Elucidation of active ingredients and mechanism of action of hawthorn in the prevention and treatment of atherosclerosis
Huan Li
College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
Search for more papers by this authorLei Gao
College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
Search for more papers by this authorHuili Shao
College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
Search for more papers by this authorBingqian Li
College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
Search for more papers by this authorChao Zhang
College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
Search for more papers by this authorCorresponding Author
Huagang Sheng
College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
Correspondence
Huagang Sheng and Liqiao Zhu, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
Email: [email protected] (H. S.); and [email protected] (L. Z.)
Search for more papers by this authorCorresponding Author
Liqiao Zhu
College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
Correspondence
Huagang Sheng and Liqiao Zhu, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
Email: [email protected] (H. S.); and [email protected] (L. Z.)
Search for more papers by this authorHuan Li
College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
Search for more papers by this authorLei Gao
College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
Search for more papers by this authorHuili Shao
College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
Search for more papers by this authorBingqian Li
College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
Search for more papers by this authorChao Zhang
College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
Search for more papers by this authorCorresponding Author
Huagang Sheng
College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
Correspondence
Huagang Sheng and Liqiao Zhu, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
Email: [email protected] (H. S.); and [email protected] (L. Z.)
Search for more papers by this authorCorresponding Author
Liqiao Zhu
College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
Correspondence
Huagang Sheng and Liqiao Zhu, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
Email: [email protected] (H. S.); and [email protected] (L. Z.)
Search for more papers by this authorAbstract
Hawthorn (HT), a functional food and medicinal herb for centuries in China, has potential preventive and therapeutic effects on atherosclerosis (AS). However, the mechanisms and active ingredients of HT in the prevention and treatment of AS are unclear. This study aimed to reveal active components and mechanism of HT in the prevention and treatment of AS using UHPLC-Q-Exactive Orbitrap MS and network pharmacology. A total of 50 compounds were identified by UHPLC-Q-Exactive Orbitrap MS. Six core targets and six active compounds were obtained by network pharmacology. Apigenin, luteolin, chrysin, quercetin, oleanic acid, and corosolic acid were the active components in the prevention and treatment of AS, and core targets included SRC, HSP90AA1, MAPK3, EGFR, HRAS, and AKT1. The key signaling pathways involved are MAPK, HIF-1, NF-kappa B, PI3K-Akt, TNF, Rap1, Ras, and VEGF signaling pathways. Further molecular docking results indicated that the six active compounds had strong hydrogen bonding ability with the six core targets. On the molecular level, HT may regulate AS by controlling cell survival and proliferation, reducing the levels of enzymes HMG-CoA reductase and lipoprotein lipase and inhibiting inflammatory response.
Practical applications
HT can serve as “medicine-food homology” for dietary supplement and exert potential preventive and therapeutic effects on AS. However, the mechanisms of HT in the prevention and treatment of AS are unclear. This study describes a rapid method of detecting and identifying the components and mechanism of HT based on LC–MS and network pharmacology, which provides a theoretical and scientific support for further application of HT and guidance for the research of other herbal medicines.
CONFLICT OF INTEREST
The authors declare there are no conflicts of interest.
Open Research
DATA AVAILABILITY STATEMENT
Data available on request from the authors.
