Protective effect of probiotic and prebiotic fermented milk containing Lactobacillus fermentum against obesity-induced hepatic steatosis and inflammation
Corresponding Author
Kavita Rani
Semen Biology Lab, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Haryana, India
Correspondence
Kavita Rani, Semen Biology Lab, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Haryana, India.
Email: [email protected]
Search for more papers by this authorSyed Azmal Ali
German Cancer Research Center, Division Proteomics of Stem Cells and Cancer, Heidelberg, Germany
Cell Biology and Proteomics Lab, Animal Biotechnology Center, ICAR-National Dairy Research Institute, Karnal, India
Search for more papers by this authorGautam Kaul
Semen Biology Lab, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Haryana, India
Search for more papers by this authorPradip V. Behare
National Collection of Dairy Cultures (NCDC) Lab, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
Search for more papers by this authorCorresponding Author
Kavita Rani
Semen Biology Lab, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Haryana, India
Correspondence
Kavita Rani, Semen Biology Lab, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Haryana, India.
Email: [email protected]
Search for more papers by this authorSyed Azmal Ali
German Cancer Research Center, Division Proteomics of Stem Cells and Cancer, Heidelberg, Germany
Cell Biology and Proteomics Lab, Animal Biotechnology Center, ICAR-National Dairy Research Institute, Karnal, India
Search for more papers by this authorGautam Kaul
Semen Biology Lab, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Haryana, India
Search for more papers by this authorPradip V. Behare
National Collection of Dairy Cultures (NCDC) Lab, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
Search for more papers by this authorAbstract
Obesity has reached epidemic proportions, with major economic and health implications. The complex pathophysiology of obesity explains the difficulty provided to health policy for its clinical management. Increasing data show that obesity and metabolic abnormalities are intimately connected to differences in consumption of probiotics, its relevance to gut microbiota activity and composition. The goal of this investigation was to assess the effect of oral delivery of indigenous probiotic Lactobacillus fermentum NCDC 400 and prebiotic fructo-oligosaccharide (FOS) on obesity-associated hepatic steatosis and inflammation produced by a high-fat diet (HFD). C57BL/6 mice treated with L. fermentum NCDC 400 either independently or in conjunction with FOS demonstrated reduced body weight and abdominal obesity after 24 weeks of treatment. Also, the anti-oxidative enzyme activity went down, and the inflammatory profile got better, with less fat getting into the hepatocytes. The lipid profile changed, with HDL cholesterol going up and LDL cholesterol and triglyceride levels going down. Further, L. fermentum NCDC 400 and FOS combinations decreased fasting glucose, gHbA1c, gastric inhibitory peptide, and insulin levels in mice fed with HFD, thus improving glucose homeostasis. Overall, consumption of L. fermentum NCDC 400 alone or its combinational effects had a protective role on obesity-associated hepatic steatosis.
Practical applications
The potential indigenous probiotic Lactobacillus fermentum NCDC 400 and prebiotic FOS had a preventive role in obesity-induced hepatic steatosis and improves anti-oxidant and anti-inflammatory properties in HFD-fed obese mice. Our finding would be helpful to prevent obesity-associated hepatic steatosis and inflammation upon supplementation of pre- and pro-biotics (synbiotics).
CONFLICT OF INTEREST
The authors declare that they have no any conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
The data that supports the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
jfbc14509-sup-0001-Supinfo.docxWord 2007 document , 254.7 KB |
Supinfo S1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121–126. https://doi.org/10.1016/S0076-6879(84)05016-3
- Akram, M., Ali, S. A., Behare, P., & Kaul, G. (2022). Dietary intake of probiotic fermented milk benefits the gut and reproductive health in mice fed with an obesogenic diet. Food & Function, 13(2), 737–752. https://doi.org/10.1039/D1FO02501E
- Cho, Y. A., & Kim, J. (2015). Effect of probiotics on blood lipid concentrations: A meta-analysis of randomized controlled trials. Medicine, 94(43), e1714.
