Rickettsial Physiology and Metabolism in the Face of Reductive Evolution
Jonathon P. Audia
Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, AL, 36688
Search for more papers by this authorJonathon P. Audia
Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, AL, 36688
Search for more papers by this authorGuy H. Palmer
Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA
Search for more papers by this authorAbdu F. Azad
Department of Microbiology and Immunology, school of Medicine, University of Maryland-Baltimore, Baltimore, MD
Search for more papers by this authorSummary
One of the major emphases of the author's research program is to understand how obligate intracytoplasmic growth has affected the physiology of Rickettsia prowazekii. This chapter discusses metabolism and reductive evolution from the pathogenic rickettsia's point of view. Rapid advances in sequencing technologies have contributed to the ever-expanding availability of genome sequence information. This has significantly augmented our understanding of the factors that influence virulence and shape pathogen evolution at the genome level. The chapter summarizes the studies describing rickettsial physiology and metabolism before 1998, when the first rickettsial genome sequence became available. It provides insight into some of the key experiments that guided the field during a productive period in rickettsial research. The R.prowazekii adenosine triphosphate (ATP)/adenosine diphosphate (ADP) translocase is the best-characterized rickettsial transport system. It is well established that the ATP/ADP translocase functions via an obligate exchange antiport mechanism and thus requires the presence of substrate on both sides of the membrane to catalyze transport. Studies examining the physiology of rickettsiae that are growing intracellularly have contributed much to the understanding of rickettsia-host interactions. The chapter discusses how obligate intracellular growth has affected the rickettsia's capacity for gene regulation. As a final facet of rickettsial gene regulation, transcriptional termination is also explained in the chapter.
References
- Alexeyev, M. F., and H. H. Winkler. 1999. Membrane topology of the Rickettsia prowazekii ATP/ADP translocase reported by novel dual pho-lac reporters. J. Mol. Biol. 285: 1503–1513.
- Andersson, J. O., and S. G. E. Andersson. 1999. Insights into the evolutionary process of genome degradation. Curr. Opin. Genet. Dev. 9: 664–671.
- Andersson, J. O., and S. G. E. Andersson. 2001. Pseudogenes, junk DNA, and the dynamics of Rickettsia genomes. Mol. Biol. Evol. 18: 829–839.
- Andersson, S. G. E., A. Zomorodipour, J. O. Andersson, T. Sicheritz-Pontén, U. C. M. Alsmark, R. M. Podowdki, A. K. Naslund, A.-S. Eriksson, H. H. Winkler, and C. G. Kurland. 1998. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396: 133–140.
- Atkinson, D. E. 1969. Regulation of enzyme function. Annu. Rev. Microbiol. 23: 47–68.
- Atkinson, W. H., and H. H. Winkler. 1989. Permeability of Rickettsia prowazekii to NAD. J. Bacteriol. 171: 761–766.
- Audia, J. P., M. C. Patton, and H. H. Winkler. 2008. DNA microarray analysis of the heat shock transcriptome of the obligate intracytoplasmic pathogen Rickettsia prowazekii . Appl. Environ. Microbiol. 74: 7809–7812.
- Audia, J. P., and H. H. Winkler. 2006. Study of the five Rickettsia prowazekii proteins annotated as ATP/ADP translocases (Tlc): only Tlc1 transports ATP/ADP, while Tlc4 and Tlc5 transport other ribonucleotides. J. Bacteriol. 188: 6261–6268.
- Austin, F. E., J. Turco, and H. H. Winkler. 1987. Rickettsia prowazekii requires host cell serine and glycine for growth. Infect. Immun. 55: 240–244.
- Austin, F. E., and H. H. Winkler. 1988a. Proline incorporation into protein by Rickettsia prowazekii during growth in Chinese hamster ovary (CHO-K1) cells. Infect. Immun. 56: 3167–3172.
- Austin, F. E., and H. H. Winkler. 1988b. Relationship of rickettsial physiology and composition to the Rickettsia-host cell interaction, p. 29–50. In D. H. Walker (ed.), Biology of Rickettsial Diseases, vol. 2. CRC Press, Boca Raton, FL.
