A study of the molecular mechanism of quercetin and dasatinib combination as senolytic in alleviating age-related and kidney diseases
Khalid Saad Alharbi
Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
Search for more papers by this authorObaid Afzal
Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
Search for more papers by this authorAbdulmalik Saleh Alfawaz Altamimi
Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
Search for more papers by this authorCorresponding Author
Waleed Hassan Almalki
Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
Correspondence
Waleed Hassan Almalki, Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
Email: [email protected]
Imran Kazmi, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Imran Kazmi
Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
Correspondence
Waleed Hassan Almalki, Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
Email: [email protected]
Imran Kazmi, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
Email: [email protected]
Search for more papers by this authorFahad A. Al-Abbasi
Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
Search for more papers by this authorSami I. Alzarea
Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
Search for more papers by this authorHafiz A. Makeen
Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
Search for more papers by this authorMohammed Albratty
Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
Search for more papers by this authorKhalid Saad Alharbi
Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
Search for more papers by this authorObaid Afzal
Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
Search for more papers by this authorAbdulmalik Saleh Alfawaz Altamimi
Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
Search for more papers by this authorCorresponding Author
Waleed Hassan Almalki
Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
Correspondence
Waleed Hassan Almalki, Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
Email: [email protected]
Imran Kazmi, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Imran Kazmi
Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
Correspondence
Waleed Hassan Almalki, Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
Email: [email protected]
Imran Kazmi, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
Email: [email protected]
Search for more papers by this authorFahad A. Al-Abbasi
Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
Search for more papers by this authorSami I. Alzarea
Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
Search for more papers by this authorHafiz A. Makeen
Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
Search for more papers by this authorMohammed Albratty
Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
Search for more papers by this authorAbstract
Aging is a significant risk factor for the majority of prevalent human illnesses. The chance of having severe chronic conditions grows dramatically with advancing age. Indeed, more than 90% of people over 65 get at least one chronic disease, including diabetes, heart disease, malignancy, memory loss, and kidney disease, whereas more than 70% have two or more of these ailments. Mouse and human aging lead to increased senescent cells and decreased klotho concentrations. Mice lacking the protein α-klotho show faster aging, similar to human aging. α-Klotho upregulation extends life and slows or suppresses the onset of many age-related illnesses and kidney diseases. Like the consequences of α-klotho deficiency, senescent cell accumulation is linked to tissue dysfunction in various organs and multiple age-related kidney diseases. In addition, α-klotho and cell senescence are negatively and presumably mechanistically linked. Earlier research has demonstrated that klotho exerts its protective effects in age-related and kidney disease by interacting with Wnt ligands, serving as an endogenous antagonist of Wnt/β-catenin signaling. In addition, decreasing senescent cell burden with senolytics, a class of drugs that remove senescent cells selectively and extend the life span of mice. In this work, we are studying the molecular mechanism of the combination of quercetin and dasatinib as senolytic in easing age-related chronic renal illness by altering the level of klotho/Wnt/β-catenin.
Practical applications
There is an inverse relationship between the onset and the development of age-related disorders and cellular senescence and Klotho. Earlier attempts to suppress transforming growth factor-beta 1 (TGF-β1) in kidney disease with anti-TGF-β1 antibodies were ineffective, and this should be kept in mind. Senolytic medications may benefit from targeting senescent cells, which enhances the protective factor α-klotho. In addition, our study provides a unique, translationally feasible route for creating orally active small compounds to enhance α-klotho, which may also be a valuable biomarker for age-related kidney disease. Additionally, other aspects of aging can be affected by senolytics, such as limiting age-related mitochondrial dysfunction, lowering inflammation and fibrosis, blunting reactive oxygen species (ROS) generation, decreasing deoxyribonucleic acid (DNA) damage, and reinforcing insulin sensitivity. Senolytic agents have been shown to increase adipose progenitor and cardiac progenitor cell activity in aging animals and animals with cellular senescence-related diseases, such as heart, brain, and kidney disease.
CONFLICT OF INTEREST
No conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
REFERENCES
- Abraham, C. R., Mullen, P. C., Tucker-Zhou, T., Chen, C. D., & Zeldich, E. (2016). Chapter nine - Klotho is a neuroprotective and cognition-enhancing protein. In G. Litwack (Ed.), Vitamins & hormones (pp. 215–238). Academic Press.
- Abulizi, P., Zhou, X. H., Keyimu, K., Luo, M., & Jin, F. Q. (2017). Correlation between KLOTHO gene and mild cognitive impairment in the Uygur and Han populations of Xinjiang. Oncotarget, 8(43), 75174–75185.
- Acebron, S. P., & Niehrs, C. (2016). β-Catenin-independent roles of Wnt/LRP6 signaling. Trends in Cell Biology, 26(12), 956–967. https://doi.org/10.1016/j.tcb.2016.07.009
- Akbari, H., Asadikaram, G., Aria, H., Fooladi, S., Vakili, S., & Masoumi, M. (2018). Association of Klotho gene polymorphism with hypertension and coronary artery disease in an Iranian population. BMC Cardiovascular Disorders, 18(1), 237.
- Akhmetshina, A., Palumbo, K., Dees, C., Bergmann, C., Venalis, P., Zerr, P., Horn, A., Kireva, T., Beyer, C., Zwerina, J., Schneider, H., Sadowski, A., Riener, M. O., MacDougald, O., Distler, O., Schett, G., & Distler, J. H. (2012). Activation of canonical Wnt signalling is required for TGF-β-mediated fibrosis. Nature Communications, 3(1), 735. https://doi.org/10.1038/ncomms1734
- Amado, N. G., Predes, D., Moreno, M. M., Carvalho, I. O., Mendes, F. A., & Abreu, J. G. (2014). Flavonoids and Wnt/β-catenin signaling: Potential role in colorectal cancer therapies. International Journal of Molecular Sciences, 15(7), 12094–12106. https://doi.org/10.3390/ijms150712094
- Aoki, J., Kimura, K., Morita, N., Harada, M., Metoki, N., Tateishi, Y., Todo, K., Yamagami, H., Hayashi, K., Terasawa, Y., Fujita, K., Yamamoto, N., Deguchi, I., Tanahashi, N., Inoue, T., Iwanaga, T., Kaneko, N., Mitsumura, H., Iguchi, Y., … YAMATO Study Investigators. (2017). YAMATO Study (tissue-type plasminogen activator and edaravone combination therapy). Stroke, 48(3), 712–719.