- Damodharan, K., Palaniyandi, S. A., Yang, S. H., & Suh, J. W. (2016). Functional probiotic characterization and in vivo cholesterol-lowering activity of Lactobacillus helveticus isolated from fermented cow milk S. Journal of Microbiology and Biotechnology, 26(10), 1675–1686. https://doi.org/10.4014/jmb.1603.03005
- Ding, W., Shi, C., Chen, M., Zhou, J., Long, R., & Guo, X. (2017). Screening for lactic acid bacteria in traditional fermented Tibetan yak milk and evaluating their probiotic and cholesterol-lowering potentials in rats fed a high-cholesterol diet. Journal of Functional Foods, 32, 324–332. https://doi.org/10.1016/j.jff.2017.03.021
- Duncan, S. H., & Flint, H. J. (2013). Probiotics and prebiotics and health in ageing populations. Maturitas, 75(1), 44–50. https://doi.org/10.1016/j.maturitas.2013.02.004
- Esser, N., Paquot, N., & Scheen, A. J. (2015). Anti-inflammatory agents to treat or prevent type 2 diabetes, metabolic syndrome and cardiovascular disease. Expert Opinion on Investigational Drugs, 24(3), 283–307. https://doi.org/10.1517/13543784.2015.974804
- Finkelstein, E. A., Graham, W. C., & Malhotra, R. (2014). Lifetime direct medical costs of childhood obesity. Pediatrics, 133(5), 854–862. https://doi.org/10.1186/s13578-017-0183-1
- Finkelstein, E. A., Khavjou, O. A., Thompson, H., Trogdon, J. G., Pan, L., Sherry, B., & Dietz, W. (2012). Obesity and severe obesity forecasts through 2030. American Journal of Preventive Medicine, 42(6), 563–570. https://doi.org/10.1016/j.amepre.2011.10.026
- Fraser, A., Longnecker, M. P., & Lawlor, D. A. (2007). Prevalence of elevated alanine aminotransferase among US adolescents and associated factors: NHANES 1999–2004. Gastroenterology, 133(6), 1814–1820. https://doi.org/10.1053/j.gastro.2007.08.077
- Friedewald, W. T., Levy, R. I., & Fredrickson, D. S. (1972). Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical Chemistry, 18(6), 499–502. https://doi.org/10.1093/clinchem/18.6.499
- Gao, D., Gao, Z., & Zhu, G. (2013). Antioxidant effects of Lactobacillus plantarum via activation of transcription factor Nrf2. Food & Function, 4(6), 982–989. https://doi.org/10.1039/C3FO30316K
- Gawande, K., Kolhekar, M., Kumari, M., Kapila, S., Sharma, P., Ali, S. A., & Behare, P. V. (2021). Lactic acid bacteria based purified exopolysaccharide showed viscofying and hypercholesterolemic capabilites. Food Hydrocolloids for Health, 1, 100042. https://doi.org/10.1016/j.fhfh.2021.100042
- Gilliland, S. E., Nelson, C. R., & Maxwell, C. (1985). Assimilation of cholesterol by Lactobacillus acidophilus. Applied and Environmental Microbiology, 49(2), 377–381. https://doi.org/10.1128/aem.49.2.377-381.1985
- Grundy, S. M. (2006). Atherogenic dyslipidemia associated with metabolic syndrome and insulin resistance. Clinical Cornerstone, 8, S21–S27. https://doi.org/10.1016/S1098-3597(06)80005-0
- Guo, Z., Liu, X. M., Zhang, Q. X., Shen, Z., Tian, F. W., Zhang, H., Sun, Z. H., Zhang, H. P., & Chen, W. (2011). Influence of consumption of probiotics on the plasma lipid profile: A meta-analysis of randomised controlled trials. Nutrition, Metabolism and Cardiovascular Diseases, 21(11), 844–850. https://doi.org/10.1016/j.numecd.2011.04.008
- Hall, K. D., Sacks, G., Chandramohan, D., Chow, C. C., Wang, Y. C., Gortmaker, S. L., & Swinburn, B. A. (2011). Quantification of the effect of energy imbalance on bodyweight. The Lancet, 378(9793), 826–837. https://doi.org/10.1016/S0140-6736(11)60812-X
- He, M., & Shi, B. (2017). Gut microbiota as a potential target of metabolic syndrome: The role of probiotics and prebiotics. Cell & Bioscience, 7(1), 1–4. https://doi.org/10.1186/s13578-017-0183-1
