Virtual screening analysis of natural flavonoids as trimethylamine (TMA)-lyase inhibitors for coronary heart disease
Peng Zhou
Department of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, People's Republic of China
Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, People's Republic of China
Search for more papers by this authorXiao-Ni Zhao
Department of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
Search for more papers by this authorYao-Yao Ma
Department of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
Search for more papers by this authorTong-Juan Tang
Department of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
Search for more papers by this authorShu-Shu Wang
Department of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
Search for more papers by this authorCorresponding Author
Liang Wang
Department of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, People's Republic of China
Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, People's Republic of China
Correspondence
Liang Wang and Jin-Ling Huang, Department of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China.
Email: [email protected] (L. W.); [email protected] (J.-L. H.)
Search for more papers by this authorCorresponding Author
Jin-Ling Huang
Department of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, People's Republic of China
Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, People's Republic of China
Correspondence
Liang Wang and Jin-Ling Huang, Department of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China.
Email: [email protected] (L. W.); [email protected] (J.-L. H.)
Search for more papers by this authorPeng Zhou
Department of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, People's Republic of China
Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, People's Republic of China
Search for more papers by this authorXiao-Ni Zhao
Department of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
Search for more papers by this authorYao-Yao Ma
Department of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
Search for more papers by this authorTong-Juan Tang
Department of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
Search for more papers by this authorShu-Shu Wang
Department of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
Search for more papers by this authorCorresponding Author
Liang Wang
Department of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, People's Republic of China
Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, People's Republic of China
Correspondence
Liang Wang and Jin-Ling Huang, Department of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China.
Email: [email protected] (L. W.); [email protected] (J.-L. H.)
Search for more papers by this authorCorresponding Author
Jin-Ling Huang
Department of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, People's Republic of China
Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, People's Republic of China
Correspondence
Liang Wang and Jin-Ling Huang, Department of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, People's Republic of China.
Email: [email protected] (L. W.); [email protected] (J.-L. H.)
Search for more papers by this authorPeng Zhou and Xiao-Ni Zhao contributed equally to this work.
Abstract
Coronary heart disease (CHD) is defined by atherosclerosis, which can result in stenosis or blockage of the arterial cavity, leading to ischemic cardiac diseases such as angina and myocardial infarction. Accumulating evidence indicates that the gut microbiota plays a vital role in the beginning and progression of CHD. The gut microbial metabolite, trimethylamine-N-oxide (TMAO), is intimately linked to the pathophysiology of CHD. TMAO is formed when trimethylamine (TMA) is converted by flavin-containing monooxygenases in the hepatocytes. Therefore, inhibition of TMA production is essential to reduce TMAO levels. Flavonoids may reduce the risk of death from cardiovascular disease. In this article, we reviewed and evaluated twenty-two flavonoids for the therapy of CHD based on their inhibition of TMA-lyase by molecular docking. Docking results revealed that baicalein, fisetin, acacetin, and myricetin in flavonoid aglycones, and baicalin, naringin, and hesperidin in flavonoid glycosides had a good binding effect with TMA-lyase. This indicates that these chemicals were the most active and could be used as lead compounds for structural modification in the future.
Practical applications
Flavonoids are a large class of polyphenolic compounds found in fruits, vegetables, flowers, tea, and herbal medicines, which are inexorably metabolized and transformed into bioactive metabolites by α-rhamnosidase, β-glucuronidase, β-glucosidase, and nitroreductase produced by the gut microbiota, which plays a beneficial role in the prevention and treatment of cardiovascular diseases. Because flavonoids protect the cardiovascular system and regulate the gut microbiota, and the gut microbiota is directly connected to TMAO, thus, reducing TMAO levels involves blocking the transition of TMA to TMAO, which may be performed by reducing TMA synthesis. Molecular docking results found that baicalein, fisetin, acacetin, and myricetin in flavonoid aglycones, and baicalin, naringin, and hesperidin in flavonoid glycosides had good binding effects on TMA-lyase, which were the most active and could be used as lead compounds for structural modification.
CONFLICT OF INTEREST
The authors declare that they have no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- Albadrani, G. M., BinMowyna, M. N., Bin-Jumah, M. N., El-Akabawy, G., Aldera, H., & Al-Farga, A. M. (2021). Quercetin prevents myocardial infarction adverse remodeling in rats by attenuating TGF-β1/Smad3 signaling: Different mechanisms of action. Saudi Journal of Biological Sciences, 28, 2772–2782.