- Arking, D. E., Atzmon, G., Arking, A., Barzilai, N., & Dietz, H. C. (2005). Association between a functional variant of the KLOTHO gene and high-density lipoprotein cholesterol, blood pressure, stroke, and longevity. Circulation Research, 96(4), 412–418.
- Bakris, G. L., Agarwal, R., Anker, S. D., Pitt, B., Ruilope, L. M., Rossing, P., Kolkhof, P., Nowack, C., Schloemer, P., Joseph, A., Filippatos, G., & FIDELIO-DKD Investigators. (2020). Effect of Finerenone on chronic kidney disease outcomes in type 2 diabetes. The New England Journal of Medicine, 383(23), 2219–2229. https://doi.org/10.1056/NEJMoa2025845
- Barnett, K., Mercer, S. W., Norbury, M., Watt, G., Wyke, S., & Guthrie, B. (2012). Epidemiology of multimorbidity and implications for health care, research, and medical education: A cross-sectional study. The Lancet, 380(9836), 37–43. https://doi.org/10.1016/S0140-6736(12)60240-2
- Borghesan, M., Hoogaars, W. M. H., Varela-Eirin, M., Talma, N., & Demaria, M. (2020). A senescence-centric view of aging: Implications for longevity and disease. Trends in Cell Biology, 30(10), 777–791. https://doi.org/10.1016/j.tcb.2020.07.002
- Breyer, M. D., & Susztak, K. (2016). The next generation of therapeutics for chronic kidney disease. Nature Reviews Drug Discovery, 15(8), 568–588. https://doi.org/10.1038/nrd.2016.67
- Campisi, J. (2013). Aging, cellular senescence, and cancer. Annual Review of Physiology, 75, 685–705. https://doi.org/10.1146/annurev-physiol-030212-183653
- Cararo-Lopes, M. M., Mazucanti, C. H. Y., Scavone, C., Kawamoto, E. M., & Berwick, D. C. (2017). The relevance of α-KLOTHO to the central nervous system: Some key questions. Ageing Research Reviews, 36, 137–148. https://doi.org/10.1016/j.arr.2017.03.003
- Charytan, D. M., Padera, R., Helfand, A. M., Zeisberg, M., Xu, X., Liu, X., Himmelfarb, J., Cinelli, A., Kalluri, R., & Zeisberg, E. M. (2014). Increased concentration of circulating angiogenesis and nitric oxide inhibitors induces endothelial to mesenchymal transition and myocardial fibrosis in patients with chronic kidney disease. International Journal of Cardiology, 176(1), 99–109. https://doi.org/10.1016/j.ijcard.2014.06.062
- Childs, B. G., Durik, M., Baker, D. J., & van Deursen, J. M. (2015). Cellular senescence in aging and age-related disease: From mechanisms to therapy. Nature Medicine, 21(12), 1424–1435. https://doi.org/10.1038/nm.4000
- Clinton, S. M., Glover, M. E., Maltare, A., Laszczyk, A. M., Mehi, S. J., Simmons, R. K., & King, G. D. (2013). Expression of klotho mRNA and protein in rat brain parenchyma from early postnatal development into adulthood. Brain Research, 1527, 1–14. https://doi.org/10.1016/j.brainres.2013.06.044
- Coppé, J.-P., Desprez, P.-Y., Krtolica, A., & Campisi, J. (2010). The senescence-associated secretory phenotype: The dark side of tumor suppression. Annual Review of Pathology, 5, 99–118. https://doi.org/10.1146/annurev-pathol-121808-102144
- Coppé, J. P., Patil, C. K., Rodier, F., Sun, Y., Muñoz, D. P., Goldstein, J., Nelson, P. S., Desprez, P. Y., & Campisi, J. (2008). Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biology, 6(12), 2853–2868. https://doi.org/10.1371/journal.pbio.0060301
- Deary, I. J., Harris, S. E., Fox, H. C., Hayward, C., Wright, A. F., Starr, J. M., & Whalley, L. J. (2005). KLOTHO genotype and cognitive ability in childhood and old age in the same individuals. Neuroscience Letters, 378(1), 22–27. https://doi.org/10.1016/j.neulet.2004.12.005
- DeFronzo, R. A., Reeves, W. B., & Awad, A. S. (2021). Pathophysiology of diabetic kidney disease: Impact of SGLT2 inhibitors. Nature Reviews Nephrology, 17(5), 319–334. https://doi.org/10.1038/s41581-021-00393-8
- Elghoroury, E. A., Fadel, F. I., Elshamaa, M. F., Kandil, D., Salah, D. M., El-Sonbaty, M. M., Farouk, H., Raafat, M., & Nasr, S. (2018). Klotho G-395A gene polymorphism: Impact on progression of end-stage renal disease and development of cardiovascular complications in children on dialysis. Pediatric Nephrology, 33(6), 1019–1027.