- Jang, S. E., Han, M. J., Kim, S. Y., & Kim, D. H. (2014). Lactobacillus plantarum CLP-0611 ameliorates colitis in mice by polarizing M1 to M2-like macrophages. International Immunopharmacology, 21(1), 186–192. https://doi.org/10.1016/j.intimp.2014.04.021
- Jia, P., Cui, K., Ma, T., Wan, F., Wang, W., Yang, D., Wang, Y., Guo, B., Zhao, L., & Diao, Q. (2018). Influence of dietary supplementation with Bacillus licheniformis and Saccharomyces cerevisiae as alternatives to monensin on growth performance, antioxidant, immunity, ruminal fermentation and microbial diversity of fattening lambs. Scientific Reports, 8(1), 1–10. https://doi.org/10.1038/s41598-018-35081-4
- Jiang, W., Cen, Y., Song, Y., Li, P., Qin, R., Liu, C., Zhao, Y., Zheng, J., & Zhou, H. (2016). Artesunate attenuated progression of atherosclerosis lesion formation alone or combined with rosuvastatin through inhibition of pro-inflammatory cytokines and pro-inflammatory chemokines. Phytomedicine, 23(11), 1259–1266. https://doi.org/10.1016/j.phymed.2016.06.004
- Jones, M. L., Martoni, C. J., Parent, M., & Prakash, S. (2012). Cholesterol-lowering efficacy of a microencapsulated bile salt hydrolase-active Lactobacillus reuteri NCIMB 30242 yoghurt formulation in hypercholesterolaemic adults. British Journal of Nutrition, 107(10), 1505–1513. https://doi.org/10.1017/S0007114511004703
- Kaur, G., Ali, S. A., Kumar, S., Mohanty, A. K., & Behare, P. (2017). Label-free quantitative proteomic analysis of Lactobacillus fermentum NCDC 400 during bile salt exposure. Journal of Proteomics, 167, 36–45. https://doi.org/10.1016/j.jprot.2017.08.008
- Kaur, H., & Ali, S. A. (2022). Probiotics and gut microbiota: Mechanistic insights into gut immune homeostasis through TLR pathway regulation. Food & Function, 13, 7423–7447. https://doi.org/10.1039/D2FO00911K
- Kaur, H., Ali, S. A., & Yan, F. (2022). Interactions between the gut microbiota-derived functional factors and intestinal epithelial cells – Implication in the microbiota-host mutualism. Frontiers in Immunology, 13, 1006081. https://doi.org/10.3389/fimmu.2022.1006081
- Kaur, H., Kaur, G., & Ali, S. A. (2022). Dairy-based probiotic-fermented functional foods: An update on their health-promoting properties. Fermentation, 8(9), 425. https://doi.org/10.3390/fermentation8090425
- Kullisaar, T., Zilmer, K., Salum, T., Rehema, A., & Zilmer, M. (2016). The use of probiotic L. fermentum ME-3 containing Reg'Activ cholesterol supplement for 4 weeks has a positive influence on blood lipoprotein profiles and inflammatory cytokines: An open-label preliminary study. Nutrition Journal, 15(1), 1–6. https://doi.org/10.1186/s12937-016-0213-6
- Kumar, J., Rani, K., & Datt, C. (2020). Molecular link between dietary fibre, gut microbiota and health. Molecular Biology Reports, 47, 6229–6237. https://doi.org/10.1007/s11033-020-05611-3
- Kumari, M., Singh, P., Nataraj, B. H., Kokkiligadda, A., Naithani, H., Ali, S. A., Behare, P., & Nagpal, R. (2021). Fostering next-generation probiotics in human gut by targeted dietary modulation: An emerging perspective. Food Research International, 150, 110716. https://doi.org/10.1016/j.foodres.2021.110716
- Lee, B. H., Lo, Y. H., & Pan, T. M. (2013). Anti-obesity activity of Lactobacillus fermented soy milk products. Journal of Functional Foods, 5(2), 905–913. https://doi.org/10.1016/j.jff.2013.01.040
- Liu, C. S., Lin, C. C., & Li, T. C. (1999). The relation of white blood cell count and atherogenic index ratio of LDL-cholesterol to HDL-cholesterol in Taiwan school children. Acta Paediatrica Taiwanica = Taiwan er ke yi xue hui za zhi, 40(5), 319–324.
