Genetic and Genomic Approaches to Cryptococcus Environmental and Host Responses
Alexander Idnurm
Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, 64110
Search for more papers by this authorPeter R. Williamson
Laboratory of Clinical Infectious Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892
Search for more papers by this authorAlexander Idnurm
Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, 64110
Search for more papers by this authorPeter R. Williamson
Laboratory of Clinical Infectious Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892
Search for more papers by this authorJoseph Heitman
Duke University Medical Center, Durham, NC, 27710
Search for more papers by this authorThomas R. Kozel
University of Nevada School of Medicine, Reno, NV, 89557-0320
Search for more papers by this authorKyung J. Kwon-Chung
National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892
Search for more papers by this authorJohn R. Perfect
Duke University Medical Center, Durham, NC, 27710
Search for more papers by this authorArturo Casadevall
Albert Einstein College of Medicine, Bronx, NY, 10461
Search for more papers by this authorSummary
Infection with Cryptococcus species is often considered an AIDS-defining illness, the outbreak of Cryptococcus gattii on Vancouver Island underscores the broad potential of the Cryptococcus neoformans species complex to evade host immune defenses and cause disease. There are several simple developments that need to be made to maximize the use of C. neoformans genomes. One development is the publication of the genomes of the serotype A and C. gattii strains and a finalized nomenclature for each gene in each strain sequenced, preferably as similar to other designations as possible. Examples of larger-scale screens include a series on melanin, morphology, suppressor screens of light sensitivity of mating , and growth under hypoxic conditions. In the first, "alternative" hosts have been used, with the most success obtained thus far in the nematode Caenorhabditis elegans. Importantly, both genes were found to be required for maximal virulence in murine inhalation models. Protein-protein interactions are important in a number of regulatory events involved in cryptococcal virulence and have been detected in C. neoformans by using a variety of methods. Single gene interactions have been detected by coimmunoprecipitation studies of the nuclear heat shock transcription factor, Hsf1, with a coactivating heat shock homolog, Ssa1, during laccase induction. A major experimental advantage of C. neoformans, uncommon among the human pathogenic fungi, is the established complete sexual cycle that enables classical Mendelian crosses and genetics.
References
- Baba, T. 1988. Electron microscopic cytochemical analysis of hepatic granuloma induced by Cryptococcus neoformans . Mycopathologia 104: 37–46.
- Bahn, Y.-S., S. Geunes-Boyer, and J. Heitman. 2007. Ssk2 mitogen-activated protein kinase kinase kinase governs divergent patterns of the stress-activated Hog1 signaling pathway in Cryptococcus neoformans . Eukaryot. Cell 6: 2278–2289.
- Blakely, G., J. Hekman, K. Chakraburtty, and P. R. Williamson. 2001. Evolutionary divergence of an elongation factor 3 from Cryptococcus neoformans . J. Bacteriol. 183: 2241–2248.
-
Casadevall, A., and J. Perfect. 1998. Cryptococcus neoformans. ASM Press, Washington, DC.
10.1128/9781555818241 Google Scholar
- Chang, Y. C., C. M. Bien, H. Lee, P. J. Espenshade, and K. J. Kwon-Chung. 2007. Sre1p, a regulator of oxygen sensing and sterol homeostasis, is required for virulence in Cryptococcus neoformans . Mol. Microbiol. 64: 614–629.
- Chang, Y. C., and K. J. Kwon-Chung. 1994. Complementation of a capsule-deficient mutation of Cryptococcus neoformans restores its virulence. Mol. Cell. Biol. 14: 4912–4919.
- Clarke, L., and J. Carbon. 1976. A colony bank containing synthetic Col El hybrid plasmids representative of the entire E. coli genome . Cell 9: 91–99.
- Cohen, J., J. R. Perfect, and D. T. Durack. 1982. Cryptococcosis and the basidiospore. Lancet 1 1–301.
- Cruz, M. C., D. S. Fox, and J. Heitman. 2001. Calcineurin is required for hyphal elongation during mating and haploid fruiting in Cryptococcus neoformans . EMBO J. 20: 1020–1032.
- Davidson, R. C., J. R. Blankenship, P. R. Kraus, M. de Jesus Berrios, C. M. Hull, C. D'Souza, P. Wang, and J. Heitman. 2002. A PCR-based strategy to generate integrative targeting alleles with large regions of homology. Microbiology 148: 2607–2615.
- Dhaese, P., H. De Greve, H. Decraemer, J. Schell, and M. Van Montagu. 1979. Rapid mapping of transposon insertion and deletion mutations in the large Ti-plasmids of Agrobacterium tumefaciens . Nucleic Acids Res. 7: 1837–1849.
