, BioMed Research International. (2013) 2013, 8, 916136, https://doi.org/10.1155/2013/916136, 2-s2.0-84881483403, 23984420.
- 41 Mercado-Pagán Á. E., Stahl A. M., Shanjani Y., and Yang Y., Vascularization in bone tissue engineering constructs, Annals of Biomedical Engineering. (2015) 43, no. 3, 718–729, https://doi.org/10.1007/s10439-015-1253-3, 2-s2.0-84934347754, 25616591.
- 42 Almubarak S., Nethercott H., Freeberg M., Beaudon C., Jha A., Jackson W., Marcucio R., Miclau T., Healy K., and Bahney C., Tissue engineering strategies for promoting vascularized bone regeneration, Bone. (2016) 83, 197–209, https://doi.org/10.1016/j.bone.2015.11.011, 2-s2.0-84961753014, 26608518.
- 43 Liu X., Jakus A. E., Kural M., Qian H., Engler A., Ghaedi M., Shah R., Steinbacher D. M., and Niklason L. E., Vascularization of natural and synthetic bone scaffolds, Cell Transplantation. (2018) 27, no. 8, 1269–1280, https://doi.org/10.1177/0963689718782452, 2-s2.0-85051432658.
- 44 Zhang H., Kot A., Lay Y.-A. E., Fierro F. A., Chen H., Lane N. E., and Yao W., Acceleration of fracture healing by overexpression of basic fibroblast growth factor in the mesenchymal stromal cells, Stem Cells Translational Medicine. (2017) 6, no. 10, 1880–1893, https://doi.org/10.1002/sctm.17-0039, 2-s2.0-85030252657, 28792122.
- 45 Cui Q., Dighe A. S., and Irvine Jr J. N., Combined angiogenic and osteogenic factor delivery for bone regenerative engineering, Current Pharmaceutical Design. (2013) 19, no. 19, 3374–3383, https://doi.org/10.2174/1381612811319190004, 2-s2.0-84885593263, 23432677.
- 46 Devescovi V., Leonardi E., Ciapetti G., and Cenni E., Growth factors in bone repair, La Chirurgia degli organi di movimento. (2008) 92, no. 3, 161–168, https://doi.org/10.1007/s12306-008-0064-1, 2-s2.0-65449125466, 19043663.
- 47 Salehinejad P., Alitheen N. B., Ali A. M., Omar A. R., Mohit M., Janzamin E., Samani F. S., Torshizi Z., and Nematollahi-Mahani S. N., Comparison of different methods for the isolation of mesenchymal stem cells from human umbilical cord Wharton’s jelly, In Vitro Cellular & Developmental Biology - Animal. (2012) 48, no. 2, 75–83, https://doi.org/10.1007/s11626-011-9480-x, 2-s2.0-84862692084, 22274909.
- 48 Hassan G., Kasem I., Soukkarieh C., and Aljamali M., A simple method to isolate and expand human umbilical cord derived mesenchymal stem cells: using explant method and umbilical cord blood serum, International Journal of Stem Cells. (2017) 10, no. 2, article 10.15283/ijsc17028, 184–192, 2-s2.0-85037136943, 28844128.
- 49 Skiles M. L., Brown K. S., Tatz W., Swingle K., and Brown H. L., Quantitative analysis of composite umbilical cord tissue health using a standardized explant approach and an assay of metabolic activity, Cytotherapy. (2018) 20, no. 4, 564–575, https://doi.org/10.1016/j.jcyt.2018.01.001, 2-s2.0-85041691068, 29429941.
- 50 Lech W., Figiel-Dabrowska A., Sarnowska A., Drela K., Obtulowicz P., Noszczyk B. H., Buzanska L., and Domanska-Janik K., Phenotypic, Functional, and Safety Control at Preimplantation Phase of MSC- Based Therapy, Stem Cells International. (2016) 2016, 13, 2514917, https://doi.org/10.1155/2016/2514917, 2-s2.0-84987899284, 27651796.
- 51 Marędziak M., Marycz K., Tomaszewski K. A., Kornicka K., and Henry B. M., The influence of aging on the regenerative potential of human adipose derived mesenchymal stem cells, Stem Cells International. (2016) 2016, 15, 2152435, https://doi.org/10.1155/2016/2152435, 2-s2.0-84958153813, 26941800.
- 52 Rojewski M. T., Fekete N., Baila S., Nguyen K., Fürst D., Antwiler D., Dausend J., Kreja L., Ignatius A., Sensebé L., and Schrezenmeier H., GMP-compliant isolation and expansion of bone marrow-derived MSCs in the closed, automated device quantum cell expansion system, Cell Transplantation. (2013) 22, no. 11, 1981–2000, https://doi.org/10.3727/096368912x657990, 2-s2.0-84886418978, 23107560.
- 53 Watson N., Divers R., Kedar R., Mehindru A., Mehindru A., Borlongan M. C., and Borlongan C. V., Discarded Wharton jelly of the human umbilical cord: a viable source for mesenchymal stromal cells, Cytotherapy. (2015) 17, no. 1, 18–24, https://doi.org/10.1016/j.jcyt.2014.08.009, 2-s2.0-84927175702, 25442786.
- 54 Walenda G., Hemeda H., Schneider R. K., Merkel R., Hoffmann B., and Wagner W., Human platelet lysate gel provides a novel three dimensional-matrix for enhanced culture expansion of mesenchymal stromal cells, Tissue Engineering Part C: Methods. (2012) 18, no. 12, 924–934, https://doi.org/10.1089/ten.tec.2011.0541, 2-s2.0-84869064521, 22670863.