Mechanical properties of gellan gum beads prepared with potassium or calcium ions
Corresponding Author
Joice Aline Pires Vilela
Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Campinas, Brazil
Correspondence
Joice Aline Pires Vilela, Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP 13083-862, Brazil.
Email: [email protected]
Contribution: Conceptualization (equal), Formal analysis (lead), Investigation (lead), Visualization (lead), Writing - original draft (lead)
Search for more papers by this authorFabiana Perrechil Bonsanto
Department of Chemical Engineering, Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), Diadema, Brazil
Contribution: Conceptualization (equal), Methodology (lead), Supervision (supporting), Writing - review & editing (supporting)
Search for more papers by this authorRosiane Lopes Cunha
Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Campinas, Brazil
Contribution: Conceptualization (equal), Funding acquisition (lead), Project administration (lead), Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorCorresponding Author
Joice Aline Pires Vilela
Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Campinas, Brazil
Correspondence
Joice Aline Pires Vilela, Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP 13083-862, Brazil.
Email: [email protected]
Contribution: Conceptualization (equal), Formal analysis (lead), Investigation (lead), Visualization (lead), Writing - original draft (lead)
Search for more papers by this authorFabiana Perrechil Bonsanto
Department of Chemical Engineering, Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), Diadema, Brazil
Contribution: Conceptualization (equal), Methodology (lead), Supervision (supporting), Writing - review & editing (supporting)
Search for more papers by this authorRosiane Lopes Cunha
Department of Food Engineering and Technology, School of Food Engineering, University of Campinas (UNICAMP), Campinas, Brazil
Contribution: Conceptualization (equal), Funding acquisition (lead), Project administration (lead), Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorThis article was published on AA publication on: 15 April, 2022.
Funding information: Conselho Nacional de Desenvolvimento Científico e Tecnológico, Grant/Award Numbers: 131179/2010-1, 307168/2016-6; Fundação de Amparo à Pesquisa do Estado de São Paulo, Grant/Award Number: EMU 09/541371
Abstract
Biopolymer beads can be used as carrier and encapsulation system for a wide variety of materials in food, medical, pharmaceutical, cosmetics, agricultural, and environmental applications. Beads of low acyl gellan gum (0.4–1.2% w/w) were produced using extrusion technique (dripping) followed by an ionotropic gelation step with calcium or potassium chloride. In this methodology, gel formation is accomplished by cations diffusion at room temperature and, as a consequence, different structure and gel properties could be obtained. Gellan beads were subjected to uniaxial compression measurements. The force-displacement curves showed that the occurrence of structural failure under tested conditions depended on beads formulation and was only observed at polysaccharide concentration above 0.8% (w/w). Maximum force or force at failure was mainly dependent on the type (monovalent or divalent cation) and salt concentration. Moreover, at fixed salt amounts, higher values of maximum force were reached using a concentration of 1% (w/w) gellan. Young modulus, determined using Hertz approach, showed values between 445 and 840 kPa depending on polysaccharide concentration and salt type added. Mechanical properties are critical features of gel beads and can define their suitability for a specific application. Therefore, the results obtained, mainly intrinsic properties such as Young modulus, could be a tool for comparing and choosing polysaccharides for specific uses.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- Almeida, F. S., & Sato, A. C. K. (2019). Structure of gellan gum–hydrolyzed collagen particles: Effect of starch addition and coating layer. Food Research International, 121, 394–403. https://doi.org/10.1016/j.foodres.2019.03.057