- Fan, J., & Sun, Z. (2016). The antiaging gene klotho regulates proliferation and differentiation of adipose-derived stem cells. Stem Cells, 34(6), 1615–1625. https://doi.org/10.1002/stem.2305
- Faul, C., Amaral, A. P., Oskouei, B., Hu, M. C., Sloan, A., Isakova, T., Gutiérrez, O. M., Aguillon-Prada, R., Lincoln, J., Hare, J. M., Mundel, P., Morales, A., Scialla, J., Fischer, M., Soliman, E. Z., Chen, J., Go, A. S., Rosas, S. E., Nessel, L., … Wolf, M. (2011). FGF23 induces left ventricular hypertrophy. The Journal of Clinical Investigation, 121(11), 4393–4408. https://doi.org/10.1172/jci46122
- Fernandez-Fernandez, B., Ortiz, A., Gomez-Guerrero, C., & Egido, J. (2014). Therapeutic approaches to diabetic nephropathy—Beyond the RAS. Nature Reviews Nephrology, 10(6), 325–346. https://doi.org/10.1038/nrneph.2014.74
- Ferri, C. M., Donate-Correa, J. J., Martín-Núñez, E., Pérez-Delgado, N., González-Luis, A., Mora-Fernández, C., & Navarro-González, J. F. (2021). KLOTHO as a biomarker of subclinical cardiovascular disease in chronic kidney disease: A proof-of-concept study. Atherosclerosis, 331, e237. https://doi.org/10.1016/j.atherosclerosis.2021.06.729
- Formica, J. V., & Regelson, W. (1995). Review of the biology of quercetin and related bioflavonoids. Food and Chemical Toxicology, 33(12), 1061–1080. https://doi.org/10.1016/0278-6915(95)00077-1
- Fountoulakis, N., Maltese, G., Gnudi, L., & Karalliedde, J. (2018). Reduced levels of anti-ageing hormone klotho predict renal function decline in type 2 diabetes. The Journal of Clinical Endocrinology and Metabolism, 103(5), 2026–2032. https://doi.org/10.1210/jc.2018-00004
- Friedman, D. J., Afkarian, M., Tamez, H., Bhan, I., Isakova, T., Wolf, M., Ankers, E., Ye, J., Tonelli, M., Zoccali, C., Kuro-o, M., Moe, O., Karumanchi, S. A., & Thadhani, R. (2009). Klotho variants and chronic hemodialysis mortality. Journal of Bone and Mineral Research, 24(11), 1847–1855.
- Hao, Y., Wang, Y., Xi, L., Li, G., Zhao, F., Qi, Y., Liu, J., & Zhao, D. (2016). A nested case-control study of association between metabolome and hypertension risk. BioMed Research International, 2016, 7646979.
- He, S., & Sharpless, N. E. (2017). Senescence in health and disease. Cell, 169(6), 1000–1011. https://doi.org/10.1016/j.cell.2017.05.015
- Hernández-Ortega, L. D., Alcántar-Díaz, B. E., Ruiz-Corro, L. A., Sandoval-Rodriguez, A., Bueno-Topete, M., Armendariz-Borunda, J., & Salazar-Montes, A. M. (2012). Quercetin improves hepatic fibrosis reducing hepatic stellate cells and regulating pro-fibrogenic/anti-fibrogenic molecules balance. Journal of Gastroenterology and Hepatology, 27(12), 1865–1872. https://doi.org/10.1111/j.1440-1746.2012.07262.x
- Hori, S., Miyake, M., Tatsumi, Y., Morizawa, Y., Nakai, Y., Onishi, S., Onishi, K., Iida, K., Gotoh, D., Tanaka, N., & Fujimoto, K. (2018). Gamma-klotho exhibits multiple roles in tumor growth of human bladder cancer. Oncotarget, 9(28), 19508–19524. https://doi.org/10.18632/oncotarget.24628
- Horton, J. A., Li, F., Chung, E. J., Hudak, K., White, A., Krausz, K., Gonzalez, F., & Citrin, D. (2013). Quercetin inhibits radiation-induced skin fibrosis. Radiation Research, 180(2), 205–215. https://doi.org/10.1667/rr3237.1
- Hu, M. C., Kuro-o, M., & Moe, O. W. (2013). Klotho and chronic kidney disease. Contributions to Nephrology, 180, 47–63. https://doi.org/10.1159/000346778
- Hu, M.-C., Shi, M., Zhang, J., Quiñones, H., Kuro-o, M., & Moe, O. W. (2010). Klotho deficiency is an early biomarker of renal ischemia–reperfusion injury and its replacement is protective. Kidney International, 78(12), 1240–1251. https://doi.org/10.1038/ki.2010.328
- Hubackova, S., Davidova, E., Rohlenova, K., Stursa, J., Werner, L., Andera, L., Dong, L., Terp, M. G., Hodny, Z., Ditzel, H. J., Rohlena, J., & Neuzil, J. (2019). Selective elimination of senescent cells by mitochondrial targeting is regulated by ANT2. Cell Death & Differentiation, 26(2), 276–290. https://doi.org/10.1038/s41418-018-0118-3
- Ibrahim Fouad, G., & Ahmed, K. A. (2021). Neuroprotective potential of berberine against doxorubicin-induced toxicity in Rat's brain. Neurochemical Research, 46(12), 3247–3263. https://doi.org/10.1007/s11064-021-03428-5
- Johnson, A. D. (2009). Single-nucleotide polymorphism bioinformatics. Circulation: Cardiovascular Genetics, 2(5), 530–536. https://doi.org/10.1161/CIRCGENETICS.109.872010
- Justice, J. N., Gregory, H., Tchkonia, T., LeBrasseur, N. K., Kirkland, J. L., Kritchevsky, S. B., & Nicklas, B. J. (2018). Cellular senescence biomarker p16INK4a+ cell burden in thigh adipose is associated with poor physical function in older women. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 73(7), 939–945. https://doi.org/10.1093/gerona/glx134
- Kadoya, H., Satoh, M., Haruna, Y., Sasaki, T., & Kashihara, N. (2016). Klotho attenuates renal hypertrophy and glomerular injury in Ins2Akita diabetic mice. Clinical and Experimental Nephrology, 20(5), 671–678. https://doi.org/10.1007/s10157-015-1202-3
- Kamemori, M., Ohyama, Y., Kurabayashi, M., Takahashi, K., Nagai, R., & Furuya, N. (2002). Expression of klotho protein in the inner ear. Hearing Research, 171(1–2), 103–110. https://doi.org/10.1016/s0378-5955(02)00483-5
- Kandhaya-Pillai, R., Miro-Mur, F., Alijotas-Reig, J., Tchkonia, T., Kirkland, J. L., & Schwartz, S. (2017). TNFα-senescence initiates a STAT-dependent positive feedback loop, leading to a sustained interferon signature, DNA damage, and cytokine secretion. Aging (Albany NY), 9(11), 2411–2435. https://doi.org/10.18632/aging.101328