- Edman, J. C., and K. J. Kwon-Chung. 1990. Isolation of the URA5 gene from Cryptococcus neoformans var. neoformans and its use as a selective marker for transformation. Mol. Cell. Biol. 10: 4538–4544.
- Erickson, T., L. Liu, A. Gueyikian, X. Zhu, J. Gibbons, and P. R. Williamson. 2001. Multiple virulence factors of Cryptococcus neoformans are dependent on VPH1 . Mol. Microbiol. 42: 1121–1131.
- Fox, D. S., G. M. Cox, and J. Heitman. 2003. Phospholipid-binding protein Cts1 controls septation and functions coordinately with calcineurin in Cryptococcus neoformans . Eukaryot. Cell 2: 1025–1035.
- Fraser, J. A., R. L. Subaran, C. B. Nichols, and J. Heitman. 2003. Recapitulation of the sexual cycle of the primary fungal pathogen Cryptococcus neoformans var. gattii: implications for an outbreak on Vancouver Island, Canada. Eukaryot. Cell 2: 1036–1045.
- Görlach, J., D. S. Fox, N. S. Cutler, G. M. Cox, J. R. Perfect, and J. Heitman. 2000. Identification and characterization of a highly conserved calcineurin binding protein, CBP1/calcipressin, in Cryptococcus neoformans . EMBO J. 19: 3618–3629.
- Heitman, J., A. Casadevall, J. K. Lodge, and J. R. Perfect. 1999. The Cryptococcus neoformans genome sequencing project. Mycopathologia 148: 1–7.
- Hull, C. M., M.-J. Boily, and J. Heitman. 2005. Sexspecific homeodomain proteins Sxi1a and Sxi2 a coordinately regulate sexual development in Cryptococcus neoformans . Eukaryot. Cell 4: 526–535.
- Idnurm, A., and J. Heitman. 2005. Light controls growth and development via a conserved pathway in the fungal kingdom. PLoS Biol. 3: 615–626.
- Idnurm, A., J. L. Reedy, J. C. Nussbaum, and J. Heitman. 2004. Cryptococcus neoformans virulence gene discovery through insertional mutagenesis. Eukaryot Cell 3: 420–429.
- Idnurm, A., F. J. Walton, A. Floyd, J. L. Reedy, and J. Heitman. 2009. Identification of ENA1 as a virulence gene of the human pathogenic fungus Cryptococcus neoformans through signature-tagged insertional mutagenesis. Eukaryot. Cell 8: 315–326.
- Ingavale, S. S., Y. C. Chang, H. Lee, C. M. McClelland, M. L. Leong, and K. J. Kwon-Chung. 2008. Importance of mitochondria in survival of Cryptococcus neoformans under low oxygen conditions and tolerance to cobalt chloride. PLoS Pathog. 4:e1000155.
- Jeon, J., S.-Y. Park, M.-H. Chi, J. Choi, J. Park, H.-S. Rho, S. Kim, J. Goh, S. Yoo, J. Choi, J.-Y. Park, M. Yi, S. Yang, M.-J. Kwon, S.-S. Han, B. R. Kim, C. H. Khang, B. Park, S.-E. Lim, K. Jung, S. Kong, M. Karunakaran, H.-S. Oh, H. Kim, S. Kim, J. Park, S. Kang, W.-B. Choi, S. Kang, and Y.-H. Lee. 2007. Genome-wide functional analysis of pathogenicity genes in the rice blast fungus. Nat. Genet. 39: 561–565.
- Kontoyiannis, D. P., R. E. Lewis, B. D. Alexander, O. Lortholary, F. Dromer, K. L. Gupta, G. T. John, R. del Busto, G. B. Klintmalm, J. Somani, G. M. Lyon, K. Pursell, V. Stosor, P. Munoz, A. P. Limaye, A. C. Kalil, T. L. Pruett, J. Garcia-Diaz, A. Humar, S. Houston, A. A. House, D. Wray, S. Orloff, L. A. Dowdy, R. A. Fisher, J. Heitman, N. D. Albert, M. M. Wagener, and N. Singh. 2008. Calcineurin inhibitor agents interact synergistically with antifungal agents in vitro against Cryptococcus neoformans isolates: correlation with outcome in solid organ transplant recipients with cryptococcosis. Antimicrob. Agents Chemother. 52: 735–738.
- Kwon-Chung, K. 1998. Gene disruption to evaluate the role of fungal candidate virulence genes. Curr. Opin. Microbiol. 1: 381–389.