- Liu, Q., Duan, Z. P., Ha, D. K., Bengmark, S., Kurtovic, J., & Riordan, S. M. (2004). Synbiotic modulation of gut flora: Effect on minimal hepatic encephalopathy in patients with cirrhosis. Hepatology, 39(5), 1441–1449. https://doi.org/10.1002/hep.20194
- Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262
- Lowry, O. H. (1951). Protein determination with the Folin phenol reagent. The Journal of Biological Chemistry, 193, 265–275.
- Luhar, S., Timæus, I. M., Jones, R., Cunningham, S., Patel, S. A., Kinra, S., Clarke, L., & Houben, R. (2020). Forecasting the prevalence of overweight and obesity in India to 2040. PLoS One, 15(2), e0229438. https://doi.org/10.1371/journal.pone.0229438
- Mallappa, R. H., Rokana, N., Duary, R. K., Panwar, H., Batish, V. K., & Grover, S. (2012). Management of metabolic syndrome through probiotic and prebiotic interventions. Indian Journal of Endocrinology and Metabolism, 16(1), 20–27. https://doi.org/10.4103/2230-8210.91178
- Marchesini, G., Bugianesi, E., Forlani, G., Cerrelli, F., Lenzi, M., Manini, R., Natale, S., Vanni, E., Villanova, N., Melchionda, N., & Rizzetto, M. (2003). Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology, 37(4), 917–923. https://doi.org/10.1053/jhep.2003.50161
- Marklund, S., & Marklund, G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 47(3), 469–474.
- Markowiak, P., & Śliżewska, K. (2017). Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients, 9(9), 1021. https://doi.org/10.3390/nu9091021
- Markowiak-Kopeć, P., & Śliżewska, K. (2020). The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome. Nutrients, 12(4), 1107. https://doi.org/10.3390/nu12041107
- Miller, J. K., Brzezinska-Slebodzinska, E., & Madsen, F. C. (1993). Oxidative stress, antioxidants, and animal function. Journal of Dairy Science, 76(9), 2812–2823. https://doi.org/10.3168/jds.S0022-0302(93)77620-1
- Naowaboot, J., Piyabhan, P., Munkong, N., Parklak, W., & Pannangpetch, P. (2016). Ferulic acid improves lipid and glucose homeostasis in high-fat diet-induced obese mice. Clinical and Experimental Pharmacology and Physiology, 43(2), 242–250. https://doi.org/10.1111/1440-1681.12514
- Nataraj, B. H., Ali, S. A., Behare, P. V., & Yadav, H. (2020). Postbiotics-parabiotics: The new horizons in microbial biotherapy and functional foods. Microbial Cell Factories, 19(1), 1–22. https://doi.org/10.1186/s12934-020-01426-w
- Nauck, M. A., & Meier, J. J. (2016). The incretin effect in healthy individuals and those with type 2 diabetes: Physiology, pathophysiology, and response to therapeutic interventions. The Lancet Diabetes & Endocrinology, 4(6), 525–536. https://doi.org/10.1016/S2213-8587(15)00482-9
- Ng, M., Fleming, T., Robinson, M., Thomson, B., Graetz, N., Margono, C., Mullany, E. C., Biryukov, S., Abbafati, C., Abera, S. F., & Abraham, J. P. (2014). Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: A systematic analysis for the global burden of disease study 2013. The Lancet, 384(9945), 766–781. https://doi.org/10.1016/S0140-6736(14)60460-8
- Omar, B., & Ahrén, B. (2014). Pleiotropic mechanisms for the glucose-lowering action of DPP-4 inhibitors. Diabetes, 63(7), 2196–2202. https://doi.org/10.2337/db14-0052
- Paglia, D. E., & Valentine, W. N. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. The Journal of Laboratory and Clinical Medicine, 70(1), 158–169. https://doi.org/10.5555/uri:pii:0022214367900765
- Panicker, A. S., Ali, S. A., Anand, S., Panjagari, N. R., Kumar, S., Mohanty, A. K., & Behare, P. V. (2018). Evaluation of some in vitro probiotic properties of Lactobacillus fermentum strains. Journal of Food Science and Technology, 55(7), 2801–2807. https://doi.org/10.1007/s13197-018-3197-8
- Park, D. Y., Ahn, Y. T., Park, S. H., Huh, C. S., Yoo, S. R., Yu, R., Sung, M. K., McGregor, R. A., & Choi, M. S. (2013). Supplementation of lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 in diet-induced obese mice is associated with gut microbial changes and reduction in obesity. PLoS One, 8(3), e59470. https://doi.org/10.1371/journal.pone.0059470
- Petrie, J. R., Guzik, T. J., & Touyz, R. M. (2018). Diabetes, hypertension, and cardiovascular disease: Clinical insights and vascular mechanisms. Canadian Journal of Cardiology, 34(5), 575–584. https://doi.org/10.1016/j.cjca.2017.12.005