- Alshehri, M. M., Sharifi-Rad, J., Herrera-Bravo, J., Jara, E. L., Salazar, L. A., Kregiel, D., Uprety, Y., Akram, M., Iqbal, M., Martorell, M., Torrens-Mas, M., Pons, D. G., Daştan, S. D., Cruz-Martins, N., Ozdemir, F. A., Kumar, M., & Cho, W. C. (2021). Therapeutic potential of isoflavones with an emphasis on daidzein. Oxidative Medicine and Cellular Longevity, 2021, 6331630.
- Andrade, N., Marques, C., Andrade, S., Silva, C., Rodrigues, I., Guardão, L., Guimarães, J. T., Keating, E., Calhau, C., & Martel, F. (2019). Effect of chrysin on changes in intestinal environment and microbiome induced by fructose-feeding in rats. Food & Function, 10, 4566–4576.
- Bai, Y., Li, Z., Liu, W., Gao, D., Liu, M., & Zhang, P. (2019). Biochanin A attenuates myocardial ischemia/reperfusion injury through the TLR4/NF-κB/NLRP3 signaling pathway. Acta Cirúrgica Brasileira, 34, e201901104.
- Bello, O. M., Ogbesejana, A. B., Balkisu, A., Osibemhe, M., Musa, B., & Oguntoye, S. O. (2022). Polyphenolic fractions from three millet types (Fonio, Finger millet, and Pearl millet): Their characterization and biological importance. Clinical Complementary Medicine and Pharmacology, 2, 100020.
10.1016/j.ccmp.2022.100020 Google Scholar
- Bian, Y., Lei, J., Zhong, J., Wang, B., Wan, Y., Li, J., Liao, C., He, Y., Liu, Z., Ito, K., & Zhang, B. (2021). Kaempferol reduces obesity, prevents intestinal inflammation, and modulates gut microbiota in high-fat diet mice. The Journal of Nutritional Biochemistry, 99, 108840.
- Chang, W., Wu, Q. Q., Xiao, Y., Jiang, X. H., Yuan, Y., Zeng, X. F., & Tang, Q. Z. (2017). Acacetin protects against cardiac remodeling after myocardial infarction by mediating MAPK and PI3K/Akt signal pathway. Journal of Pharmacological Sciences, 135(4), 156–163.
- Chekalina, N. I., Shut, S. V., Trybrat, T. A., Burmak, Y. H., Petrov, Y. Y., Manusha, Y. I., & Kazakov, Y. M. (2017). Effect of quercetin on parameters of central hemodynamics and myocardial ischemia in patients with stable coronary heart disease. Wiadomości Lekarskie, 70, 707–711.
- Chen, F., Chen, Z. Q., Wang, H., & Zhu, J. J. (2021). Puerarin pretreatment inhibits myocardial apoptosis and improves cardiac function in rats after acute myocardial infarction through the PI3K/Akt signaling pathway. Advances in Clinical and Experimental Medicine, 30, 255–261.
- Chen, Z. Q., Zhou, Y., Huang, J. W., Chen, F., Zheng, J., Li, H. L., Li, T., & Li, L. (2021). Puerarin pretreatment attenuates cardiomyocyte apoptosis induced by coronary microembolization in rats by activating the PI3K/Akt/GSK-3β signaling pathway. The Korean Journal of Physiology & Pharmacology: Official Journal of the Korean Physiological Society and the Korean Society of Pharmacology, 25, 147–157.
- Dinda, B., Dinda, S., DasSharma, S., Banik, R., Chakraborty, A., & Dinda, M. (2017). Therapeutic potentials of baicalin and its aglycone, baicalein against inflammatory disorders. European Journal of Medicinal Chemistry, 131, 68–80.
- Ding, X., Zheng, L., Yang, B., Wang, X., & Ying, Y. (2019). Luteolin attenuates atherosclerosis via modulating signal transducer and activator of transcription 3-mediated inflammatory response. Drug Design, Development and Therapy, 13, 3899–3911.