- Kwon-Chung, K. J. 1976. A new species of Filobasidiella, the sexual state of Cryptococcus neoformans B and C serotypes. Mycologia 68: 943–946.
- Kwon-Chung, K. J., J. C. Edman, and B. L. Wickes. 1992. Genetic association of mating types and virulence in Cryptococcus neoformans . Infect. Immun. 60: 602–605.
- Lengeler, K. B., P. Wang, G. M. Cox, J. R. Perfect, and J. Heitman. 2000. Identification of the MATa mating-type locus of Cryptococcus neoformans reveals a serotype A MATa strain thought to have been extinct. Proc. Natl. Acad. Sci. USA 97: 14455–14460.
- Liautard, J.-P., V. Jubier-Maurin, R.-A. Boigegrain, and S. Köhler. 2006. Antimicrobials: targeting virulence genes necessary for intracellular multiplication. Trends Microbiol. 14: 109–113.
- Lin, X., J. C. Huang, T. G. Mitchell, and J. Heitman. 2006. Virulence attributes and hyphal growth of C. neoformans are quantitative traits and the MATα allele enhances filamentation. PLoS Genet. 2:e187.
- Litvintseva, A. P., R. E. Marra, K. Nielsen, J. Heitman, R. Vilgalys, and T. G. Mitchell. 2003. Evidence of sexual recombination among Cryptococcus neoformans serotype A isolates in sub-Saharan Africa. Eukaryot. Cell 2: 1162–1168.
- Litvintseva, A. P., and T. G. Mitchell. 2009. Most environmental isolates of Cryptococcus neoformans var. grubii (serotype A) are not lethal for mice. Infect. Immun. 77: 3188–3195.
- Liu, M., and A. Gelli. 2008. Elongation factor 3, EF3, associates with the calcium channel Cch1 and targets Cch1 to the plasma membrane in Cryptococcus neoformans . Eukaryot. Cell 7: 1118–1126.
- Liu, O. W., C. D. Chun, E. D. Chow, C. Chen, H. D. Madhani, and S. M. Noble. 2008. Systematic genetic analysis of virulence in the human fungal pathogen Cryptococcus neoformans . Cell 135: 174–188.
- Loftus, B. J., E. Fung, P. Roncaglia, D. Rowley, P. Amedeo, D. Bruno, J. Vamathevan, M. Miranda, I. J. Anderson, J. A. Fraser, J. E. Allen, I. E. Bosdet, M. R. Brent, R. Chiu, T. L. Doering, M. J. Donlin, C. A. D'Souza, D. S. Fox, V. Grinberg, J. Fu, M. Fukushima, B. J. Haas, J. C. Huang, G. Janbon, S. J. Jones, H. L. Koo, M. I. Krzywinski, J. K. Kwon-Chung, K. B. Lengeler, R. Maiti, M. A. Marra, R. E. Marra, C. A. Mathewson, T. G. Mitchell, M. Pertea, F. R. Riggs, S. L. Salzberg, J. E. Schein, A. Shvartsbeyn, H. Shin, M. Shumway, C. A. Specht, B. B. Suh, A. Tenney, T. R. Utterback, B. L. Wickes, J. R. Wortman, N. H. Wye, J. W. Kronstad, J. K. Lodge, J. Heitman, R. W. Davis, C. M. Fraser, and R. W. Hyman. 2005. The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans . Science 307: 1321–1324.
- Marra, R. E., J. C. Huang, E. Fung, K. Nielsen, J. Heitman, R. Vilgalys, and T. G. Mitchell. 2004. A genetic linkage map of Cryptococcus neoformans variety neoformans serotype D (Filobasidiella neoformans). Genetics 167: 619–631.
- McClelland, C. M., Y. C. Chang, and K. J. Kwon-Chung. 2005. High frequency transformation of Cryptococcus neoformans and Cryptococcus gattii by Agrobacterium tumefaciens . Fungal Genet. Biol. 42: 904–913.
- McCluskey, K. 2003. The Fungal Genetics Stock Center: from molds to molecules. Adv. Appl. Microbiol. 52: 245–262.
- Michielse, C. B., R. van Wijk, L. Reijnen, B. J. Cornelissen, and M. Rep. 2009. Insight into the molecular requirements for pathogenicity of Fusarium oxysporum f. sp. lycopersici through large-scale insertional mutagenesis. Genome Biol. 10:R4.
- Mitchell, T. G., and J. R. Perfect. 1995. Cryptococcosis in the era of AIDS: 100 years after the discovery of Cryptococcus neoformans . Clin. Microbiol. Rev. 8: 515–548.