- Baldridge, G. D., N. Y. Burkhardt, R. F. Felsheim, T. J. Kurtti, and U. G. Munderloh. 2008. Plasmids of the pRM/pRF family occur in diverse Rickettsia species. Appl. Environ. Microbiol. 74: 645–652.
- Borchert, S., J. Harborth, D. Schunemann, P. Hoferichter, and H. W. Heldt. 1993. Studies of the enzymic capacities and transport properties of pea root plastids. Plant Physiol. 101: 303–312.
- Bovarnick, M. R. 1956. Phosphorylation accompanying the oxidation of glutamate by the Madrid E strain of typhus rickettsiae. J. Biol. Chem. 220: 353–361.
- Bovarnick, M. R., and E. G. Allen. 1957a. Reversible inactivation of the toxicity and hemolytic activity of typhus rickettsiae by starvation. J. Bacteriol. 74: 637–645.
- Bovarnick, M. R., and E. G. Allen. 1957b. Reversible inactivation of typhus rickettsiae at 0°C. J. Bacteriol. 73: 56–62.
- Bovarnick, M. R., E. G. Allen, and G. Pagan. 1953. The influence of diphosphopyridine nucleotide on the stability of typhus rickettsiae. J. Bacteriol. 66: 671–675.
- Bovarnick, M. R., and J. C. Miller. 1949. Oxidation and transamination of glutamate by typhus rickettsiae. J. Biol. Chem. 184: 661–676.
- Bovarnick, M. R., and L. Schneider. 1960. Role of adenosine triphosphate in the hemolysis of sheep erythrocytes by typhus rickettsiae. J. Bacteriol. 80: 344–354.
- Burgdorfer, W. 1975. A review of Rocky Mountain spotted fever (tick-borne typhus), its agent, and its tick vectors in the United States. J. Med. Entomol. 12: 269–278.
- Cai, J., R. R. Speed, and H. H. Winkler. 1991. Reduction of ribonucleotides by the obligate intracytoplasmic bacterium, Rickettsia prowazekii . J. Bacteriol. 173: 1471–1477.
- Cai, J., and H. H. Winkler. 1996. Transcriptional regulation in the obligate intracytoplasmic bacterium Rickettsia prowazekii . J. Bacteriol. 178: 5543–5545.
- Cai, J., and H. H. Winkler. 1997. Transcriptional regulation of the gltA and tlc genes in Rickettsia prowazekii growing in a respiration-deficient host cell. Acta Virol. 41: 285–288.
- Chuakrut, S., H. Arai, M. Ishii, and Y. Igarashi. 2003. Characterization of a bifunctional archaeal acyl coenzyme A carboxylase. J. Bacteriol. 185: 938–947.
- Ding, H.-F., and H. H. Winkler. 1990. Purification and partial characterization of the DNA-dependent RNA polymerase from Rickettsia prowazekii . J. Bacteriol. 172: 5624–5630.
- Ding, H.-F., and H. H. Winkler. 1993. Characterization of the DNA-melting function of the Rickettsia prowazekii RNA polymerase. J. Biol. Chem. 268: 3897–3902.
- Ding, H.-F., and H. H. Winkler. 1994. The molar ratio of σ73 to core polymerase in the obligate intracellular bacterium, Rickettsia prowazekii . Mol. Microbiol. 11: 869–873.
- Dreher-Lesnick, S. M., S. M. Ceraul, M. S. Rahman, and A. F. Azad. 2008. Genome-wide screen for temperature-regulated genes of the obligate intracellular bacterium, Rickettsia typhi . BMC Microbiol. 8: 61.
- Driskell, L. O., A. M. Tucker, H. H. Winkler, and D. O. Wood. 2005. Rickettsial metK-encoded methionine adenosyltransferase expression in an Escherichia coli metK deletion strain. J. Bacteriol. 187: 5719–5722.
- Ellison, D. W., T. R. Clark, D. E. Sturdevant, K. Virtaneva, and T. Hackstadt. 2009. Limited transcriptional responses of Rickettsia rickettsii exposed to environmental stimuli. PLoS One 4: e5612.
- Ellison, D. W., T. R. Clark, D. E. Sturdevant, K. Virtaneva, S. F. Porcella, and T. Hackstadt. 2008. Genomic comparison of virulent Rickettsia rickettsii Sheila Smith and avirulent Rickettsia rickettsii Iowa. Infect. Immun. 76: 542–550.