- Pragya, P., Kaur, G., Ali, S. A., Bhatla, S., Rawat, P., Lule, V., Kumar, S., Mohanty, A. K., & Behare, P. V. (2017). High-resolution mass spectrometry-based global proteomic analysis of probiotic strains Lactobacillus fermentum NCDC 400 and RS2. Journal of Proteomics, 152, 121–130. https://doi.org/10.1016/j.jprot.2016.10.016
- Prospective Studies Collaboration. (2009). Body-mass index and cause-specific mortality in 900 000 adults: Collaborative analyses of 57 prospective studies. The Lancet, 373(9669), 1083–1096. https://doi.org/10.1016/S0140-6736(09)60318-4
- Ritze, Y., Bárdos, G., Claus, A., Ehrmann, V., Bergheim, I., Schwiertz, A., & Bischoff, S. C. (2014). Lactobacillus rhamnosus GG protects against non-alcoholic fatty liver disease in mice. PLoS One, 9(1), e80169. https://doi.org/10.1371/journal.pone.0080169
- Rivero-Gutiérrez, B., Gámez-Belmonte, R., Suárez, M. D., Lavín, J. L., Aransay, A. M., Olivares, M., Martínez-Augustin, O., Sanchez de Medina, F., & Zarzuelo, A. (2017). A synbiotic composed of Lactobacillus fermentum CECT5716 and FOS prevents the development of fatty acid liver and glycemic alterations in rats fed a high fructose diet associated with changes in the microbiota. Molecular Nutrition & Food Research, 61(8), 1600622. https://doi.org/10.1002/mnfr.201600622
- Roberfroid, M., Gibson, G. R., Hoyles, L., McCartney, A. L., Rastall, R., Rowland, I., Wolvers, D., Watzl, B., Szajewska, H., Stahl, B., & Guarner, F. (2010). Prebiotic effects: Metabolic and health benefits. British Journal of Nutrition, 104(S2), S1–S63. https://doi.org/10.1017/S0007114510003363
- Schogor, A. L., Palin, M. F., dos Santos, G. T., Benchaar, C., Lacasse, P., & Petit, H. V. (2013). Mammary gene expression and activity of antioxidant enzymes and oxidative indicators in the blood, milk, mammary tissue and ruminal fluid of dairy cows fed flax meal. British Journal of Nutrition, 110(10), 1743–1750.
- Seganfredo, F. B., Blume, C. A., Moehlecke, M., Giongo, A., Casagrande, D. S., Spolidoro, J. V., Padoin, A. V., Schaan, B. D., & Mottin, C. C. (2017). Weight-loss interventions and gut microbiota changes in overweight and obese patients: A systematic review. Obesity Reviews, 18(8), 832–851. https://doi.org/10.1111/obr.12541
- Sergeev, I. N., Aljutaily, T., Walton, G., & Huarte, E. (2020). Effects of synbiotic supplement on human gut microbiota, body composition and weight loss in obesity. Nutrients, 12(1), 222. https://doi.org/10.3390/nu12010222
- Shoelson, S. E., Herrero, L., & Naaz, A. (2007). Obesity, inflammation, and insulin resistance. Gastroenterology, 132(6), 2169–2180. https://doi.org/10.1053/j.gastro.2007.03.059
- Solinas, G., Vilcu, C., Neels, J. G., Bandyopadhyay, G. K., Luo, J. L., Naugler, W., Grivennikov, S., Wynshaw-Boris, A., Scadeng, M., Olefsky, J. M., & Karin, M. (2007). JNK1 in hematopoietically derived cells contributes to diet-induced inflammation and insulin resistance without affecting obesity. Cell Metabolism, 6(5), 386–397. https://doi.org/10.1016/j.cmet.2007.09.011
- Song, M., Park, S., Lee, H., Min, B., Jung, S., Kim, E., & Oh, S. (2015). Effect of Lactobacillus acidophilus NS1 on plasma cholesterol levels in diet-induced obese mice. Journal of Dairy Science, 98(3), 1492–1501. https://doi.org/10.3168/jds.2014-8586
- Sperrin, M., Marshall, A. D., Higgins, V., Buchan, I. E., & Renehan, A. G. (2014). Slowing down of adult body mass index trend increases in England: A latent class analysis of cross-sectional surveys (1992–2010). International Journal of Obesity, 38(6), 818–824. https://doi.org/10.1038/ijo.2013.161
- Tang, W., Li, C., He, Z., Pan, F., Pan, S., & Wang, Y. (2018). Probiotic properties and cellular antioxidant activity of Lactobacillus plantarum MA2 isolated from Tibetan kefir grains. Probiotics and Antimicrobial Proteins, 10(3), 523–533. https://doi.org/10.1007/s12602-017-9349-8
- Vaibhao, L., Kanchan, M., Ali, S. A., Preeti, R., Sudarshan, K., Pradip, B., & Mohanty, A. K. (2016). Evaluation of stationary phase and bile stress related protein spots in Lactobacillus fermentum NCDC 400 by 2-DE method. Indian Journal of Dairy Science, 69(4), 455–459.
