Geranylgeraniol (GGOH) as a Mevalonate Pathway Activator in the Rescue of Bone Cells Treated with Zoledronic Acid: An In Vitro Study
Corresponding Author
Riham M. Fliefel
Experimental Surgery and Regenerative Medicine (ExperiMed), Ludwig-Maximilians University, Munich 80336, Germany uni-muenchen.de
Department of Oral and Maxillofacial Surgery, Ludwig-Maximilians University, Munich 80337, Germany uni-muenchen.de
Department of Oral and Maxillofacial Surgery, Alexandria University, Alexandria 21500, Egypt alexu.edu.eg
Search for more papers by this authorSaleh A. Entekhabi
Experimental Surgery and Regenerative Medicine (ExperiMed), Ludwig-Maximilians University, Munich 80336, Germany uni-muenchen.de
Search for more papers by this authorMichael Ehrenfeld
Department of Oral and Maxillofacial Surgery, Ludwig-Maximilians University, Munich 80337, Germany uni-muenchen.de
Search for more papers by this authorSven Otto
Experimental Surgery and Regenerative Medicine (ExperiMed), Ludwig-Maximilians University, Munich 80336, Germany uni-muenchen.de
Department of Oral and Maxillofacial Surgery, Ludwig-Maximilians University, Munich 80337, Germany uni-muenchen.de
Search for more papers by this authorCorresponding Author
Riham M. Fliefel
Experimental Surgery and Regenerative Medicine (ExperiMed), Ludwig-Maximilians University, Munich 80336, Germany uni-muenchen.de
Department of Oral and Maxillofacial Surgery, Ludwig-Maximilians University, Munich 80337, Germany uni-muenchen.de
Department of Oral and Maxillofacial Surgery, Alexandria University, Alexandria 21500, Egypt alexu.edu.eg
Search for more papers by this authorSaleh A. Entekhabi
Experimental Surgery and Regenerative Medicine (ExperiMed), Ludwig-Maximilians University, Munich 80336, Germany uni-muenchen.de
Search for more papers by this authorMichael Ehrenfeld
Department of Oral and Maxillofacial Surgery, Ludwig-Maximilians University, Munich 80337, Germany uni-muenchen.de
Search for more papers by this authorSven Otto
Experimental Surgery and Regenerative Medicine (ExperiMed), Ludwig-Maximilians University, Munich 80336, Germany uni-muenchen.de
Department of Oral and Maxillofacial Surgery, Ludwig-Maximilians University, Munich 80337, Germany uni-muenchen.de
Search for more papers by this authorAbstract
Bisphosphonates (BPs) are the keystone to treat bone disorders. Despite the great benefits of BPs, medication-related osteonecrosis of the jaw (MRONJ) arouse as a potential side effect. Nitrogen-containing BPs (N-BPs) as zoledronate (ZA) act by the inhibition of specific enzymes of the mevalonate pathway resulting in altering protein prenylation which is required for the posttranslational maturation of the small GTP-binding proteins. Geranylgeraniol (GGOH) is an intermediate product in the mevalonate pathway having positive effects on different cell types treated with BPs by salvaging protein prenylation improving cell viability and proliferation in tissue regeneration, thus overcoming N-BP-induced apoptosis. Here, the effect of different concentrations of zoledronate (ZA) on the bone cells has been investigated by cell viability assay, live/dead staining, and western blot to understand if GGOH was able to rescue bone cells and levels of statistical significance were indicated at ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001, and ∗∗∗∗P < 0.0001. Although the high concentration of ZA had significantly decreased the cell viability in the bone cells, GGOH reversed the action of ZA on the cells while at very high concentration; it caused severe reduction in the cell viability. Rap1A, a member of the GTPases family, was expressed in the negative controls but was absent in cells treated with high concentrations of ZA. The addition of GGOH had increased the expression of Rap1A up to a certain limit. The experiments proved that ZA acts directly on the mevalonate pathway and protein prenylation and that GGOH could be applied as a future local therapy to MRONJ.
Open Research
Data Availability
The data used to support the findings of this study are available from the corresponding author upon request.