-
Fairlamb, A. H., and F. R. Opperdoes. 1986. Carbohydrate metabolism in African trypanosomes, with special reference to the glycosome, p. 183–224. In
M. J. Morgan (ed.), Carbohydrate Metabolism in Cultured Cells. Plenum Publishing Corporation, New York, NY.
10.1007/978-1-4684-7679-8_6 Google Scholar
- Felsheim, R. F., T. J. Kurtti, and U. G. Munderloh. 2009. Genome sequence of the endosymbiont Rickettsia peacockii and comparison with virulent Rickettsia rickettsii: identification of virulence factors. PLoS One 4: e8361.
- Fournier, P. E., K. El Karkouri, Q. Leroy, C. Robert, B. Giumelli, P. Renesto, C. Socolovschi, P. Parola, S. Audic, and D. Raoult. 2009. Analysis of the Rickettsia africae genome reveals that virulence acquisition in Rickettsia species may be explained by genome reduction. BMC Genomics 10: 166.
- Frohlich, K. M., R. A. Roberts, N. A. Housley, and J. P. Audia. 2010. Rickettsia prowazekii uses an sn-glycerol-3-phosphate dehydrogenase and a novel dihydroxyacetone phosphate transport system to supply triose phosphate for phospholipid biosynthesis. J. Bacteriol. 192: 4281–4288.
- Gentry, D. R., and M. Cashel. 1996. Mutational analysis of the Escherichia coli spoT gene identifies distinct but overlapping regions involved in ppGpp synthesis and degradation. Mol. Microbiol. 19: 1373–1384.
- Greub, G., and D. Raoult. 2003. History of the ADP/ATP-translocase-encoding gene, a parasitism gene transferred from a Chlamydiales ancestor to plants 1 billion years ago. Appl. Environ. Microbiol. 69: 5530–5535.
- Gudima, O. S. 1982. Reproduction of vaccine and virulent Rickettsia prowazeki strains in continuous cell lines at different temperatures. Acta Virol. 26: 390–394.
- Hackstadt, T. 1996. The biology of rickettsiae. Infect. Agents Dis. 5: 127–143.
- Hügler, M., R. S. Krieger, M. Jahn, and G. Fuchs. 2003. Characterization of acetyl-CoA/propionyl-CoA carboxylase in Metallosphaera sedula. Carboxylating enzyme in the 3-hydroxypropionate cycle for autotrophic carbon fixation. Eur. J. Biochem. 270: 736–744.
- La, M. V., P. Francois, C. Rovery, S. Robineau, P. Barbry, J. Schrenzel, D. Raoult, and P. Renesto. 2007. Development of a method for recovering rickettsial RNA from infected cells to analyze gene expression profiling of obligate intracellular bacteria. J. Microbiol. Methods 71: 292–297.
- Larkin, M. A., G. Blackshields, N. P. Brown, R. Chenna, P. A. McGettigan, H. McWilliam, F. Valentin, I. M. Wallace, A. Wilm, R. Lopez, J. D. Thompson, T. J. Gibson, and D. G. Higgins. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948.
- Moliner, C., P. E. Fournier, and D. Raoult. 2010. Genome analysis of microorganisms living in amoebae reveals a melting pot of evolution. FEMS Microbiol. Rev. 34: 281–294.
- Moulder, J. W. 1962. The Biochemistry of Intracellular Parasitism. University of Chicago Press, Chicago, IL.
- Ogata, H., B. La Scola, S. Audic, P. Renesto, G. Blanc, C. Robert, P. E. Fournier, J. M. Claverie, and D. Raoult. 2006. Genome sequence of Rickettsia bellii illuminates the role of amoebae in gene exchanges between intracellular pathogens. PLoS Genet. 2: e76.
- Pallen, M. J., and B. W. Wren. 2007. Bacterial pathogenomics. Nature 449: 835–842.
- Pang, H., and H. H. Winkler. 1993. Copy number of the 16S ribosomal RNA gene in Rickettsia prowazekii . J. Bacteriol. 175: 3893–3896.