REFERENCES
- Ali, A. H., Younis, N., Abdallah, R., Shaer, F., Dakroub, A., Ayoub, M. A., Iratni, R., Yassine, H. M., Zibara, K., Orekhov, A., El-Yazbi, A. F., & Eid, A. H. (2021). Lipid-lowering therapies for atherosclerosis: Statins, fibrates, ezetimibe and PCSK9 monoclonal antibodies. Current Medicinal Chemistry, 28(36), 7427–7445. https://doi.org/10.2174/0929867328666210222092628
- Amberger, J. S., Bocchini, C. A., Schiettecatte, F., Scott, A. F., & Hamosh, A. (2015). OMIM.org: Online mendelian inheritance in man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Research, 43(D1), D789–D798. https://doi.org/10.1093/nar/gku1205
- Başoğlu, F., Ulusoy-Güzeldemirci, N., Akalın-Çiftçi, G., Çetinkaya, S., & Ece, A. (2021). Novel imidazo[2,1-b]thiazole-based anticancer agents as potential focal adhesion kinase inhibitors: Synthesis, in silico and in vitro evaluation. Chemical Biology & Drug Design, 98(2), 270–282. https://doi.org/10.1111/cbdd.13896
- Basu, A., Das, A. S., Majumder, M., & Mukhopadhyay, R. (2016). Antiatherogenic roles of dietary flavonoids chrysin, quercetin, and luteolin. Journal of Cardiovascular Pharmacology, 68(1), 89–96. https://doi.org/10.1097/fjc.0000000000000380
- Buus, N. H., Hansson, N. C., Rodriguez-Rodriguez, R., Stankevicius, E., Andersen, M. R., & Simonsen, U. (2011). Antiatherogenic effects of oleanolic acid in apolipoprotein E knockout mice. European Journal of Pharmacology, 670(2–3), 519–526. https://doi.org/10.1016/j.ejphar.2011.09.037
- Charifson, P. S., Shewchuk, L. M., Rocque, W., Hummel, C. W., Jordan, S. R., Mohr, C., Pacofsky, G. J., Peel, M. R., Rodriguez, M., Sternbach, D. D., & Consler, T. G. (1997). Peptide ligands of pp60(c-src) SH2 domains: A thermodynamic and structural study. Biochemistry, 36(21), 6283–6293. https://doi.org/10.1021/bi970019n
- Chen, H., Yang, J., Zhang, Q., Chen, L. H., & Wang, Q. (2012). Corosolic acid ameliorates atherosclerosis in apolipoprotein E-deficient mice by regulating the nuclear factor-κB signaling pathway and inhibiting monocyte chemoattractant protein-1 expression. Circulation Journal, 76(4), 995–1003. https://doi.org/10.1253/circj.cj-11-0344
- Chen, L., Zheng, S. Y., Yang, C. Q., Ma, B. M., & Jiang, D. (2019). MiR-155-5p inhibits the proliferation and migration of VSMCs and HUVECs in atherosclerosis by targeting AKT1. European Review for Medical and Pharmacological Sciences, 23(5), 2223–2233. https://doi.org/10.26355/eurrev_201903_17270
- Chinese Pharmacopoeia Commission. (2020). Pharmacopoeia of the People's Repubulic of China. China Medical Science Press.
- Croft, M., Benedict, C. A., & Ware, C. F. (2013). Clinical targeting of the TNF and TNFR superfamilies. Nature Reviews. Drug Discovery, 12(2), 147–168. https://doi.org/10.1038/nrd3930
- Dennis, G., Jr., Sherman, B. T., Hosack, D. A., Yang, J., Gao, W., Lane, H. C., & Lempicki, R. A. (2003). DAVID: Database for annotation, visualization, and integrated discovery. Genome Biology, 4(5), P3.
- Ding, X., Zheng, L., Yang, B., Wang, X., & Ying, Y. (2019). Luteolin attenuates atherosclerosis via modulating signal transducer and activator of transcription 3-mediated inflammatory response. Drug Design, Development and Therapy, 13, 3899–3911. https://doi.org/10.2147/dddt.S207185
- Dong, P., Pan, L., Zhang, X., Zhang, W., Wang, X., Jiang, M., Chen, Y., Duan, Y., Wu, H., Xu, Y., Zhang, P., & Zhu, Y. (2017). Hawthorn (Crataegus pinnatifida Bunge) leave flavonoids attenuate atherosclerosis development in apoE knock-out mice. Journal of Ethnopharmacology, 198, 479–488. https://doi.org/10.1016/j.jep.2017.01.040