- Estruel-Amades, S., Massot-Cladera, M., Pérez-Cano, F. J., Franch, À., Castell, M., & Camps-Bossacoma, M. (2019). Hesperidin effects on gut microbiota and gut-associated lymphoid tissue in healthy rats. Nutrients, 11, 324.
- Guevara-Cruz, M., Godinez-Salas, E. T., Sanchez-Tapia, M., Torres-Villalobos, G., Pichardo-Ontiveros, E., Guizar-Heredia, R., Arteaga-Sanchez, L., Gamba, G., Mojica-Espinos, A. R., Schcolnik-Cabrera, A., Granados, O., López-Barradas, A., Vargas-Castillo, A., Torre-Villalvazo, I., Noriega, L. G., Torres, N., & Tovar, A. R. (2020). Genistein stimulates insulin sensitivity through gut microbiota reshaping and skeletal muscle AMPK activation in obese subjects. BMJ Open Diabetes Research & Care, 8, e000948.
- Han, D. G., Cha, E., Joo, J., Hwang, J. S., Kim, S., Park, T., Jeong, Y. S., Maeng, H. J., Kim, S. B., & Yoon, I. S. (2021). Investigation of the factors responsible for the poor oral bioavailability of acacetin in rats: Physicochemical and biopharmaceutical aspects. Pharmaceutics, 13, 175.
- He, C., Wang, Z., & Shi, J. (2020). Pharmacological effects of icariin. Advances in Pharmacology, 87, 179–203.
- Heng, X., Liu, W., & Chu, W. (2021). Identification of choline-degrading bacteria from healthy human feces and used for screening of trimethylamine (TMA)-lyase inhibitors. Microbial Pathogenesis, 152, 104658.
- Hills, R. D., Jr., Pontefract, B. A., Mishcon, H. R., Black, C. A., Sutton, S. C., & Theberge, C. R. (2019). Gut microbiome: Profound implications for diet and disease. Nutrients, 11, 1613.
- Hu, H., Lin, Y., Xu, X., Lin, S., Chen, X., & Wang, S. (2020). The alterations of mitochondrial DNA in coronary heart disease. Experimental and Molecular Pathology, 114, 104412.
- Huang, F., Zhao, R., Xia, M., & Shen, G. X. (2020). Impact of cyanidin-3-glucoside on gut microbiota and relationship with metabolism and inflammation in high fat-high sucrose diet-induced insulin resistant mice. Microorganisms, 8, 1238.
- Huang, H., Li, L., Shi, W., Liu, H., Yang, J., Yuan, X., & Wu, L. (2016). The multifunctional effects of nobiletin and its metabolites in vivo and in vitro. Evidence-Based Complementary and Alternative Medicine, 2016, 2918796.
- Imran, M., Rauf, A., Shah, Z. A., Saeed, F., Imran, A., Arshad, M. U., Ahmad, B., Bawazeer, S., Atif, M., Peters, D. G., & Mubarak, M. S. (2019). Chemo-preventive and therapeutic effect of the dietary flavonoid kaempferol: A comprehensive review. Phytotherapy Research, 33, 263–275.
- Jie, Z., Xia, H., Zhong, S. L., Feng, Q., Li, S., Liang, S., Zhong, H., Liu, Z., Gao, Y., Zhao, H., Zhang, D., Su, Z., Fang, Z., Lan, Z., Li, J., Xiao, L., Li, J., Li, R., Li, X., … Kristiansen, K. (2017). The gut microbiome in atherosclerotic cardiovascular disease. Nature Communications, 8, 845.
- Jie, Z., Xiujian, W., & Jin, L. (2019). Pharmacological mechanism and apoptosis effect of baicalein in protecting myocardial ischemia reperfusion injury in rats. Pakistan Journal of Pharmaceutical Sciences, 32, 407–412.
- Ju, M., Liu, Y., Li, M., Cheng, M., Zhang, Y., Deng, G., Kang, X., & Liu, H. (2019). Baicalin improves intestinal microecology and abnormal metabolism induced by high-fat diet. European Journal of Pharmacology, 857, 172457.
- Kalnins, G., Kuka, J., Grinberga, S., Makrecka-Kuka, M., Liepinsh, E., Dambrova, M., & Tars, K. (2015). Structure and function of CutC choline lyase from human microbiota bacterium Klebsiella pneumoniae. The Journal of Biological Chemistry, 290, 21732–21740.