- Barrangou, L. M., Daubert, C. R., & Foegeding, E. A. (2006). Textural properties of agarose gels. I. Rheological and fracture properties. Food Hydrocolloids, 20, 184–195. https://doi.org/10.1016/j.foodhyd.2005.02.019
- Burey, P., Bhandari, B. R., Howes, T., & Gidley, M. J. (2008). Hydrocolloid gel particles: Formation, characterization, and application. Critical Reviews in Food Science and Nutrition, 48(5), 361–377. https://doi.org/10.1080/10408390701347801
- Chan, E. S., Lim, T. K., Voo, W. P., Pogaku, R., Tey, B. T., & Zhang, Z. (2011). Effect of formulation of alginate beads on their mechanical behavior and stiffness. Particuology, 9(3), 228–234. https://doi.org/10.1016/j.partic.2010.12.002
- Costa, A. L. R., Gomes, A., Ushikubo, F. Y., & Cunha, R. L. (2017). Gellan microgels produced in planar microfluidic devices. Journal of Food Engineering, 209, 18–25. https://doi.org/10.1016/j.jfoodeng.2017.04.007
- Evageliou, V., Karantoni, M., Mandala, I., & Komaitis, M. (2010). Compression of gellan gels. Part I: Effect of salts. International Journal of Food Science and Technology, 45(5), 1076–1080. https://doi.org/10.1111/j.1365-2621.2010.02242.x
- Fialho, A. M., Moreira, L. M., Granja, A. T., Popescu, A. O., Hoffmann, K., & Sá-Correia, I. (2008). Occurrence, production, and applications of gellan: Current state and perspectives. Applied Microbiology and Biotechnology, 79(6), 889–900. https://doi.org/10.1007/s00253-008-1496-0
- Fukada, H., Takahashi, K., Kitamura, S., Yuguchi, Y., Urakawa, H., & Kajiwara, K. (2002). Thermodynamics and structural aspect of the gelling process in the gellan gum/metal salt aqueous solutions. Journal of Thermal Analysis and Calorimetry, 70(3), 797–806. https://doi.org/10.1023/A:1022200118799
- Gibson, W., & Sanderson, G. R. (1997). Gellan gum. In A. Imeson (Ed.), Thickening and gelling agents for food (pp. 119–143). Boston, MA: Springer. https://doi.org/10.1007/978-1-4615-2197-6
- Hertz, H. (1882). Ueber die Berührung fester elastischer Körper. Journal Für Die Reine Und Angewandte Mathematik, 92, 156–171. http://eudml.org/doc/148490
10.1515/crll.1882.92.156 Google Scholar
- Hua, J., Ng, P. F., & Fei, B. (2018). High-strength hydrogels: Microstructure design, characterization and applications. Journal of Polymer Science, Part B: Polymer Physics, 56(19), 1325–1335. https://doi.org/10.1002/polb.24725
- Huang, Y., Cavinato, A. G., Tang, J., Swanson, B. G., Lin, M., & Rasco, B. A. (2007). Characterization of sol-gel transitions of food hydrocolloids with near infra-red spectroscopy. LWT - Food Science and Technology, 40(6), 1018–1026. https://doi.org/10.1016/j.lwt.2006.07.005
- Huang, Y., Tang, J., Swanson, B. G., & Rasco, B. A. (2003). Effect of calcium concentration on textural properties of high and low acyl mixed gellan gels. Carbohydrate Polymers, 54(4), 517–522. https://doi.org/10.1016/j.carbpol.2003.08.006
- Iurciuc, C. E., Peptu, C., Savin, A., Atanase, L. I., Souidi, K., MacKenzie, G., … Popa, M. (2017). Microencapsulation of baker's yeast in gellan gum beads used in repeated cycles of glucose fermentation. International Journal of Polymer Science, 2017, 7610420. https://doi.org/10.1155/2017/7610420
- Kaklamani, G., Cheneler, D., Grover, L. M., Adams, M. J., & Bowen, J. (2014). Mechanical properties of alginate hydrogels manufactured using external gelation. Journal of the Mechanical Behavior of Biomedical Materials, 36, 135–142. https://doi.org/10.1016/j.jmbbm.2014.04.013
- Kang, K. S., Veeder, G. T. & Colegrove, G. T. (1983). US Patent No. 4,385,125. New Jersey: The United States Patent and Trademark Office.