- Kawaguchi, H., Manabe, N., Miyaura, C., Chikuda, H., Nakamura, K., & Kuro-o, M. (1999). Independent impairment of osteoblast and osteoclast differentiation in klotho mouse exhibiting low-turnover osteopenia. The Journal of Clinical Investigation, 104(3), 229–237. https://doi.org/10.1172/jci5705
- Kawano, K.-I., Ogata, N., Chiano, M., Molloy, H., Kleyn, P., Spector, T. D., Uchida, M., Hosoi, T., Suzuki, T., Orimo, H., Inoue, S., Nabeshima, Y., Nakamura, K., Kuro-o, M., & Kawaguchi, H. (2002). Klotho gene polymorphisms associated with bone density of aged postmenopausal women. Journal of Bone and Mineral Research, 17(10), 1744–1751. https://doi.org/10.1359/jbmr.2002.17.10.1744
- Kennedy, B. K., Berger, S. L., Brunet, A., Campisi, J., Cuervo, A. M., Epel, E. S., Franceschi, C., Lithgow, G. J., Morimoto, R. I., Pessin, J. E., Rando, T. A., Richardson, A., Schadt, E. E., Wyss-Coray, T., & Sierra, F. (2014). Geroscience: Linking aging to chronic disease. Cell, 159(4), 709–713. https://doi.org/10.1016/j.cell.2014.10.039
- Kim, H., Seo, E. M., Sharma, A. R., Ganbold, B., Park, J., Sharma, G., Kang, Y. H., Song, D. K., Lee, S. S., & Nam, J. S. (2013). Regulation of Wnt signaling activity for growth suppression induced by quercetin in 4T1 murine mammary cancer cells. International Journal of Oncology, 43(4), 1319–1325. https://doi.org/10.3892/ijo.2013.2036
- Kim, J.-H., Hwang, K.-H., Park, K.-S., Kong, I. D., & Cha, S.-K. (2015). Biological role of anti-aging protein klotho. Journal of Lifestyle Medicine, 5(1), 1–6. https://doi.org/10.15280/jlm.2015.5.1.1
- Kim, S. S., Song, S. H., Kim, I. J., Lee, E. Y., Lee, S. M., Chung, C. H., Kwak, I. S., Lee, E. K., & Kim, Y. K. (2016). Decreased plasma α-klotho predict progression of nephropathy with type 2 diabetic patients. Journal of Diabetes and its Complications, 30(5), 887–892. https://doi.org/10.1016/j.jdiacomp.2016.03.006
- Kirkland, J. L., & Tchkonia, T. (2017). Cellular senescence: A translational perspective. EBioMedicine, 21, 21–28. https://doi.org/10.1016/j.ebiom.2017.04.013
- Kuilman, T., & Peeper, D. S. (2009). Senescence-messaging secretome: SMS-ing cellular stress. Nature Reviews Cancer, 9(2), 81–94. https://doi.org/10.1038/nrc2560
- Kuro, O. M. (2019). The klotho proteins in health and disease. Nature Reviews Nephrology, 15(1), 27–44. https://doi.org/10.1038/s41581-018-0078-3
- Kuro-o, M., Matsumura, Y., Aizawa, H., Kawaguchi, H., Suga, T., Utsugi, T., Ohyama, Y., Kurabayashi, M., Kaname, T., Kume, E., Iwasaki, H., Iida, A., Shiraki-Iida, T., Nishikawa, S., Nagai, R., & Nabeshima, Y. I. (1997). Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature, 390(6655), 45–51. https://doi.org/10.1038/36285
- Kurosu, H., Yamamoto, M., Clark, J. D., Pastor, J. V., Nandi, A., Gurnani, P., McGuinness, O., Chikuda, H., Yamaguchi, M., Kawaguchi, H., Shimomura, I., Takayama, Y., Herz, J., Kahn, C. R., Rosenblatt, K. P., & Kuro-o, M. (2005). Suppression of aging in mice by the hormone klotho. Science, 309(5742), 1829–1833. https://doi.org/10.1126/science.1112766
- López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The hallmarks of aging. Cell, 153(6), 1194–1217. https://doi.org/10.1016/j.cell.2013.05.039
- Lee, E. Y., Kim, S. S., Lee, J. S., Kim, I. J., Song, S. H., Cha, S. K., Park, K. S., Kang, J. S., & Chung, C. H. (2014). Soluble α-klotho as a novel biomarker in the early stage of nephropathy in patients with type 2 diabetes. PLoS One, 9(8), e102984. https://doi.org/10.1371/journal.pone.0102984
- Lee, K. J., Jang, Y. O., Cha, S.-K., Kim, M. Y., Park, K.-S., Eom, Y. W., & Baik, S. K. (2018). Expression of fibroblast growth factor 21 and β-Klotho regulates hepatic fibrosis through the nuclear factor-κB and c-Jun N-terminal kinase pathways. Gut Liver, 12, 449–456.
- Li, S. A., Watanabe, M., Yamada, H., Nagai, A., Kinuta, M., & Takei, K. (2004). Immunohistochemical localization of klotho protein in brain, kidney, and reproductive organs of mice. Cell Structure and Function, 29(4), 91–99. https://doi.org/10.1247/csf.29.91
- Li, S.-S., Sun, Q., Hua, M.-R., Suo, P., Chen, J.-R., Yu, X.-Y., & Zhao, Y.-Y. (2021). Targeting the Wnt/β-catenin signaling pathway as a potential therapeutic strategy in renal tubulointerstitial fibrosis. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.719880
- Liao, D., Xiang, D., Dang, R., Xu, P., Wang, J., Han, W., Fu, Y., Yao, D., Cao, L., & Jiang, P. (2018). Neuroprotective effects of dl-3-n-butylphthalide against doxorubicin-induced neuroinflammation, oxidative stress, endoplasmic reticulum stress, and behavioral changes. Oxidative Medicine and Cellular Longevity, 2018, 9125601. https://doi.org/10.1155/2018/9125601
- Lin, Y., Kuro-o, M., & Sun, Z. (2013). Genetic deficiency of anti-aging gene klotho exacerbates early nephropathy in STZ-induced diabetes in male mice. Endocrinology, 154(10), 3855–3863. https://doi.org/10.1210/en.2013-1053
- Liu, Q., Zhu, L.-J., Waaga-Gasser, A. M., Ding, Y., Cao, M., Jadhav, S. J., Kirollos, S., Shekar, P. S., Padera, R. F., Chang, Y.-C., Xu, X., Zeisberg, E. M., Charytan, D. M., & Hsiao, L.-L. (2019). The axis of local cardiac endogenous Klotho-TGF-β1-Wnt signaling mediates cardiac fibrosis in human. Journal of Molecular and Cellular Cardiology, 136, 113–124.