- Pang, H., and H. H. Winkler. 1994. The concentrations of stable RNA and ribosomes in Rickettsia prowazekii . Mol. Microbiol. 12: 115–120.
- Paulsen, I. T., L. Nguyen, M. K. Sliwinski, R. Rabus, and M. H. Saier, Jr. 2000. Microbial genome analyses: comparative transport capabilities in eighteen prokaryotes. J. Mol. Biol. 301: 75–100.
- Phibbs, P. V., Jr., and H. H. Winkler. 1981. Regulatory properties of partially purified enzymes of the tricarboxylic acid cycle of Rickettsia prowazekii , p. 421–430. In W. Burgdorfer and R. Anacker (ed.), Rickettsiae and Rickettsial Diseases. Academic Press, New York, NY.
- Phibbs, P. V., Jr., and H. H. Winkler. 1982. Regulatory properties of citrate synthase from Rickettsia prowazekii . J. Bacteriol. 149: 718–725.
- Plano, G. V., and H. H. Winkler. 1991. Identification and initial topological analysis of the Rickettsia prowazekii ATP/ADP translocase. J. Bacteriol. 173: 3389–3396.
- Quick, W. P., and H. E. Neuhaus. 1996. Evidence for two types of phosphate translocators in sweet-pepper (Capsicum annum L.) fruit chromoplasts. Biochem. J. 320: 7–10.
- Ralser, M., M. M. Wamelink, A. Kowald, B. Gerisch, G. Heeren, E. A. Struys, E. Klipp, C. Jakobs, M. Breitenbach, H. Lehrach, and S. Krobitsch. 2007. Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress. J. Biol. 6: 10.
- Ralser, M., M. M. Wamelink, S. Latkolik, E. E. Jansen, H. Lehrach, and C. Jakobs. 2009. Metabolic reconfiguration precedes transcriptional regulation in the antioxidant response. Nat. Biotechnol. 27: 604–605.
- Ramm, L. E., and H. H. Winkler. 1973. Rickettsial hemolysis: effect of metabolic inhibitors upon hemolysis and adsorption. Infect. Immun. 7: 550–555.
- Renesto, P., C. Rovery, J. Schrenzel, Q. Leroy, A. Huyghe, W. Li, H. Lepidi, P. Francois, and D. Raoult. 2008. Rickettsia conorii transcriptional response within inoculation eschar. PLoS One 3: e3681.
- Rovery, C., P. Renesto, N. Crapoulet, K. Matsumoto, P. Parola, H. Ogata, and D. Raoult. 2005. Transcriptional response of Rickettsia conorii exposed to temperature variation and stress starvation. Res. Microbiol. 156: 211–218.
- Saier, M. H., Jr., C. V. Tran, and R. D. Barabote. 2006. TCDB: the Transporter Classification Database for membrane transport protein analyses and information. Nucleic Acids Res. 34(Database issue): D181–D186.
- Shaw, E. I., G. L. Marks, H. H. Winkler, and D. O. Wood. 1997. Transcriptional characterization of the Rickettsia prowazekii major macromolecular synthesis operon. J. Bacteriol. 179: 6448–6452.
- Sicheritz-Pontén, T., C. G. Kurland, and S. G. E. Andersson. 1998. A phylogenetic analysis of the cytochrome b and cytochrome c oxidase I genes supports an origin of mitochondria from within the Rickettsiaceae . Biochim. Biophys. Acta 1365: 545–551.
- Smith, D. K., and H. H. Winkler. 1979. Separation of inner and outer membranes of Rickettsia prowazekii and characterization of their polypeptide compositions. J. Bacteriol. 137: 963–971.
- Stork, E., and C. L. Wisseman, Jr. 1976. Growth of Rickettsia prowazeki in enucleated cells. Infect. Immun. 13: 1743–1748.
- Tjaden, J., H. H. Winkler, C. Schwöppe, M. van der Laan, T. Möhlmann, and H. E. Neuhaus. 1999. Two nucleotide transport proteins in Chlamydia trachomatis: one for net nucleoside triphosphate uptake and the other for transport of energy. J. Bacteriol. 181: 1196–1202.