- Kashyap, D., Garg, V. K., Tuli, H. S., Yerer, M. B., Sak, K., Sharma, A. K., Kumar, M., Aggarwal, V., & Sandhu, S. S. (2019). Fisetin and quercetin: Promising flavonoids with chemopreventive potential. Biomolecules, 9, 174.
- Kim, H. W., Woo, H. J., Yang, J. Y., Kim, J. B., & Kim, S. H. (2021). Hesperetin inhibits expression of virulence factors and growth of Helicobacter pylori. International Journal of Molecular Sciences, 22, 10035.
- Kim, J. W., Jin, Y. C., Kim, Y. M., Rhie, S., Kim, H. J., Seo, H. G., Lee, J. H., Ha, Y. L., & Chang, K. C. (2009). Daidzein administration in vivo reduces myocardial injury in a rat ischemia/reperfusion model by inhibiting NF-kappaB activation. Life Sciences, 84, 227–234.
- Li, B., Du, P., Du, Y., Zhao, D., Cai, Y., Yang, Q., & Guo, Z. (2021). Luteolin alleviates inflammation and modulates gut microbiota in ulcerative colitis rats. Life Sciences, 269, 119008.
- Li, B., Liu, M., Wang, Y., Gong, S., Yao, W., Li, W., Gao, H., & Wei, M. (2020). Puerarin improves the bone micro-environment to inhibit OVX-induced osteoporosis via modulating SCFAs released by the gut microbiota and repairing intestinal mucosal integrity. Biomedicine & Pharmacotherapy, 132, 110923.
- Li, C., & Schluesener, H. (2017). Health-promoting effects of the citrus flavanone hesperidin. Critical Reviews in Food Science and Nutrition, 57, 613–631.
- Li, H. L., Wei, Y. Y., Li, X. H., Zhang, S. S., Zhang, R. T., Li, J. H., Ma, B. W., Shao, S. B., Lv, Z. W., Ruan, H., Zhou, H. G., & Yang, C. (2021). Diosmetin has therapeutic efficacy in colitis regulating gut microbiota, inflammation, and oxidative stress via the circ-Sirt1/Sirt1 axis. Acta Pharmacologica Sinica, 43(4), 919–932.
- Li, J., Tan, Y., Zhou, P., Liu, C., Zhao, H., Song, L., Zhou, J., Chen, R., Wang, Y., Zhao, X., Chen, Y., & Yan, H. (2021). Association of trimethylamine N-oxide levels and calcification in culprit lesion segments in patients with ST-segment-elevation myocardial infarction evaluated by optical coherence tomography. Frontiers in Cardiovascular Medicine, 8, 628471.
- Li, Q., Gao, B., Siqin, B., He, Q., Zhang, R., Meng, X., Zhang, N., Zhang, N., & Li, M. (2021). Gut microbiota: A novel regulator of cardiovascular disease and key factor in the therapeutic effects of flavonoids. Frontiers in Pharmacology, 12, 651926.
- Li, S., Hao, M., Wu, T., Wang, Z., Wang, X., Zhang, J., & Zhang, L. (2021). Kaempferol alleviates human endothelial cell injury through circNOL12/miR-6873-3p/FRS2 axis. Biomedicine & Pharmacotherapy, 137, 111419.
- Lin, C. M., Wang, B. W., Pan, C. M., Fang, W. J., Chua, S. K., Cheng, W. P., & Shyu, K. G. (2021). Chrysin boosts KLF2 expression through suppression of endothelial cell-derived exosomal microRNA-92a in the model of atheroprotection. European Journal of Nutrition, 60(8), 4345–4355.
- Lin, J., Nie, X., Xiong, Y., Gong, Z., Chen, J., Chen, C., Huang, Y., & Liu, T. (2020). Fisetin regulates gut microbiota to decrease CCR9+/CXCR3+/CD4+ T-lymphocyte count and IL-12 secretion to alleviate premature ovarian failure in mice. American Journal of Translational Research, 12, 203–247.
- Liu, F., Zhang, H., Li, Y., & Lu, X. (2019). Nobiletin suppresses oxidative stress and apoptosis in H9c2 cardiomyocytes following hypoxia/reoxygenation injury. European Journal of Pharmacology, 854, 48–53.