- Du, X., Patel, A., Anderson, C. S., Dong, J., & Ma, C. (2019). Epidemiology of cardiovascular disease in China and opportunities for improvement: JACC international. Journal of the American College of Cardiology, 73(24), 3135–3147. https://doi.org/10.1016/j.jacc.2019.04.036
- Ece, A., & Sevin, F. (2013). The discovery of potential cyclin a/CDK2 inhibitors: A combination of 3D QSAR pharmacophore modeling, virtual screening, and molecular docking studies. Medicinal Chemistry Research, 22(12), 5832–5843. https://doi.org/10.1007/s00044-013-0571-y
- Fang, S., Dong, L., Liu, L., Guo, J., Zhao, L., Zhang, J., Bu, D., Liu, X., Huo, P., Cao, W., Dong, Q., Wu, J. R., Zeng, X., Wu, Y., & Zhao, Y. (2021). HERB: A high-throughput experiment- and reference-guided database of traditional Chinese medicine. Nucleic Acids Research, 49(D1), D1197–D1206. https://doi.org/10.1093/nar/gkaa1063
- Ganzera, M., & Sturm, S. (2018). Recent advances on HPLC/MS in medicinal plant analysis-An update covering 2011-2016. Journal of Pharmaceutical and Biomedical Analysis, 147, 211–233. https://doi.org/10.1016/j.jpba.2017.07.038
- Gfeller, D., Grosdidier, A., Wirth, M., Daina, A., Michielin, O., & Zoete, V. (2014). SwissTargetPrediction: A web server for target prediction of bioactive small molecules. Nucleic Acids Research, 42(W1), W32–W38. https://doi.org/10.1093/nar/gku293
- He, Z., Kwek, E., Hao, W., Zhu, H., Liu, J., Ma, K. Y., & Chen, Z. Y. (2021). Hawthorn fruit extract reduced trimethylamine-N-oxide (TMAO)-exacerbated atherogenesis in mice via anti-inflammation and anti-oxidation. Nutrition & Metabolism (London), 18(1), 6. https://doi.org/10.1186/s12986-020-00535-y
- Hu, S., Liu, Y., You, T., & Zhu, L. (2018). Semaphorin 7A promotes VEGFA/VEGFR2-mediated angiogenesis and intraplaque neovascularization in ApoE(−/−) mice. Frontiers in Physiology, 9, 1718. https://doi.org/10.3389/fphys.2018.01718
- Huang, X., Liu, G., Guo, J., & Su, Z. (2018). The PI3K/AKT pathway in obesity and type 2 diabetes. International Journal of Biological Sciences, 14(11), 1483–1496. https://doi.org/10.7150/ijbs.27173
- Jia, Q., Cao, H., Shen, D., Li, S., Yan, L., Chen, C., Xing, S., & Dou, F. (2019). Quercetin protects against atherosclerosis by regulating the expression of PCSK9, CD36, PPARγ, LXRα and ABCA1. International Journal of Molecular Medicine, 44(3), 893–902. https://doi.org/10.3892/ijmm.2019.4263
- Juźwiak, S., Wójcicki, J., Mokrzycki, K., Marchlewicz, M., Białecka, M., Wenda-Rózewicka, L., Gawrońska-Szklarz, B., & Droździk, M. (2005). Effect of quercetin on experimental hyperlipidemia and atherosclerosis in rabbits. Pharmacological Reports, 57(5), 604–609.
- Kim, J. Y., & Shim, S. H. (2019). Medicinal herbs effective against atherosclerosis: Classification according to mechanism of action. Biomolecules & Therapeutics, 27(3), 254–264. https://doi.org/10.4062/biomolther.2018.231
- Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2019). PubChem 2019 update: Improved access to chemical data. Nucleic Acids Research, 47(D1), D1102–D1109. https://doi.org/10.1093/nar/gky1033
- Kinoshita, T., Yoshida, I., Nakae, S., Okita, K., Gouda, M., Matsubara, M., Yokota, K., Ishiguro, H., & Tada, T. (2008). Crystal structure of human mono-phosphorylated ERK1 at Tyr204. Biochemical and Biophysical Research Communications, 377(4), 1123–1127. https://doi.org/10.1016/j.bbrc.2008.10.127
- Lara-Guzman, O. J., Tabares-Guevara, J. H., Leon-Varela, Y. M., Álvarez, R. M., Roldan, M., Sierra, J. A., Londono-Londono, J. A., & Ramirez-Pineda, J. R. (2012). Proatherogenic macrophage activities are targeted by the flavonoid quercetin. The Journal of Pharmacology and Experimental Therapeutics, 343(2), 296–306. https://doi.org/10.1124/jpet.112.196147