- Maltese, G., Fountoulakis, N., Siow, R. C., Gnudi, L., & Karalliedde, J. (2017). Perturbations of the anti-ageing hormone klotho in patients with type 1 diabetes and microalbuminuria. Diabetologia, 60(5), 911–914. https://doi.org/10.1007/s00125-017-4219-1
- Marchelek-Myśliwiec, M., Różański, J., Ogrodowczyk, A., Dutkiewicz, G., Dołęgowska, B., Sałata, D., Budkowska, M., Safranow, K., Stępniewska, J., Wiśniewska, M., & Ciechanowski, K. (2016). The association of the Klotho polymorphism rs9536314 with parameters of calcium-phosphate metabolism in patients on long-term hemodialysis. Renal Failure, 38(5), 776–780.
- Marengoni, A., Angleman, S., Melis, R., Mangialasche, F., Karp, A., Garmen, A., Meinow, B., & Fratiglioni, L. (2011). Aging with multimorbidity: A systematic review of the literature. Ageing Research Reviews, 10(4), 430–439. https://doi.org/10.1016/j.arr.2011.03.003
- Medici, D., Hay, E. D., & Olsen, B. R. (2008). Snail and Slug promote epithelial-mesenchymal transition through beta-catenin-T-cell factor-4-dependent expression of transforming growth factor-beta3. Molecular Biology of the Cell, 19(11), 4875–4887. https://doi.org/10.1091/mbc.e08-05-0506
- Mengel-From, J., Soerensen, M., Nygaard, M., McGue, M., Christensen, K., & Christiansen, L. (2015). Genetic variants in KLOTHO associate with cognitive function in the oldest old group. The Journals of Gerontology: Series A, 71(9), 1151–1159. https://doi.org/10.1093/gerona/glv163
- Miao, J., Liu, J., Niu, J., Zhang, Y., Shen, W., Luo, C., Liu, Y., Li, C., Li, H., Yang, P., Liu, Y., Hou, F. F., & Zhou, L. (2019). Wnt/β-catenin/RAS signaling mediates age-related renal fibrosis and is associated with mitochondrial dysfunction. Aging Cell, 18(5), e13004. https://doi.org/10.1111/acel.13004
- Mo, H., Ren, Q., Song, D., Xu, B., Zhou, D., Hong, X., Hou, F. F., Zhou, L., & Liu, Y. (2022). CXCR4 induces podocyte injury and proteinuria by activating β-catenin signaling. Theranostics, 12(2), 767–781.
- Mologni, L. (2018). Synergistic activity of dasatinib in combination with β-catenin blockade in colorectal cancer cells. European Journal of Cancer, 104, 231–232. https://doi.org/10.1016/j.ejca.2018.08.025
- Morales, A. I., Vicente-Sánchez, C., Jerkic, M., Santiago, J. M., Sánchez-González, P. D., Pérez-Barriocanal, F., & López-Novoa, J. M. (2006). Effect of quercetin on metallothionein, nitric oxide synthases and cyclooxygenase-2 expression on experimental chronic cadmium nephrotoxicity in rats. Toxicology and Applied Pharmacology, 210(1–2), 128–135. https://doi.org/10.1016/j.taap.2005.09.006
- Mostafavi-Pour, Z., Zal, F., Monabati, A., & Vessal, M. (2008). Protective effects of a combination of quercetin and vitamin E against cyclosporine A-induced oxidative stress and hepatotoxicity in rats. Hepatology Research, 38(4), 385–392. https://doi.org/10.1111/j.1872-034X.2007.00273.x
- Muñoz-Castañeda, J. R., Herencia, C., Pendón-Ruiz de Mier, M. V., Rodriguez-Ortiz, M. E., Diaz-Tocados, J. M., Vergara, N., Martínez-Moreno, J. M., Salmerón, M. D., Richards, W. G., Felsenfeld, A., Kuro-O, M., Almadén, Y., & Rodríguez, M. (2017). Differential regulation of renal klotho and FGFR1 in normal and uremic rats. The FASEB Journal, 31(9), 3858–3867. https://doi.org/10.1096/fj.201700006R
- Muñoz-Castañeda, J. R., Rodelo-Haad, C., Pendon-Ruiz de Mier, M. V., Martin-Malo, A., Santamaria, R., & Rodriguez, M. (2020). Klotho/FGF23 and Wnt signaling as important players in the comorbidities associated with chronic kidney disease. Toxins (Basel), 12(3), 185.
- Muñoz-Espín, D., & Serrano, M. (2014). Cellular senescence: From physiology to pathology. Nature Reviews Molecular Cell Biology, 15(7), 482–496. https://doi.org/10.1038/nrm3823
- Nagai, T., Yamada, K., Kim, H. C., Kim, Y. S., Noda, Y., Imura, A., Nabeshima, T., & Nabeshima, T. (2003). Cognition impairment in the genetic model of aging klotho gene mutant mice: A role of oxidative stress. The FASEB Journal, 17(1), 50–52. https://doi.org/10.1096/fj.02-0448fje
- Nakamura, T., Matsushima, M., Hayashi, Y., Shibasaki, M., Imaizumi, K., Hashimoto, N., Shimokata, K., Hasegawa, Y., & Kawabe, T. (2011). Attenuation of transforming growth factor-β-stimulated collagen production in fibroblasts by quercetin-induced heme oxygenase-1. American Journal of Respiratory Cell and Molecular Biology, 44(5), 614–620. https://doi.org/10.1165/rcmb.2010-0338OC
- Nazarian, A., Hasankhani, M., Aghajany-Nasab, M., & Monfared, A. (2017). Association between klotho gene polymorphism and markers of bone metabolism in patients receiving maintenance hemodialysis in Iran. Iranian Journal of Kidney Diseases, 11(6), 456–460.