References
- 1 Wimalawansa S. J., Insight into bisphosphonate-associated osteomyelitis of the jaw: pathophysiology, mechanisms and clinical management, Expert Opinion on Drug Safety. (2008) 7, no. 4, 491–512, https://doi.org/10.1517/14740338.7.4.491, 2-s2.0-48749104807, 18613812.
- 2 Curra C., Cardoso C. L., Ferreira Júnior O., Curi M. M., Matsumoto M. A., Cavenago B. C., Santos P. L., and Santiago Júnior J. F., Medication-related osteonecrosis of the jaw. Introduction of a new modified experimental model, Acta Cirúrgica Brasileira. (2016) 31, no. 5, 308–313, https://doi.org/10.1590/S0102-865020160050000003, 2-s2.0-84973896437, 27275851.
- 3 Wasserzug O., Kaffe I., Lazarovici T. S., Weissman T., Yahalom R., Fliss D. M., and Yarom N., Involvement of the maxillary sinus in bisphosphonate-related osteonecrosis of the jaw: radiologic aspects, American Journal of Rhinology & Allergy. (2017) 31, no. 1, 36–39, https://doi.org/10.2500/ajra.2017.31.4395, 2-s2.0-85014013580.
- 4 Marx R. E., Sawatari Y., Fortin M., and Broumand V., Bisphosphonate-induced exposed bone (osteonecrosis/osteopetrosis) of the jaws: risk factors, recognition, prevention, and treatment, Journal of Oral and Maxillofacial Surgery. (2005) 63, no. 11, 1567–1575, https://doi.org/10.1016/j.joms.2005.07.010, 2-s2.0-27344453813, 16243172.
- 5 Otto S., Hafner S., Mast G., Tischer T., Volkmer E., Schieker M., Stürzenbaum S. R., von Tresckow E., Kolk A., Ehrenfeld M., and Pautke C., Bisphosphonate-related osteonecrosis of the jaw: is pH the missing part in the pathogenesis puzzle?, Journal of Oral and Maxillofacial Surgery. (2010) 68, no. 5, 1158–1161, https://doi.org/10.1016/j.joms.2009.07.079, 2-s2.0-77950809933, 20138420.
- 6 Otto S., Pautke C., Opelz C., Westphal I., Drosse I., Schwager J., Bauss F., Ehrenfeld M., and Schieker M., Osteonecrosis of the jaw: effect of bisphosphonate type, local concentration, and acidic milieu on the pathomechanism, Journal of Oral and Maxillofacial Surgery. (2010) 68, no. 11, 2837–2845, https://doi.org/10.1016/j.joms.2010.07.017, 2-s2.0-77958530598, 20971371.
- 7 Fleisch H., Development of bisphosphonates, Breast Cancer Research. (2002) 4, no. 1, 30–34, 11879557.
- 8 Gong L., Altman R. B., and Klein T. E., Bisphosphonates pathway, Pharmacogenetics and Genomics. (2011) 21, no. 1, 50–53, https://doi.org/10.1097/FPC.0b013e328335729c, 2-s2.0-78650650373, 20023594.
- 9 Suri S., Mönkkönen J., Taskinen M., Pesonen J., Blank M. A., Phipps R. J., and Rogers M. J., Nitrogen-containing bisphosphonates induce apoptosis of Caco-2 cells in vitro by inhibiting the mevalonate pathway: a model of bisphosphonate-induced gastrointestinal toxicity, Bone. (2001) 29, no. 4, 336–343, https://doi.org/10.1016/S8756-3282(01)00589-0, 2-s2.0-0034804940.
- 10 Yang Z., Small GTPases: versatile signaling switches in plants, Plant Cell. (2002) 14, no. Supplement 1, S375–S388, https://doi.org/10.1105/tpc.001065.
- 11 Zafar S., Coates D. E., Cullinan M. P., Drummond B. K., Milne T., and Seymour G. J., Effects of zoledronic acid and geranylgeraniol on the cellular behaviour and gene expression of primary human alveolar osteoblasts, Clinical Oral Investigations. (2016) 20, no. 8, 2023–2035, https://doi.org/10.1007/s00784-015-1706-y, 2-s2.0-84955256550, 26795621.