- Lazaro, I., Oguiza, A., Recio, C., Lopez-Sanz, L., Bernal, S., Egido, J., & Gomez-Guerrero, C. (2017). Interplay between HSP90 and Nrf2 pathways in diabetes-associated atherosclerosis. Clínica e Investigación en Arteriosclerosis, 29(2), 51–59. https://doi.org/10.1016/j.arteri.2016.10.003
- Lee, A. Y., Lee, J. Y., & Chun, J. M. (2020). Exploring the mechanism of Gyejibokryeong-hwan against atherosclerosis using network pharmacology and molecular docking. Plants (Basel), 9(12), 1750. https://doi.org/10.3390/plants9121750
- Liang, Y., Zhao, W., Wang, C., Wang, Z., Wang, Z., & Zhang, J. (2018). A comprehensive screening and identification of Genistin metabolites in rats based on multiple metabolite templates combined with UHPLC-HRMS analysis. Molecules, 23(8), 1862. https://doi.org/10.3390/molecules23081862
- Lin, C. M., Wang, B. W., Pan, C. M., Fang, W. J., Chua, S. K., Cheng, W. P., & Shyu, K. G. (2021). Chrysin boosts KLF2 expression through suppression of endothelial cell-derived exosomal microRNA-92a in the model of atheroprotection. European Journal of Nutrition, 60(8), 4345–4355. https://doi.org/10.1007/s00394-021-02593-1
- Linton, M. F., Babaev, V. R., Huang, J., Linton, E. F., Tao, H., & Yancey, P. G. (2016). Macrophage apoptosis and efferocytosis in the pathogenesis of atherosclerosis. Circulation Journal, 80(11), 2259–2268. https://doi.org/10.1253/circj.CJ-16-0924
- Liu, L. T., Zheng, G. J., Zhang, W. G., Guo, G., & Wu, M. (2014). Clinical study on treatment of carotid atherosclerosis with extraction of polygoni cuspidati rhizoma et radix and crataegi fructus: A randomized controlled trial. Zhongguo Zhong Yao Za Zhi, 39(6), 1115–1119.
- Luo, T. T., Lu, Y., Yan, S. K., Xiao, X., Rong, X. L., & Guo, J. (2020). Network pharmacology in research of Chinese medicine formula: Methodology, application and prospective. Chinese Journal of Integrative Medicine, 26(1), 72–80. https://doi.org/10.1007/s11655-019-3064-0
- Machiyama, H., Yamaguchi, T., Sawada, Y., Watanabe, T. M., & Fujita, H. (2015). SH3 domain of c-Src governs its dynamics at focal adhesions and the cell membrane. The FEBS Journal, 282(20), 4034–4055. https://doi.org/10.1111/febs.13404
- Margarit, S. M., Sondermann, H., Hall, B. E., Nagar, B., Hoelz, A., Pirruccello, M., Bar-Sagi, D., & Kuriyan, J. (2003). Structural evidence for feedback activation by Ras.GTP of the Ras-specific nucleotide exchange factor SOS. Cell, 112(5), 685–695. https://doi.org/10.1016/s0092-8674(03)00149-1
- Mascarenhas, N. M., & Ghoshal, N. (2008). An efficient tool for identifying inhibitors based on 3D-QSAR and docking using feature-shape pharmacophore of biologically active conformation--A case study with CDK2/cyclinA. European Journal of Medicinal Chemistry, 43(12), 2807–2818. https://doi.org/10.1016/j.ejmech.2007.10.016
- Mylonis, I., Simos, G., & Paraskeva, E. (2019). Hypoxia-inducible factors and the regulation of lipid metabolism. Cell, 8(3), 214. https://doi.org/10.3390/cells8030214
- Navarro-Hoyos, M., Arnáez-Serrano, E., Quesada-Mora, S., Azofeifa-Cordero, G., Wilhelm-Romero, K., Quirós-Fallas, M. I., Alvarado-Corella, D., Vargas-Huertas, F., & Sánchez-Kopper, A. (2021). HRMS characterization, antioxidant and cytotoxic activities of polyphenols in Malus domestica cultivars from Costa Rica. Molecules, 26(23), 7367. https://doi.org/10.3390/molecules26237367
- Obermann, W. M., Sondermann, H., Russo, A. A., Pavletich, N. P., & Hartl, F. U. (1998). In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis. The Journal of Cell Biology, 143(4), 901–910. https://doi.org/10.1083/jcb.143.4.901
- Ogiso, H., Ishitani, R., Nureki, O., Fukai, S., Yamanaka, M., Kim, J. H., Saito, K., Sakamoto, A., Inoue, M., Shirouzu, M., & Yokoyama, S. (2002). Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell, 110(6), 775–787. https://doi.org/10.1016/s0092-8674(02)00963-7