- Kosseva, M. R. (2011). Immobilization of microbial cells in food fermentation processes. Food and Bioprocess Technology, 4(6), 1089–1118. https://doi.org/10.1007/s11947-010-0435-0
- Lakkis, J. M. (2007). Encapsulation and controlled release technologies in food systems. Ames, IA: Blackwell Publishing.
10.1002/9780470277881 Google Scholar
- Lázaro, N., Sevilla, A. L., Morales, S., & Marqués, A. M. (2003). Heavy metal biosorption by gellan gum gel beads. Water Research, 37(9), 2118–2126. https://doi.org/10.1016/S0043-1354(02)00575-4
- Leong, J. Y., Lam, W. H., Ho, K. W., Voo, W. P., Lee, M. F. X., Lim, H. P., … Chan, E. S. (2016). Advances in fabricating spherical alginate hydrogels with controlled particle designs by ionotropic gelation as encapsulation systems. Particuology, 24, 44–60. https://doi.org/10.1016/j.partic.2015.09.004
- Liu, K. K. (2006). Deformation behaviour of soft particles: A review. Journal of Physics D: Applied Physics, 39(11), 189–199. https://doi.org/10.1088/0022-3727/39/11/R01
- Liu, K. K., Williams, D. R., & Briscoe, B. J. (1998). The large deformation of a single micro-elastomeric sphere. Journal of Physics D: Applied Physics, 31(3), 294–303. https://doi.org/10.1088/0022-3727/31/3/008
- Mao, R., Tang, J., & Swanson, B. G. (2001). Water holding capacity and microstructure of gellan gels. Carbohydrate Polymers, 46(4), 365–371. https://doi.org/10.1016/S0144-8617(00)00337-4
- Melekaslan, D., Gundogan, N., & Okay, O. (2003). Elasticity of poly(acrylamide) gel beads. Polymer Bulletin, 50(4), 287–294. https://doi.org/10.1007/s00289-003-0161-0
- Miyoshi, E., Takaya, T., & Nishinari, K. (1996). Rheological and thermal studies of gel-sol transition in gellan gum aqueous solutions. Carbohydrate Polymers, 30(2–3), 109–119. https://doi.org/10.1016/S0144-8617(96)00093-8
- Moritaka, H., Fukuba, H., Kumeno, K., Nakahama, N., & Nishinari, K. (1991). Effect of monovalent and divalent cations on the rheological properties of gellan gels. Food Hydrocolloids, 4(6), 495–507. https://doi.org/10.1016/S0268-005X(09)80200-2
- Morris, E. R., Nishinari, K., & Rinaudo, M. (2012). Gelation of gellan—A review. Food Hydrocolloids, 28(2), 373–411. https://doi.org/10.1016/j.foodhyd.2012.01.004
- Narkar, M., Sher, P., & Pawar, A. (2010). Stomach-specific controlled release gellan beads of acid-soluble drug prepared by ionotropic gelation method. AAPS PharmSciTech, 11(1), 267–277. https://doi.org/10.1208/s12249-010-9384-1
- Nickerson, M. T., Paulson, A. T., & Hallett, F. R. (2008). Pre-gel solution properties of gellan polysaccharides: Effect of potassium and calcium ions on chain associations. Food Research International, 41(5), 462–471. https://doi.org/10.1016/j.foodres.2007.12.009
- Ouwerx, C., Velings, N., Mestdagh, M. M., & Axelos, M. A. V. (1998). Physico-chemical properties and rheology of alginate gel beads formed with various divalent cations. Polymer Gels and Networks, 6(5), 393–408. https://doi.org/10.1016/S0966-7822(98)00035-5
- Sanderson, G. R. (1990). Gellan gum. In P. Harris (Ed.), Food gels (pp. 201–232). Dordrecht, the Netherlands: Springer. https://doi.org/10.1007/978-94-009-0755-3_6
10.1007/978-94-009-0755-3_6 Google Scholar
- Sanderson, G. R., & Clark, R. C. (1984). Gellan gum, a new gelling polysaccharide. In G. O. Phillips, P. A. Williams, & D. J. Wedlock (Eds.), Gums and stabilisers for the food industry 2 (pp. 201–210). Oxford, UK: Pergamon Press.