- Moyrand, F., T. Fontaine, and G. Janbon. 2007. Systematic capsule gene disruption reveals the central role of galactose metabolism on Cryptococcus neoformans virulence. Mol. Microbiol. 64: 771–781.
- Mylonakis, E., A. Casadevall, and F. M. Ausubel. 2007. Exploiting amoeboid and non-vertebrate animal model systems to study the virulence of human pathogenic fungi. PLoS Pathog. 3:e101.
- Mylonakis, E., A. Idnurm, R. Moreno, J. El Khoury, J. B. Rottman, F. M. Ausubel, J. Heitman, and S. B. Calderwood. 2004. Cryptococcus neoformans Kin1 protein kinase homologue, identified through a Caenorhabditis elegans screen, promotes virulence in mammals. Mol. Microbiol. 54: 407–419.
- Nelson, R. T., J. Hua, B. Pryor, and J. K. Lodge. 2001. Identification of virulence mutants of the fungal pathogen Cryptococcus neoformans using signature-tagged mutagenesis. Genetics 157: 935–947.
- Nielsen, K., G. M. Cox, A. P. Litvintseva, E. Mylonakis, S. D. Malliaris, D. K. Benjamin, Jr., S. S. Giles, T. G. Mitchell, A. Casadevall, J. R. Perfect, and J. Heitman. 2005. Cryptococcus neoformans α strains preferentially disseminate to the central nervous system during coinfection. Infect. Immun. 73: 4922–4933.
- Nielsen, K., G. M. Cox, P. Wang, D. L. Toffaletti, J. R. Perfect, and J. Heitman. 2003. Sexual cycle of Cryptococcus neoformans var. grubii and virulence of congenic a and α isolates. Infect. Immun. 71: 4831–4841.
- Nielsen, K., R. E. Marra, F. Hagen, T. Boekhout, T. G. Mitchell, G. M. Cox, and J. Heitman. 2005. Interaction between genetic background and the mating-type locus in Cryptococcus neoformans virulence potential. Genetics 171: 975–983.
- Noverr, M. C., P. R. Williamson, R. S. Fajardo, and G. B. Huffnagle. 2004. CNLAC1 is required for extrapulmonary dissemination of Cryptococcus neoformans but not pulmonary persistence. Infect. Immun. 72: 1693–1699.
- Olszewski, M. A., M. C. Noverr, G. H. Chen, G. B. Toews, G. M. Cox, J. R. Perfect, and G. B. Huffnagle. 2004. Urease expression by Cryptococcus neoformans promotes microvascular sequestration, thereby enhancing central nervous system invasion. Am. J. Pathol. 164: 1761–1771.
- Palmer, D. A., J. K. Thompson, L. Li, A. Prat, and P. Wang. 2006. Gib2, a novel Gβ-like/RACK1 homolog, functions as a Gβ subunit in cAMP signaling and is essential in Cryptococcus neoformans . J. Biol. Chem. 281: 32596–32605.
- Panepinto, J., L. Liu, J. Ramos, X. Zhu, T. Valyi-Nagy, S. Eksi, J. Fu, H. A. Jaffe, B. Wickes, and P. Williamson. 2005. The DEAD-box RNA helicase Vad1 regulates multiple virulence-associated genes in Cryptococcus neoformans . J. Clin. Invest. 115: 632–641.
- Panepinto, J. C., K. W. Komperda, M. Hacham, S. Shin, X. Liu, and P. R. Williamson. 2007. Binding of serum mannan binding lectin to a cell integrity-defective Cryptococcus neoformans ccr4Δ mutant. Infect. Immun. 75: 4769–4779.
- Park, B. J., K. A. Wannemuehler, B. J. Marston, N. Govender, P. G. Pappas, and T. M. Chiller. 2009. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS 23: 525–530.
- Perfect, J. R. 2005. Cryptococcus neoformans: a sugarcoated killer with designer genes. FEMS Immunol. Med. Microbiol. 45: 395–404.
- Reese, A. J., and T. L. Doering. 2003. Cell wall α-1,3-glucan is required to anchor the Cryptococcus neoformans capsule. Mol. Microbiol. 50: 1401–1409.
- Reese, A. J., A. Yoneda, J. A. Breger, A. Beauvais, H. Liu, C. L. Griffith, I. Bose, M.-J. Kim, C. Skau, S. Yang, J. A. Sefko, M. Osumi, J.-P. Latge, E. Mylonakis, and T. L. Doering. 2007. Loss of cell wall α(1–3) glucan affects Cryptococcus neoformans from ultrastructure to virulence. Mol. Microbiol. 63: 1385–1398.