- Nie, F., Wu, D., Du, H., Yang, X., Yang, M., Pang, X., & Xu, Y. (2017). Serum klotho protein levels and their correlations with the progression of type 2 diabetes mellitus. Journal of Diabetes and its Complications, 31(3), 594–598. https://doi.org/10.1016/j.jdiacomp.2016.11.008
- Oh, H. J., Nam, B. Y., Wu, M., Kim, S., Park, J., Kang, S., Park, J. T., Yoo, T. H., Kang, S. W., & Han, S. H. (2018). Klotho plays a protective role against glomerular hypertrophy in a cell cycle-dependent manner in diabetic nephropathy. American Journal of Physiology. Renal Physiology, 315(4), F791–f805. https://doi.org/10.1152/ajprenal.00462.2017
- Olejnik, A., Franczak, A., Krzywonos-Zawadzka, A., Kałużna-Oleksy, M., & Bil-Lula, I. (2018). The biological role of klotho protein in the development of cardiovascular diseases. BioMed Research International, 2018, 5171945. https://doi.org/10.1155/2018/5171945
- Ozdem, S., Yılmaz, V. T., Ozdem, S. S., Donmez, L., Cetinkaya, R., Suleymanlar, G., & Ersoy, F. F. (2015). Is Klotho F352V polymorphism the missing piece of the bone loss puzzle in renal transplant recipients? Pharmacology, 95(5-6), 271–278. https://doi.org/10.1159/000398812
- Paroni, G., Seripa, D., Fontana, A., D’Onofrio, G., Gravina, C., Urbano, M., Addante, F., Lozupone, M., Copetti, M., Pilotto, A., Greco, A., & Panza, F. (2017). Klotho gene and selective serotonin reuptake inhibitors: Response to treatment in late-life major depressive disorder. Molecular Neurobiology, 54(2), 1340–1351. https://doi.org/10.1007/s12035-016-9711-y
- Pérez-Castro, A., Martín-Núñez, E., Donate-Correa, J. J., Ferri, C. M., Tagua, V. G., González-Luis, A., Delgado-Molinos, A., López-Castillo, Á., Rodríguez-Ramos, S., Cerro-López, P., & Navarro-González, J. F. (2021). Epigenetic regulation of KLOTHO in peripheral blood circulating cells is associated with soluble protein serum levels in cardiovascular disease. Atherosclerosis, 331, e223. https://doi.org/10.1016/j.atherosclerosis.2021.06.684
10.1016/j.atherosclerosis.2021.06.684 Google Scholar
- Perkovic, V., Jardine, M. J., Neal, B., Bompoint, S., Heerspink, H. J. L., Charytan, D. M., Edwards, R., Agarwal, R., Bakris, G., Bull, S., Cannon, C. P., Mahaffey, K. W., & CREDENCE Trial Investigators. (2019). Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. The New England Journal of Medicine, 380(24), 2295–2306. https://doi.org/10.1056/NEJMoa1811744
- Phan, T. T., Lim, I. J., Sun, L., Chan, S. Y., Bay, B. H., Tan, E. K., & Lee, S. T. (2003). Quercetin inhibits fibronectin production by keloid-derived fibroblasts. Implication for the treatment of excessive scars. Journal of Dermatological Science, 33(3), 192–194. https://doi.org/10.1016/j.jdermsci.2003.08.008
- Porter, T., Burnham, S. C., Milicic, L., Savage, G., Maruff, P., Lim, Y. Y., Ames, D., Masters, C. L., Martins, R. N., Rainey-Smith, S., Rowe, C. C., Salvado, O., Groth, D., Verdile, G., Villemagne, V. L., & Laws, S. M. (2019). Klotho allele status is not associated with Aβ and APOE ε4-related cognitive decline in preclinical Alzheimer's disease. Neurobiology of Aging, 76, 162–165. Epub 2019/02/05. https://doi.org/10.1016/j.neurobiolaging.2018.12.014 PubMed PMID: 30716541.
- Pratheeshkumar, P., Budhraja, A., Son, Y. O., Wang, X., Zhang, Z., Ding, S., Wang, L., Hitron, A., Lee, J. C., Xu, M., Chen, G., Luo, J., & Shi, X. (2012). Quercetin inhibits angiogenesis mediated human prostate tumor growth by targeting VEGFR-2 regulated AKT/mTOR/P70S6K signaling pathways. PLoS One, 7(10), e47516. https://doi.org/10.1371/journal.pone.0047516
- Ren, J., Li, J., Liu, X., Feng, Y., Gui, Y., Yang, J., He, W., & Dai, C. (2016). Quercetin inhibits fibroblast activation and kidney fibrosis involving the suppression of mammalian target of rapamycin and β-catenin signaling. Scientific Reports, 6(1), 23968. https://doi.org/10.1038/srep23968
- Rhee, E. J., Oh, K. W., Lee, W. Y., Kim, S. Y., Jung, C. H., Kim, B. J., Sung, K. C., Kim, B. S., Kang, J. H., Lee, M. H., Kim, S. W., & Park, J. R. (2006). The differential effects of age on the association of KLOTHO gene polymorphisms with coronary artery disease. Metabolism, 55(10), 1344–1351.