- Liu, H., Chen, X., Hu, X., Niu, H., Tian, R., Wang, H., Pang, H., Jiang, L., Qiu, B., Chen, X., Zhang, Y., Ma, Y., Tang, S., Li, H., Feng, S., Zhang, S., & Zhang, C. (2019). Alterations in the gut microbiome and metabolism with coronary artery disease severity. Microbiome, 7, 68.
- Liu, P., Zhao, Y. X., & Zhang, Y. (2006). Clinical observation of daidzein intervention on serum inflammatory factors in senile patients with coronary heart disease. Zhongguo Zhong Xi Yi Jie He Za Zhi, 26, 42–45.
- Liu, Y., Grimm, M., Dai, W. T., Hou, M. C., Xiao, Z. X., & Cao, Y. (2020). CB-Dock: A web server for cavity detection-guided protein-ligand blind docking. Acta Pharmacologica Sinica, 41, 138–144.
- Lv, L., Yao, Y., Zhao, G., & Zhu, G. (2018). Rutin inhibits coronary heart disease through ERK1/2 and Akt signaling in a porcine model. Experimental and Therapeutic Medicine, 15, 506–512.
- Meng, C., Guo, Z., Li, D., Li, H., He, J., Wen, D., & Luo, B. (2018). Preventive effect of hesperidin modulates inflammatory responses and antioxidant status following acute myocardial infarction through the expression of PPAR-γ and Bcl-2 in model mice. Molecular Medicine Reports, 17, 1261–1268.
- Meng, Z., Wang, M., Xing, J., Liu, Y., & Li, H. (2019). Myricetin ameliorates atherosclerosis in the low-density-lipoprotein receptor knockout mice by suppression of cholesterol accumulation in macrophage foam cells. Nutrition and Metabolism, 16, 25.
10.1186/s12986-019-0354-7 Google Scholar
- Mozaffarian, D., & Wu, J. (2018). Flavonoids, dairy foods, and cardiovascular and metabolic health: A review of emerging biologic pathways. Circulation Research, 122, 369–384.
- Nallappan, D., Chua, K. H., Ong, K. C., Chong, C. W., The, C. S. J., Palanisamy, U. D., & Kuppusam, U. R. (2021). Amelioration of high-fat diet-induced obesity and its associated complications by a myricetin derivative-rich fraction from Syzygium malaccense in C57BL/6J mice. Food & Function, 12, 5876–5891.
- Naz, S., Imran, M., Rauf, A., Orhan, I. E., Shariati, M. A., Iahtisham-Ul-Haq, I. Y., Shahbaz, M., Qaisrani, T. B., Shah, Z. A., Plygun, S., & Heydari, M. (2019). Chrysin: Pharmacological and therapeutic properties. Life Sciences, 235, 116797.
- Negahdari, R., Bohlouli, S., Sharifi, S., Maleki Dizaj, S., Rahbar Saadat, Y., Khezri, K., Jafari, S., Ahmadian, E., Gorbani Jahandizi, N., & Raeesi, S. (2021). Therapeutic benefits of rutin and its nanoformulations. Phytotherapy Research, 35, 1719–1738.
- Olumegbon, L. T., Lawal, A. O., Oluyede, D. M., Adebimpe, M. O., Elekofehinti, O. O., & I Umar, H. (2022). Hesperetin protects against diesel exhaust particles-induced cardiovascular oxidative stress and inflammation in Wistar rats. Environmental Science and Pollution Research International, 29(35), 52574–52589. https://doi.org/10.1007/s11356-022-19494-3
- Otto, C. M., & Rahimi, K. (2016). Heartbeat: The gut microbiota and heart failure. Heart, 102, 811–812.
- Ou, W., Hu, H., Yang, P., Dai, J., Ai, Q., Zhang, W., Zhang, Y., & Mai, K. (2019). Dietary daidzein improved intestinal health of juvenile turbot in terms of intestinal mucosal barrier function and intestinal microbiota. Fish & Shellfish Immunology, 94, 132–141.
- Pal, H. C., Pearlman, R. L., & Afaq, F. (2016). Fisetin and its role in chronic diseases. Advances in Experimental Medicine and Biology, 928, 213–244.