- Salas, S. D., J. E. Bennett, K. J. Kwon-Chung, J. R. Perfect, and P. R. Williamson. 1996. Effect of the laccase gene CNLAC1, on virulence of Cryptococcus neoformans . J. Exp. Med. 184: 377–386.
- Singh, N., O. Lortholary, B. D. Alexander, K. L. Gupta, G. T. John, K. Pursell, P. Munoz, G. B. Klintmalm, V. Stosor, R. del Busto, A. P. Limaye, J. Somani, M. Lyon, S. Houston, A. A. House, T. L. Pruett, S. Orloff, A. Humar, L. Dowdy, J. Garcia-Diaz, A. C. Kalil, R. A. Fisher, and S. Husain. 2005. An immune reconstitution syndrome-like illness associated with Cryptococcus neoformans infection in organ transplant recipients. Clin. Infect. Dis. 40: 1756–1761.
- Tang, R. J., J. Breger, A. Idnurm, K. J. Gerik, J. K. Lodge, J. Heitman, S. B. Calderwood, and E. Mylonakis. 2005. Cryptococcus neoformans gene involved in mammalian pathogenesis identified by a Caenorhabditis elegans progeny-based approach. Infect. Immun. 73: 8219–8225.
- Tenney, A. E., R. H. Brown, C. Vaske, J. K. Lodge, T. L. Doering, and M. R. Brent. 2004. Gene prediction and verification in a compact genome with numerous small introns. Genome Res. 14: 2330–2335.
- Toffaletti, D. L., T. H. Rude, S. A. Johnston, D. T. Durack, and J. R. Perfect. 1993. Gene transfer in Cryptococcus neoformans by use of biolistic delivery of DNA. J. Bacteriol. 175: 1405–1411.
- Viviani, M. A., M. C. Esposto, M. Cogliati, M. T. Montagna, and B. L. Wickes. 2001. Isolation of a Cryptococcus neoformans serotype A MAT a strain from the Italian environment. Med. Mycol. 39: 383–386.
- Walton, F. J., J. Heitman, and A. Idnurm. 2006. Conserved elements of the RAM signaling pathway establish cell polarity in the basidiomycete Cryptococcus neoformans in a divergent fashion from other fungi. Mol. Biol. Cell 17: 3768–3780.
- Walton, F. J., A. Idnurm, and J. Heitman. 2005. Novel gene functions required for melanization of the human pathogen Cryptococcus neoformans . Mol. Microbiol. 57: 1381–1396.
- Waterman, S. R., M. Hacham, G. Hu, X. Zhu, Y. D. Park, S. Shin, J. Panepinto, T. Valyi-Nagy, C. Beam, S. Husain, N. Singh, and P. R. Williamson. 2007. Role of a CUF1-CTR4 copper regulatory axis in the virulence of Cryptococcus neoformans . J. Clin. Invest. 117: 794–802.
- Williamson, P. R. 1994. Biochemical and molecular characterization of the diphenol oxidase of Cryptococcus neoformans: identification as a laccase. J. Bacteriol. 176: 656–664.
- Xue, C., Y.-S. Bahn, G. M. Cox, and J. Heitman. 2006. G protein-coupled receptor Gpr4 senses amino acids and activates the cAMP-PKA pathway in Cryptococcus neoformans . Mol. Biol. Cell 17: 667–679.
- Xue, C., Y. P. Hsueh, L. Chen, and J. Heitman. 2008. The RGS protein Crg2 regulates both pheromone and cAMP signalling in Cryptococcus neoformans . Mol. Microbiol. 70: 379–395.
- Yeh, Y. L., Y. S. Lin, B. J. Su, and W. C. Shen. 2009. A screening for suppressor mutants reveals components involved in the blue light-inhibited sexual filamentation in Cryptococcus neoformans . Fungal Genet. Biol. 46: 42–54.
- Zerhouni, E. 2005. Translational and clinical science: time for a new vision. N. Engl. J. Med. 353: 1621–1623.
- Zhang, S., M. Hacham, J. Panepinto, G. Hu, S. Shin, X. Zhu, and P. R. Williamson. 2006. The Hsp70 member, Ssa1 acts as a DNA-binding transcriptional co-activator in Cryptococcus neoformans . Mol. Microbiol. 62: 1090–1101.
- Zhu, X., and P. R. Williamson. 2003. A CLC-type chloride channel gene is required for laccase activity and virulence in Cryptococcus neoformans . Mol. Microbiol. 50: 1271–1281.