- 12 Dunford J. E., Rogers M. J., Ebetino F. H., Phipps R. J., and Coxon F. P., Inhibition of protein prenylation by bisphosphonates causes sustained activation of Rac, Cdc42, and Rho GTPases, Journal of Bone and Mineral Research. (2006) 21, no. 5, 684–694, https://doi.org/10.1359/jbmr.060118, 2-s2.0-33646269011, 16734383.
- 13 Yoshikawa N., Yamada J., Tsuno N. H., Okaji Y., Kawai K., Tsuchiya T., Yoneyama S., Tanaka J., Shuno Y., Nishikawa T., Nagawa H., Oshima N., and Takahashi K., Plaunotol and geranylgeraniol induce caspase-mediated apoptosis in colon cancer, The Journal of Surgical Research. (2009) 153, no. 2, 246–253, https://doi.org/10.1016/j.jss.2008.04.021, 2-s2.0-64849091028, 18805546.
- 14 Nualkaew N., De-Eknamkul W., Kutchan T. M., and Zenk M. H., Geranylgeraniol formation in Croton stellatopilosus proceeds via successive monodephosphorylations of geranylgeranyl diphosphate, Tetrahedron Letters. (2005) 46, no. 50, 8727–8731, https://doi.org/10.1016/j.tetlet.2005.10.048, 2-s2.0-27744560923.
- 15 Raikkonen J., Monkkonen H., Auriola S., and Monkkonen J., Mevalonate pathway intermediates downregulate zoledronic acid-induced isopentenyl pyrophosphate and ATP analog formation in human breast cancer cells, Biochemical Pharmacology. (2010) 79, no. 5, 777–783, https://doi.org/10.1016/j.bcp.2009.10.003, 2-s2.0-71849102718, 19819230.
- 16 Pabst A. M., Krüger M., Sagheb K., Ziebart T., Jacobs C., Blatt S., Goetze E., and Walter C., The influence of geranylgeraniol on microvessel sprouting after bisphosphonate substitution in an in vitro 3D-angiogenesis assay, Clinical Oral Investigations. (2017) 21, no. 3, 771–778, https://doi.org/10.1007/s00784-016-1842-z, 2-s2.0-84966711848, 27170294.
- 17 Ziebart T., Pabst A., Klein M. O., Kämmerer P., Gauss L., Brüllmann D., al-Nawas B., and Walter C., Bisphosphonates: restrictions for vasculogenesis and angiogenesis: inhibition of cell function of endothelial progenitor cells and mature endothelial cells in vitro, Clinical Oral Investigations. (2011) 15, no. 1, 105–111, https://doi.org/10.1007/s00784-009-0365-2, 2-s2.0-78751648671, 20024592.
- 18 Pabst A. M., Krüger M., Ziebart T., Jacobs C., Sagheb K., and Walter C., The influence of geranylgeraniol on human oral keratinocytes after bisphosphonate treatment: an in vitro study, Journal of Cranio-Maxillo-Facial Surgery. (2015) 43, no. 5, 688–695, https://doi.org/10.1016/j.jcms.2015.03.014, 2-s2.0-84931568567, 25913629.
- 19 Otto S., Pautke C., Martin Jurado O., Nehrbass D., Stoddart M. J., Ehrenfeld M., and Zeiter S., Further development of the MRONJ minipig large animal model, Journal of Cranio-Maxillo-Facial Surgery. (2017) 45, no. 9, 1503–1514, https://doi.org/10.1016/j.jcms.2017.07.002, 2-s2.0-85028296013, 28803745.
- 20 van Beek E. R., Cohen L. H., Leroy I. M., Ebetino F. H., Löwik C. W. G. M., and Papapoulos S. E., Differentiating the mechanisms of antiresorptive action of nitrogen containing bisphosphonates, Bone. (2003) 33, no. 5, 805–811, https://doi.org/10.1016/j.bone.2003.07.007, 2-s2.0-0242610812, 14623056.
- 21 Li P., Zhao Z., Wang L., Jin X., Shen Y., Nan C., and Liu H., Minimally effective concentration of zoledronic acid to suppress osteoclasts in vitro, Experimental and Therapeutic Medicine. (2018) 15, no. 6, 5330–5336, https://doi.org/10.3892/etm.2018.6120, 2-s2.0-85046547298, 29904413.