- Pan, Y., Zhou, F., Song, Z., Huang, H., Chen, Y., Shen, Y., Jia, Y., & Chen, J. (2018). Oleanolic acid protects against pathogenesis of atherosclerosis, possibly via FXR-mediated angiotensin (ang)-(1-7) upregulation. Biomedicine & Pharmacotherapy, 97, 1694–1700. https://doi.org/10.1016/j.biopha.2017.11.151
- Pei, H., Wu, S., Zheng, L., Wang, H., & Zhang, X. (2022). Identification of the active compounds and their mechanisms of medicinal and edible Shanzha based on network pharmacology and molecular docking. Journal of Food Biochemistry, 46(1), e14020. https://doi.org/10.1111/jfbc.14020
- Qu, Y. J., Zhen, R. R., Zhang, L. M., Gu, C., Chen, L., Peng, X., Hu, B., & An, H. M. (2020). Uncovering the active compounds and effective mechanisms of the dried mature sarcocarp of Cornus officinalis Sieb. Et Zucc. For the treatment of Alzheimer's disease through a network pharmacology approach. BMC Complementary Medicine and Therapies, 20(1), 157. https://doi.org/10.1186/s12906-020-02951-2
- Ru, J., Li, P., Wang, J., Zhou, W., Li, B., Huang, C., Li, P., Guo, Z., Tao, W., Yang, Y., Xu, X., Li, Y., Wang, Y., & Yang, L. (2014). TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. Journal of Cheminformatics, 6, 13. https://doi.org/10.1186/1758-2946-6-13
- Stelzer, G., Rosen, N., Plaschkes, I., Zimmerman, S., Twik, M., Fishilevich, S., Stein, T. I., Nudel, R., Lieder, I., Mazor, Y., Kaplan, S., Dahary, D., Warshawsky, D., Guan-Golan, Y., Kohn, A., Rappaport, N., Safran, M., & Lancet, D. (2016). The GeneCards suite: From gene data mining to disease genome sequence analyses. Current Protocols in Bioinformatics, 54, 1.30.1–1.30.33. https://doi.org/10.1002/cpbi.5
- Sut, S., Zengin, G., Maggi, F., Malagoli, M., & Dall'Acqua, S. (2019). Triterpene acid and phenolics from ancient apples of Friuli Venezia Giulia as nutraceutical ingredients: LC-MS study and in vitro activities. Molecules, 24(6), 1109. https://doi.org/10.3390/molecules24061109
- Szade, A., Grochot-Przeczek, A., Florczyk, U., Jozkowicz, A., & Dulak, J. (2015). Cellular and molecular mechanisms of inflammation-induced angiogenesis. IUBMB Life, 67(3), 145–159. https://doi.org/10.1002/iub.1358
- Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N. T., Morris, J. H., Bork, P., Jensen, L. J., & von Mering, C. (2019). STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47(D1), D607–D613. https://doi.org/10.1093/nar/gky1131
- Tao, X., Jing-Bo, P., Wen-Tong, Z., Xin, Z., Tao-Tao, Z., Shi-Jun, Y., Lei, F., Zhong-Mei, Z., & Da-Yong, C. (2012). Antiatherogenic and anti-ischemic properties of traditional Chinese medicine Xinkeshu via endothelial protecting function. Evidence-based Complementary and Alternative Medicine, 2012, 302137. https://doi.org/10.1155/2012/302137
- Thomas, C. C., Deak, M., Alessi, D. R., & van Aalten, D. M. (2002). High-resolution structure of the pleckstrin homology domain of protein kinase b/akt bound to phosphatidylinositol (3,4,5)-trisphosphate. Current Biology, 12(14), 1256–1262. https://doi.org/10.1016/s0960-9822(02)00972-7
- UniProt Consortium. (2021). UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Research, 49(D1), D480–D489. https://doi.org/10.1093/nar/gkaa1100
- Wang, S., Sun, X., An, S., Sang, F., Zhao, Y., & Yu, Z. (2021). High-throughput identification of organic compounds from Polygoni Multiflori radix Praeparata (Zhiheshouwu) by UHPLC-Q-exactive orbitrap-MS. Molecules, 26(13), 3977. https://doi.org/10.3390/molecules26133977