- Patel, K., Gadewar, M., Tahilyani, V., & Patel, D. K. (2013). A review on pharmacological and analytical aspects of diosmetin: A concise report. Chinese Journal of Integrative Medicine, 19, 792–800.
- Peng, L., Zhang, Q., Zhang, Y., Yao, Z., Song, P., Wei, L., Zhao, G., & Yan, Z. (2019). Effect of tartary buckwheat, rutin, and quercetin on lipid metabolism in rats during high dietary fat intake. Food Science & Nutrition, 8, 199–213.
- Qin, M., Li, Q., Wang, Y., Li, T., Gu, Z., Huang, P., & Ren, L. (2021). Rutin treats myocardial damage caused by pirarubicin via regulating miR-22-5p-regulated RAP1/ERK signaling pathway. Journal of Biochemical and Molecular Toxicology, 35, e22615.
- Rahman, S., Mathew, S., Nair, P., Ramadan, W. S., & Vazhappilly, C. G. (2021). Health benefits of cyanidin-3-glucoside as a potent modulator of Nrf2-mediated oxidative stress. Inflammopharmacology, 29, 907–923.
- Ren, J., Yue, B., Wang, H., Zhang, B., Luo, X., Yu, Z., Zhang, J., Ren, Y., Mani, S., Wang, Z., & Dou, W. (2021). Acacetin ameliorates experimental colitis in mice via inhibiting macrophage inflammatory response and regulating the composition of gut microbiota. Frontiers in Physiology, 11, 577237.
- Rivoira, M. A., Rodriguez, V., Talamoni, G., & de Talamoni, N. T. (2021). New perspectives in the pharmacological potential of naringin in medicine. Current Medicinal Chemistry, 28, 1987–2007.
- Sarfraz, A., Javeed, M., Shah, M. A., Hussain, G., Shafiq, N., Sarfraz, I., Riaz, A., Sadiqa, A., Zara, R., Zafar, S., Kanwal, L., Sarker, S. D., & Rasul, A. (2020). Biochanin A: A novel bioactive multifunctional compound from nature. Science of the Total Environment, 722, 137907.
- Sharifi-Rad, J., Quispe, C., Imran, M., Rauf, A., Nadeem, M., Gondal, T. A., Ahmad, B., Atif, M., Mubarak, M. S., Sytar, O., Zhilina, O. M., Garsiya, E. R., Smeriglio, A., Trombetta, D., Pons, D. G., Martorell, M., Cardoso, S. M., Razis, A., Sunusi, U., … Calina, D. (2021). Genistein: An integrative overview of its mode of action, pharmacological properties, and health benefits. Oxidative Medicine and Cellular Longevity, 2021, 3268136.
- Shi, S., Li, J., Zhao, X., Liu, Q., & Song, S. J. (2021). A comprehensive review: Biological activity, modification and synthetic methodologies of prenylated flavonoids. Phytochemistry, 191, 112895.
- Shi, W., Huang, Y., Yang, Z., Zhu, L., & Yu, B. (2021). Reduction of TMAO level enhances the stability of carotid atherosclerotic plaque through promoting macrophage M2 polarization and efferocytosis. Bioscience Reports, 41, BSR20204250.
- Shi, Y., Yan, W., Lin, Q., & Wang, W. (2018). Icariin influences cardiac remodeling following myocardial infarction by regulating the CD147/MMP-9 pathway. The Journal of International Medical Research, 46, 2371–2385.
- Si, Q., Shi, Y., Huang, D., & Zhang, N. (2020). Diosmetin alleviates hypoxia-induced myocardial apoptosis by inducing autophagy through AMPK activation. Molecular Medicine Reports, 22, 1335–1341.
- Sklenickova, O., Flesar, J., Kokoska, L., Vlkova, E., Halamova, K., & Malik, J. (2010). Selective growth inhibitory effect of biochanin A against intestinal tract colonizing bacteria. Molecules, 15, 1270–1279.
- Song, X., Tan, L., Wang, M., Ren, C., Guo, C., Yang, B., Ren, Y., Cao, Z., Li, Y., & Pei, J. (2021). Myricetin: A review of the most recent research. Biomedicine & Pharmacotherapy, 134, 111017.