- Riancho, J. A., Valero, C., Hernández, J. L., Ortiz, F., Zarrabeitia, A., Alonso, M. A., Peña, N., Pascual, M. A., González-Macías, J., & Zarrabeitia, M. T. (2007). Association of the F352V variant of the Klotho gene with bone mineral density. Biogerontology, 8(2), 121–127. https://doi.org/10.1007/s10522-006-9039-5
- Sanz, B., Arrieta, H., Rezola-Pardo, C., Fernández-Atutxa, A., Garin-Balerdi, J., Arizaga, N., Rodriguez-Larrad, A., & Irazusta, J. (2021). Low serum klotho concentration is associated with worse cognition, psychological components of frailty, dependence, and falls in nursing home residents. Scientific Reports, 11(1), 9098. https://doi.org/10.1038/s41598-021-88455-6
- Schunk, S. J., Floege, J., Fliser, D., & Speer, T. (2021). WNT-β-catenin signalling—A versatile player in kidney injury and repair. Nature Reviews Nephrology, 17(3), 172–184. https://doi.org/10.1038/s41581-020-00343-w
- Sferrazza, G., Corti, M., Brusotti, G., Pierimarchi, P., Temporini, C., Serafino, A., & Calleri, E. (2020). Nature-derived compounds modulating Wnt/β-catenin pathway: A preventive and therapeutic opportunity in neoplastic diseases. Acta Pharmaceutica Sinica B, 10(10), 1814–1834. https://doi.org/10.1016/j.apsb.2019.12.019
- Shakeri, H., Lemmens, K., Gevaert, A. B., De Meyer, G. R. Y., & Segers, V. F. M. (2018). Cellular senescence links aging and diabetes in cardiovascular disease. American Journal of Physiology Heart and Circulatory Physiology, 315(3), H448–h462. https://doi.org/10.1152/ajpheart.00287.2018
- Shardell, M., Semba, R. D., Kalyani, R. R., Bandinelli, S., Prather, A. A., Chia, C. W., & Ferrucci, L. (2019). Plasma klotho and frailty in older adults: Findings from the InCHIANTI study. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 74(7), 1052–1057. https://doi.org/10.1093/gerona/glx202
- Shimada, T., Takeshita, Y., Murohara, T., Sasaki, K., Egami, K., Shintani, S., Katsuda, Y., Ikeda, H., Nabeshima, Y., & Imaizumi, T. (2004). Angiogenesis and vasculogenesis are impaired in the precocious-aging klotho mouse. Circulation, 110(9), 1148–1155. https://doi.org/10.1161/01.Cir.0000139854.74847.99
- Singh, Y., Gupta, G., Shrivastava, B., Dahiya, R., Tiwari, J., Ashwathanarayana, M., Sharma, R. K., Agrawal, M., Mishra, A., & Dua, K. (2017). Calcitonin gene-related peptide (CGRP): A novel target for Alzheimer's disease. CNS Neuroscience & Therapeutics, 23(6), 457–461. https://doi.org/10.1111/cns.12696
- Surapaneni, K. M., Vishnu Priya, V., & Mallika, J. (2015). Effect of pioglitazone, quercetin, and hydroxy citric acid on vascular endothelial growth factor messenger RNA (VEGF mRNA) expression in experimentally induced nonalcoholic steatohepatitis (NASH). Turkish Journal Of Medical Sciences, 45(3), 542–546. https://doi.org/10.3906/sag-1404-136
- Takenaka, T., Kobori, H., Miyazaki, T., Suzuki, H., Nishiyama, A., Ishii, N., Yamashita, M., & Hayashi, M. (2019). Klotho protein supplementation reduces blood pressure and renal hypertrophy in db/db mice, a model of type 2 diabetes. Acta Physiologica (Oxford, England), 225(2), e13190. https://doi.org/10.1111/apha.13190
- Tang, D., Kang, R., Xiao, W., Zhang, H., Lotze, M. T., Wang, H., & Xiao, X. (2009). Quercetin prevents LPS-induced high-mobility group box 1 release and proinflammatory function. American Journal of Respiratory Cell and Molecular Biology, 41(6), 651–660. https://doi.org/10.1165/rcmb.2008-0119OC
- Taslidere, E., Esrefoglu, M., Elbe, H., Cetin, A., & Ates, B. (2014). Protective effects of melatonin and quercetin on experimental lung injury induced by carbon tetrachloride in rats. Experimental Lung Research, 40(2), 59–65. https://doi.org/10.3109/01902148.2013.866181
- Tchkonia, T., & Kirkland, J. L. (2018). Aging, cell senescence, and chronic disease: Emerging therapeutic strategies. JAMA, 320(13), 1319–1320. https://doi.org/10.1001/jama.2018.12440
- Tchkonia, T., Zhu, Y., van Deursen, J., Campisi, J., & Kirkland, J. L. (2013). Cellular senescence and the senescent secretory phenotype: Therapeutic opportunities. The Journal of Clinical Investigation, 123(3), 966–972. https://doi.org/10.1172/jci64098
- Temraz, S., Mukherji, D., & Shamseddine, A. (2013). Potential targets for colorectal cancer prevention. International Journal of Molecular Sciences, 14(9), 17279–17303.
- Torres, P. U., Prié, D., Molina-Blétry, V., Beck, L., Silve, C., & Friedlander, G. (2007). Klotho: An antiaging protein involved in mineral and vitamin D metabolism. Kidney International, 71(8), 730–737. https://doi.org/10.1038/sj.ki.5002163
- Tsezou, A., Furuichi, T., Satra, M., Makrythanasis, P., Ikegawa, S., & Malizos, K. N. (2008). Association of KLOTHO gene polymorphisms with knee osteoarthritis in Greek population. Journal of Orthopaedic Research, 26(11), 1466–1470. https://doi.org/10.1002/jor.20634
- Valdivielso, J. M., Bozic, M., Galimudi, R. K., Bermudez-López, M., Navarro-González, J. F., Fernández, E., & Betriu, À. (2019). Association of the rs495392 Klotho polymorphism with atheromatosis progression in patients with chronic kidney disease. Nephrology Dialysis Transplantation, 34(12), 2079–2088.