- Santos, T. P., & Cunha, R. L. (2018). Role of process variables on the formation and in vitro digestion of gellan gels. Carbohydrate Polymers, 192, 111–117. https://doi.org/10.1016/j.carbpol.2018.03.062
- Sime, W. J. (1990). Alginates. In P. Harris (Ed.), Food gels (pp. 53–78). Dordrecht, the Netherlands: Springer. https://doi.org/10.1007/978-94-009-0755-3_6
10.1007/978-94-009-0755-3_2 Google Scholar
- Singh, B. N., & Kim, K. H. (2005). Effects of divalent cations on drug encapsulation efficiency of deacylated gellan gum. Journal of Microencapsulation, 22(7), 761–771. https://doi.org/10.1080/02652040500273704
- Sun, W., & Griffiths, M. W. (2000). Survival of bifidobacteria in yogurt and simulated gastric juice following immobilization in gellan-xanthan beads. International Journal of Food Microbiology, 61(1), 17–25. https://doi.org/10.1016/S0168-1605(00)00327-5
- Tang, J., Tung, M. A., & Zeng, Y. (1996). Compression strength and deformation of gellan gels formed with mono- and divalent cations. Carbohydrate Polymers, 29(1), 11–16. https://doi.org/10.1016/0144-8617(95)00124-7
- Tomović, N. S., Trifković, K. T., Rakin, M. P., Rakin, M. B., & Bugarski, B. M. (2015). Influence of compression speed and deformation percentage on mechanical properties of calcium alginate particles. Chemical Industry and Chemical Engineering Quarterly, 21(3), 411–417. https://doi.org/10.2298/CICEQ140228043T
- Vieira, S., Morais, A. S., Garet, E., Silva-Correia, J., Reis, R. L., González-Fernández, Á., & Oliveira, J. M. (2019). Self-mineralizing Ca-enriched methacrylated gellan gum beads for bone tissue engineering. Acta Biomaterialia, 93, 74–85. https://doi.org/10.1016/j.actbio.2019.01.053
- Vilela, J. A. P., Cavallieri, Â. L. F., & Cunha, R. L. (2011). The influence of gelation rate on the physical properties/structure of salt-induced gels of soy protein isolate-gellan gum. Food Hydrocolloids, 25(7), 1710–1718. https://doi.org/10.1016/j.foodhyd.2011.03.012
- Wang, C. X., Cowen, C., Zhang, Z., & Thomas, C. R. (2005). High-speed compression of single alginate microspheres. Chemical Engineering Science, 60(23), 6649–6657. https://doi.org/10.1016/j.ces.2005.05.052
- Wang, X., Gai, Z., Yu, B., Feng, J., Xu, C., Yuan, Y., … Xu, P. (2007). Degradation of carbazole by microbial cells immobilized in magnetic gellan gum gel beads. Applied and Environmental Microbiology, 73(20), 6421–6428. https://doi.org/10.1128/AEM.01051-07
- Yan, Y., Zhang, Z., Stokes, J. R., Zhou, Q. Z., Ma, G. H., & Adams, M. J. (2009). Mechanical characterization of agarose micro-particles with a narrow size distribution. Powder Technology, 192(1), 122–130. https://doi.org/10.1016/j.powtec.2008.12.006
- Yuguchi, Y., Urakawa, H., & Kajiwara, K. (2002). The effect of potassium salt on the structural characteristics of gellan gum gel. Food Hydrocolloids, 16(3), 191–195. https://doi.org/10.1016/S0268-005X(01)00082-0