- 22 Koneski F., Popovic-Monevska D., Gjorgoski I., Krajoska J., Popovska M., Muratovska I., Velickovski B., Petrushevska G., and Popovski V., In vivo effects of geranylgeraniol on the development of bisphosphonate-related osteonecrosis of the jaws, Journal of Cranio-Maxillo-Facial Surgery. (2018) 46, no. 2, 230–236, https://doi.org/10.1016/j.jcms.2017.11.007, 2-s2.0-85037649055, 29233701.
- 23 Pozzi S., Vallet S., Mukherjee S., Cirstea D., Vaghela N., Santo L., Rosen E., Ikeda H., Okawa Y., Kiziltepe T., Schoonmaker J., Xie W., Hideshima T., Weller E., Bouxsein M. L., Munshi N. C., Anderson K. C., and Raje N., High-dose zoledronic acid impacts bone remodeling with effects on osteoblastic lineage and bone mechanical properties, Clinical Cancer Research. (2009) 15, no. 18, 5829–5839, https://doi.org/10.1158/1078-0432.CCR-09-0426, 2-s2.0-70349439276, 19737962.
- 24 Peter B., Zambelli P. Y., Guicheux J., and Pioletti D. P., The effect of bisphosphonates and titanium particles on osteoblasts: an in vitro study, Journal of Bone & Joint Surgery. (2005) 87, no. 8, 1157–1163, https://doi.org/10.1302/0301-620X.87B8.15446, 2-s2.0-23644462131, 16049257.
- 25 Bellido T. and Plotkin L. I., Novel actions of bisphosphonates in bone: preservation of osteoblast and osteocyte viability, Bone. (2011) 49, no. 1, 50–55, https://doi.org/10.1016/j.bone.2010.08.008, 2-s2.0-79958764505, 20727997.
- 26 von Knoch F., Jaquiery C., Kowalsky M., Schaeren S., Alabre C., Martin I., Rubash H. E., and Shanbhag A. S., Effects of bisphosphonates on proliferation and osteoblast differentiation of human bone marrow stromal cells, Biomaterials. (2005) 26, no. 34, 6941–6949, https://doi.org/10.1016/j.biomaterials.2005.04.059, 2-s2.0-23244462780, 16009417.
- 27 Im G. I., Qureshi S. A., Kenney J., Rubash H. E., and Shanbhag A. S., Osteoblast proliferation and maturation by bisphosphonates, Biomaterials. (2004) 25, no. 18, 4105–4115, https://doi.org/10.1016/j.biomaterials.2003.11.024, 2-s2.0-1642306206, 15046901.
- 28 Huang X., Huang S., Guo F., Xu F., Cheng P., Ye Y., Dong Y., Xiang W., and Chen A., Dose-dependent inhibitory effects of zoledronic acid on osteoblast viability and function in vitro, Molecular Medicine Reports. (2016) 13, no. 1, 613–622, https://doi.org/10.3892/mmr.2015.4627, 2-s2.0-84954290803, 26648136.
- 29 Komatsu K., Shimada A., Shibata T., Wada S., Ideno H., Nakashima K., Amizuka N., Noda M., and Nifuji A., Alendronate promotes bone formation by inhibiting protein prenylation in osteoblasts in rat tooth replantation model, The Journal of Endocrinology. (2013) 219, no. 2, 145–158, https://doi.org/10.1530/JOE-13-0040, 2-s2.0-84885745926, 24096963.
- 30 Ho H. J., Shirakawa H., Giriwono P. E., Ito A., and Komai M., A novel function of geranylgeraniol in regulating testosterone production, Bioscience, Biotechnology, and Biochemistry. (2017) 82, no. 6, 956–962, https://doi.org/10.1080/09168451.2017.1415129, 2-s2.0-85049646570.