- Vo, H. T., Laszczyk, A. M., & King, G. D. (2018). Klotho, the key to healthy brain aging? Brain Plasticity, 3(2), 183–194. https://doi.org/10.3233/bpl-170057
- Wang, B., Wang, S., Ding, M., Lu, H., Wu, H., & Li, Y. (2022). Quercetin regulates calcium and phosphorus metabolism through the Wnt signaling pathway in broilers. Frontiers in Veterinary Science, 8, 786519. https://doi.org/10.3389/fvets.2021.786519
- Wang, K., Liu, R., Li, J., Mao, J., Lei, Y., Wu, J., Zeng, J., Zhang, T., Wu, H., Chen, L., Huang, C., & Wei, Y. (2011). Quercetin induces protective autophagy in gastric cancer cells: Involvement of Akt-mTOR- and hypoxia-induced factor 1α-mediated signaling. Autophagy, 7(9), 966–978. https://doi.org/10.4161/auto.7.9.15863
- Xu, M., Pirtskhalava, T., Farr, J. N., Weigand, B. M., Palmer, A. K., Weivoda, M. M., Inman, C. L., Ogrodnik, M. B., Hachfeld, C. M., Fraser, D. G., Onken, J. L., Johnson, K. O., Verzosa, G. C., Langhi, L. G. P., Weigl, M., Giorgadze, N., LeBrasseur, N., Miller, J. D., Jurk, D., … Kirkland, J. L. (2018). Senolytics improve physical function and increase lifespan in old age. Nature Medicine, 24(8), 1246–1256. https://doi.org/10.1038/s41591-018-0092-9
- Xu, Y., & Sun, Z. (2015). Molecular basis of klotho: From gene to function in aging. Endocrine Reviews, 36(2), 174–193. https://doi.org/10.1210/er.2013-1079
- Yokoyama, N., & Malbon, C. C. (2009). Dishevelled-2 docks and activates Src in a Wnt-dependent manner. Journal of Cell Science, 122(24), 4439–4451. https://doi.org/10.1242/jcs.051847
- Zhang, F., Zhai, G., Kato, B. S., Hart, D. J., Hunter, D., Spector, T. D., & Ahmadi, K. R. (2007). Association between KLOTHO gene and hand osteoarthritis in a female Caucasian population. Osteoarthritis and Cartilage, 15(6), 624–629. https://doi.org/10.1016/j.joca.2006.12.002
- Zhang, L., Long, J., Jiang, W., Shi, Y., He, X., Zhou, Z., Li, Y., Yeung, R. O., Wang, J., Matsushita, K., Coresh, J., Zhou, M.-H., & Wang, H. (2016). Trends in chronic kidney disease in China. The New England Journal of Medicine, 375(9), 905–906. https://doi.org/10.1056/NEJMc1602469
- Zhang, L., Pitcher, L. E., Prahalad, V., Niedernhofer, L. J., & Robbins, P. D. (2021). Recent advances in the discovery of senolytics. Mechanisms of Ageing and Development, 200, 111587. https://doi.org/10.1016/j.mad.2021.111587
- Zhao, Y., Banerjee, S., Dey, N., LeJeune, W. S., Sarkar, P. S., Brobey, R., Rosenblatt, K. P., Tilton, R. G., & Choudhary, S. (2011). Klotho depletion contributes to increased inflammation in kidney of the db/db mouse model of diabetes via RelA (serine)536 phosphorylation. Diabetes, 60(7), 1907–1916. https://doi.org/10.2337/db10-1262
- Zhou, L., Chen, X., Lu, M., Wu, Q., Yuan, Q., Hu, C., Miao, J., Zhang, Y., Li, H., Hou, F. F., Nie, J., & Liu, Y. (2019). Wnt/β-catenin links oxidative stress to podocyte injury and proteinuria. Kidney International, 95(4), 830–845.
- Zhou, L., Li, Y., Zhou, D., Tan, R. J., & Liu, Y. (2013). Loss of klotho contributes to kidney injury by derepression of Wnt/β-catenin signaling. Journal of the American Society of Nephrology, 24(5), 771–785. https://doi.org/10.1681/asn.2012080865
- Zhou, L., & Liu, Y. (2015). Wnt/β-catenin signalling and podocyte dysfunction in proteinuric kidney disease. Nature Reviews. Nephrology, 11(9), 535–545.
- Zhu, C., Liang, Q., Liu, Y., Kong, D., Zhang, J., Wang, H., Wang, K., & Guo, Z. (2019). Kidney injury in response to crystallization of calcium oxalate leads to rearrangement of the intrarenal T cell receptor delta immune repertoire. Journal of Translational Medicine, 17(1), 278.
- Zhu, Y., Prata, L. G. P. L., Gerdes, E. O. W., Netto, J. M. E., Pirtskhalava, T., Giorgadze, N., Tripathi, U., Inman, C. L., Johnson, K. O., Xue, A., Palmer, A. K., Chen, T., Schaefer, K., Justice, J. N., Nambiar, A. M., Musi, N., Kritchevsky, S. B., Chen, J., Khosla, S., … Kirkland, J. L. (2022). Orally-active, clinically-translatable senolytics restore α-Klotho in mice and humans. eBioMedicine, 77. https://doi.org/10.1016/j.ebiom.2022.103912
- Zhu, Y., Tchkonia, T., Pirtskhalava, T., Gower, A. C., Ding, H., Giorgadze, N., Palmer, A. K., Ikeno, Y., Hubbard, G. B., Lenburg, M., O'Hara, S. P., NF, L. R., Miller, J. D., Roos, C. M., Verzosa, G. C., NK, L. B., Wren, J. D., Farr, J. N., Khosla, S., … Kirkland, J. L. (2015). The Achilles' heel of senescent cells: From transcriptome to senolytic drugs. Aging Cell, 14(4), 644–658. https://doi.org/10.1111/acel.12344
- Zhuang, X., Sun, X., Zhou, H., Zhang, S., Zhong, X., Xu, X., Guo, Y., Xiong, Z., Liu, M., Lin, Y., Zhang, M., & Liao, X. (2021). Klotho attenuated doxorubicin-induced cardiomyopathy by alleviating dynamin-related protein 1—Mediated mitochondrial dysfunction. Mechanisms of Ageing and Development, 195, 111442. https://doi.org/10.1016/j.mad.2021.111442