- Trentmann, O., B. Jung, H. E. Neuhaus, and I. Haferkamp. 2008. Nonmitochondrial ATP/ADP transporters accept phosphate as third substrate. J. Biol. Chem. 283: 36486–36493.
- Tucker, A. M., H. H. Winkler, L. O. Driskell, and D. O. Wood. 2003. S-Adenosylmethionine transport in Rickettsia prowazekii . J. Bacteriol. 185: 3031–3035.
- Turco, J., and H. H. Winkler. 1989. Isolation of Rickettsia prowazekii with reduced sensitivity to gamma interferon. Infect. Immun. 57: 1765–1772.
- Tzianabos, T., C. W. Moss, and J. E. McDade. 1981. Fatty acid composition of rickettsiae. J. Clin. Microbiol. 13: 603–605.
- Walker, T. S., and H. H. Winkler. 1978. Penetration of cultured mouse fibroblasts (L cells) by Rickettsia prowazekii . Infect. Immun. 22: 200–208.
- Weiss, E., L. W. Newman, R. Grays, and A. E. Green. 1972. Metabolism of Rickettsia typhi and Rickettsia akari in irradiated L cells. Infect. Immun. 6: 50–57.
- Wike, D. A., and W. Burgdorfer. 1972. Plaque formation in tissue cultures by Rickettsia rickettsi isolated directly from whole blood and tick hemolymph. Infect. Immun. 6: 736–738.
- Wike, D. A., R. A. Ormsbee, G. Tallent, and M. G. Peacock. 1972. Effects of various suspending media on plaque formation by rickettsiae in tissue culture. Infect. Immun. 6: 550–556.
- Williams, J. C., and E. Weiss. 1978. Energy metabolism of Rickettsia typhi: pools of adenine nucleotides and energy charge in the presence and absence of glutamate. J. Bacteriol. 134: 884–892.
- Winkler, H. H. 1976. Rickettsial permeability: an ADP-ATP transport system. J. Biol. Chem. 251: 389–396.
- Winkler, H. H. 1982. Rickettsiae: intracytoplamic life. ASM News 48: 184–186.
- Winkler, H. H. 1987. Protein and RNA synthesis by isolated Rickettsia prowazekii. Infect. Immun. 55: 2032–2036.
- Winkler, H. H. 1990. Rickettsia species (as organisms). Annu. Rev. Microbiol. 44: 131–153.
- Winkler, H. H., R. Daugherty, and F. Hu. 1999. Rickettsia prowazekii transports UMP and GMP, but not CMP, as building blocks for RNA synthesis. J. Bacteriol. 181: 3238–3241.
- Winkler, H. H., and R. M. Daugherty. 1984. Regulatory role of phosphate and other anions in transport of ADP and ATP by Rickettsia prowazekii . J. Bacteriol. 160: 76–79.
- Winkler, H. H., and R. M. Daugherty. 1986. Acquisition of glucose by Rickettsia prowazekii through the nucleotide intermediate uridine 5'-diphosphoglucose. J. Bacteriol. 167: 805–808.
- Winkler, H. H., and E. T. Miller. 1978. Phospholipid composition of Rickettsia prowazeki grown in chicken embryo yolk sacs. J. Bacteriol. 136: 175–178.
-
Winkler, H. H., and H. E. Neuhaus. 1999. Non-mitochondrial adenylate transport: a plant plastid to obligate intracellular bacterium connection. Trends Biochem. Sci.
277: 64–68.
10.1016/S0968-0004(98)01334-6 Google Scholar
- Wisseman, C. L., Jr., E. A. Edlinger, A. D. Waddell, and M. R. Jones. 1976. Infection cycle of Rickettsia rickettsii in chicken embryo and L-929 cells in culture. Infect. Immun. 14: 1052–1064.
- Woodard, A., and D. O. Wood. 2011. Analysis of convergent gene transcripts in the obligate intracellular bacterium Rickettsia prowazekii . PLoS One 6: e16537.
- Wu, J., and J. Xie. 2009. Magic spot: (p) ppGpp. J. Cell. Physiol. 220: 297–302.
- Zahorchak, R. J., and H. H. Winkler. 1983. Transmembrane electrical potential in Rickettsia prowazekii and its relationship to lysine transport. J. Bacteriol. 153: 665–671.