- Wang, Y., Li, Y., Xie, J., Zhang, Y., Wang, J., Sun, X., & Zhang, H. (2013). Protective effects of probiotic Lactobacillus casei Zhang against endotoxin-and d-galactosamine-induced liver injury in rats via anti-oxidative and anti-inflammatory capacities. International Immunopharmacology, 15(1), 30–37. https://doi.org/10.1016/j.intimp.2012.10.026
- Wang, Y., Liu, Y., Sidhu, A., Ma, Z., McClain, C., & Feng, W. (2012). Lactobacillus rhamnosus GG culture supernatant ameliorates acute alcohol-induced intestinal permeability and liver injury. American Journal of Physiology-Gastrointestinal and Liver Physiology, 303(1), G32–G41. https://doi.org/10.1152/ajpgi.00024.2012
- West, N. P., Pyne, D. B., Cripps, A. W., Hopkins, W. G., Eskesen, D. C., Jairath, A., Christophersen, C. T., Conlon, M. A., & Fricker, P. A. (2011). Lactobacillus fermentum (PCC®) supplementation and gastrointestinal and respiratory-tract illness symptoms: A randomised control trial in athletes. Nutrition Journal, 10(1), 1. https://doi.org/10.1186/1475-2891-10-30
- Yamamoto, S., Kuramoto, K., Wang, N., Situ, X., Priyadarshini, M., Zhang, W., Cordoba-Chacon, J., Layden, B. T., & He, C. (2018). Autophagy differentially regulates insulin production and insulin sensitivity. Cell Reports, 23(11), 3286–3299. https://doi.org/10.1016/j.celrep.2018.05.032
- Ye, H., Li, Q., Zhang, Z., Sun, M., Zhao, C., & Zhang, T. (2017). Effect of a novel potential probiotic Lactobacillus paracasei Jlus66 isolated from fermented milk on nonalcoholic fatty liver in rats. Food & Function, 8(12), 4539–4546. https://doi.org/10.1039/C7FO01108C
- Yonejima, Y., Ushida, K., & Mori, Y. (2013). Effect of lactic acid bacteria on lipid metabolism and fat synthesis in mice fed a high-fat diet. Bioscience of Microbiota, Food and Health, 32(2), 51–58. https://doi.org/10.12938/bmfh.32.51
- Zhou, X., Zhang, W., Liu, X., Zhang, W., & Li, Y. (2015). Interrelationship between diabetes and periodontitis: Role of hyperlipidemia. Archives of Oral Biology, 60(4), 667–674. https://doi.org/10.1016/j.archoralbio.2014.11.008
- Zoumpopoulou, G., Foligne, B., Christodoulou, K., Grangette, C., Pot, B., & Tsakalidou, E. (2008). Lactobacillus fermentum ACA-DC 179 displays probiotic potential in vitro and protects against trinitrobenzene sulfonic acid (TNBS)-induced colitis and salmonella infection in murine models. International Journal of Food Microbiology, 121(1), 18–26. https://doi.org/10.1016/j.ijfoodmicro.2007.10.013