- Wang, S. Z., Wu, M., Chen, K. J., Liu, Y., Sun, J., Sun, Z., Ma, H., & Liu, L. T. (2019). Hawthorn extract alleviates atherosclerosis through regulating inflammation and apoptosis related factors: An experimental study. Chinese Journal of Integrative Medicine, 25(2), 108–115. https://doi.org/10.1007/s11655-018-3020-4
- Warbrick, I., & Rabkin, S. W. (2019). Hypoxia-inducible factor 1-alpha (HIF-1α) as a factor mediating the relationship between obesity and heart failure with preserved ejection fraction. Obesity Reviews, 20(5), 701–712. https://doi.org/10.1111/obr.12828
- Wong, T. Y., Lin, S. M., & Leung, L. K. (2015). The flavone luteolin suppresses SREBP-2 expression and post-translational activation in hepatic cells. PLoS One, 10(8), e0135637. https://doi.org/10.1371/journal.pone.0135637
- Wu, J., Peng, W., Qin, R., & Zhou, H. (2014). Crataegus pinnatifida: Chemical constituents, pharmacology, and potential applications. Molecules, 19(2), 1685–1712. https://doi.org/10.3390/molecules19021685
- Wu, M., Liu, L., Xing, Y., Yang, S., Li, H., & Cao, Y. (2020). Roles and mechanisms of hawthorn and its extracts on atherosclerosis: A review. Frontiers in Pharmacology, 11, 118. https://doi.org/10.3389/fphar.2020.00118
- Wu, X. J., Lin, X. J., & Tong, X. Y. (2018). Advances in anti-atherosclerosis medicines. Life Science Intrument, 16(6), 16–24.
- Xu, H., Xu, H. E., & Ryan, D. (2009). A study of the comparative effects of hawthorn fruit compound and simvastatin on lowering blood lipid levels. The American Journal of Chinese Medicine, 37(5), 903–908. https://doi.org/10.1142/s0192415x09007302
- Xu, Q., Li, Y. C., Du, C., Wang, L. N., & Xiao, Y. H. (2021). Effects of apigenin on the expression of LOX-1, Bcl-2, and Bax in hyperlipidemia rats. Chemistry & Biodiversity, 18(8), e2100049. https://doi.org/10.1002/cbdv.202100049
- Zeboudj, L., Giraud, A., Guyonnet, L., Zhang, Y., Laurans, L., Esposito, B., Vilar, J., Chipont, A., Papac-Milicevic, N., Binder, C. J., Tedgui, A., Mallat, Z., Tharaux, P.-L., & Ait-Oufella, H. (2018). Selective EGFR (epidermal growth factor receptor) deletion in myeloid cells limits atherosclerosis-brief report. Arteriosclerosis, Thrombosis, and Vascular Biology, 38(1), 114–119. https://doi.org/10.1161/atvbaha.117.309927
- Zeng, L., Luo, L., Xue, Q., He, Q., Chen, X., Meng, J., Wang, S., & Liang, S. (2021). LC-MS based plasma metabolomics study of the intervention effect of different polar parts of hawthorn on hyperlipidemia rats. Journal of Separation Science, 44(5), 963–972. https://doi.org/10.1002/jssc.202000911
- Zhang, K., Song, W., Li, D., & Jin, X. (2017). Apigenin in the regulation of cholesterol metabolism and protection of blood vessels. Experimental and Therapeutic Medicine, 13(5), 1719–1724. https://doi.org/10.3892/etm.2017.4165
- Zhang, X., Shi, H., Wang, Y., Hu, J., Sun, Z., & Xu, S. (2017). Down-regulation of hsa-miR-148b inhibits vascular smooth muscle cells proliferation and migration by directly targeting HSP90 in atherosclerosis. American Journal of Translational Research, 9(2), 629–637.
- Zhang, Y., Zhang, L., Geng, Y., & Geng, Y. (2014). Hawthorn fruit attenuates atherosclerosis by improving the hypolipidemic and antioxidant activities in apolipoprotein e-deficient mice. Journal of Atherosclerosis and Thrombosis, 21(2), 119–128. https://doi.org/10.5551/jat.19174
- Zhao, X., & Guan, J. L. (2011). Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis. Advanced Drug Delivery Reviews, 63(8), 610–615. https://doi.org/10.1016/j.addr.2010.11.001
- Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A. H., Tanaseichuk, O., Benner, C., & Chanda, S. K. (2019). Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nature Communications, 10(1), 1523. https://doi.org/10.1038/s41467-019-09234-6