- 31 Fliefel R., Troltzsch M., Kuhnisch J., Ehrenfeld M., and Otto S., Treatment strategies and outcomes of bisphosphonate-related osteonecrosis of the jaw (BRONJ) with characterization of patients: a systematic review, International Journal of Oral and Maxillofacial Surgery. (2015) 44, no. 5, 568–585, https://doi.org/10.1016/j.ijom.2015.01.026, 2-s2.0-84934441840.
- 32 Draenert G. F., Huetzen D. O., Kämmerer P. W., Palarie V., Nacu V., and Wagner W., Dexrazoxane shows cytoprotective effects in zoledronic acid-treated human cells in vitro and in the rabbit tibia model in vivo, Journal of Cranio-Maxillo-Facial Surgery. (2012) 40, no. 8, e369–e374, https://doi.org/10.1016/j.jcms.2012.01.028, 2-s2.0-84869509399, 22429609.
- 33 Cozin M., Pinker B. M., Solemani K., Zuniga J. M., Dadaian S. C., Cremers S., Landesberg R., and Raghavan S., Novel therapy to reverse the cellular effects of bisphosphonates on primary human oral fibroblasts, Journal of Oral and Maxillofacial Surgery. (2011) 69, no. 10, 2564–2578, https://doi.org/10.1016/j.joms.2011.03.005, 2-s2.0-80053051680, 21807448.
- 34 Hagelauer N., Ziebart T., Pabst A. M., and Walter C., Bisphosphonates inhibit cell functions of HUVECs, fibroblasts and osteogenic cells via inhibition of protein geranylgeranylation, Clinical Oral Investigations. (2015) 19, no. 5, 1079–1091, https://doi.org/10.1007/s00784-014-1320-4, 2-s2.0-84939883460, 25261400.
- 35 Hamanaka T., Nishizawa K., Sakasegawa Y., Teruya K., and Doh-ura K., Structure-activity analysis and antiprion mechanism of isoprenoid compounds, Virology. (2015) 486, 63–70, https://doi.org/10.1016/j.virol.2015.09.002, 2-s2.0-84942107437, 26402376.
- 36 Carmona G., Gottig S., Orlandi A., Scheele J., Bauerle T., Jugold M., Kiessling F., Henschler R., Zeiher A. M., Dimmeler S., and Chavakis E., Role of the small GTPase Rap1 for integrin activity regulation in endothelial cells and angiogenesis, Blood. (2008) 113, no. 2, 488–497, https://doi.org/10.1182/blood-2008-02-138438, 2-s2.0-58849159701, 18805968.
- 37 Wu Y., Zhou J., Li Y., Zhou Y., Cui Y., Yang G., and Hong Y., Rap1A regulates osteoblastic differentiation via the ERK and p38 mediated signaling, PLoS One. (2015) 10, no. 11, article e0143777, https://doi.org/10.1371/journal.pone.0143777, 2-s2.0-84957991351, 26599016.
- 38 Kuroda J., Kimura S., Segawa H., Kobayashi Y., Yoshikawa T., Urasaki Y., Ueda T., Enjo F., Tokuda H., Ottmann O. G., and Maekawa T., The third-generation bisphosphonate zoledronate synergistically augments the anti-Ph+ leukemia activity of imatinib mesylate, Blood. (2003) 102, no. 6, 2229–2235, https://doi.org/10.1182/blood-2003-01-0305, 2-s2.0-0141790853, 12763930.
- 39 Johnson T. E., Zhang X., Bleicher K. B., Dysart G., Loughlin A. F., Schaefer W. H., and Umbenhauer D. R., Statins induce apoptosis in rat and human myotube cultures by inhibiting protein geranylgeranylation but not ubiquinone, Toxicology and Applied Pharmacology. (2004) 200, no. 3, 237–250, https://doi.org/10.1016/j.taap.2004.04.010, 2-s2.0-7044240870, 15504460.
- 40 Masuda Y., Maeda S., Watanabe A., Sano Y., Aiuchi T., Nakajo S., Itabe H., and Nakaya K., A novel 21-kDa cytochrome c-releasing factor is generated upon treatment of human leukemia U937 cells with geranylgeraniol, Biochemical and Biophysical Research Communications. (2006) 346, no. 2, 454–460, https://doi.org/10.1016/j.bbrc.2006.05.161, 2-s2.0-33745122924, 16765912.