- Sun, L., Jia, H., Li, J., Yu, M., Yang, Y., Tian, D., Zhang, H., & Zou, Z. (2019). Cecal gut microbiota and metabolites might contribute to the severity of acute myocardial ischemia by impacting the intestinal permeability, oxidative stress, and energy metabolism. Frontiers in Microbiology, 10, 1745.
- Sun, L. J., Qiao, W., Xiao, Y. J., Cui, L., Wang, X., & Ren, W. D. (2019). Naringin mitigates myocardial strain and the inflammatory response in sepsis-induced myocardial dysfunction through regulation of PI3K/AKT/NF-κB pathway. International Immunopharmacology, 75, 105782.
- Sun, Y. Z., Chen, J. F., Shen, L. M., Zhou, J., & Wang, C. F. (2017). Anti-atherosclerotic effect of hesperidin in LDLr−/− mice and its possible mechanism. European Journal of Pharmacology, 815, 109–117.
- Tang, D., Chen, K., Huang, L., & Li, J. (2017). Pharmacokinetic properties and drug interactions of apigenin, a natural flavone. Expert Opinion on Drug Metabolism & Toxicology, 13, 323–330.
- Tang, W. H., Wang, Z., Levison, B. S., Koeth, R. A., Britt, E. B., Fu, X., Wu, Y., & Hazen, S. L. (2013). Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. The New England Journal of Medicine, 368, 1575–1584.
- Tiwari, R., Mohan, M., Kasture, S., Maxia, A., & Ballero, M. (2009). Cardioprotective potential of myricetin in isoproterenol-induced myocardial infarction in Wistar rats. Phytotherapy Research, 23, 1361–1366.
- Trøseid, M., Andersen, G. Ø., Broch, K., & Hov, J. R. (2020). The gut microbiome in coronary artery disease and heart failure: Current knowledge and future directions. eBioMedicine, 52, 102649.
- Unno, T., Hisada, T., & Takahashi, S. (2015). Hesperetin modifies the composition of fecal microbiota and increases cecal levels of short-chain fatty acids in rats. Journal of Agricultural and Food Chemistry, 63, 7952–7957.
- Varghese, J. F., Patel, R., Singh, M., & Yadav, U. (2021). Fisetin prevents oxidized low-density lipoprotein-induced macrophage foam cell formation. Journal of Cardiovascular Pharmacology, 78, e729–e737.
- Verhaar, B., Prodan, A., Nieuwdorp, M., & Muller, M. (2020). Gut microbiota in hypertension and atherosclerosis: A review. Nutrients, 12, 2982.
- Wang, B., Li, L., Jin, P., Li, M., & Li, J. (2017). Hesperetin protects against inflammatory response and cardiac fibrosis in postmyocardial infarction mice by inhibiting nuclear factor κB signaling pathway. Experimental and Therapeutic Medicine, 14, 2255–2260.
- Wang, F., Fan, K., Zhao, Y., & Xie, M. L. (2021). Apigenin attenuates TGF-β1-stimulated cardiac fibroblast differentiation and extracellular matrix production by targeting miR-155-5p/c-Ski/Smad pathway. Journal of Ethnopharmacology, 265, 113195.
- Wang, F., Zhao, C., Tian, G., Wei, X., Ma, Z., Cui, J., Wei, R., Bao, Y., Kong, W., & Zheng, J. (2020). Naringin alleviates atherosclerosis in ApoE-/- mice by regulating cholesterol metabolism involved in gut microbiota remodeling. Journal of Agricultural and Food Chemistry, 68, 12651–12660.
- Wang, J., Zhang, R., Xu, Y., Zhou, H., Wang, B., & Li, S. (2008). Genistein inhibits the development of atherosclerosis via inhibiting NF-kappaB and VCAM-1 expression in LDLR knockout mice. Canadian Journal of Physiology and Pharmacology, 86, 777–784.
- Wang, M., Dong, Y., Wu, J., Li, H., Zhang, Y., Fan, S., & Li, D. (2020). Baicalein ameliorates ionizing radiation-induced injuries by rebalancing gut microbiota and inhibiting apoptosis. Life Sciences, 261, 118463.
- Wang, S., Cao, M., Xu, S., Shi, J., Mao, X., Yao, X., & Liu, C. (2020). Luteolin alters macrophage polarization to inhibit inflammation. Inflammation, 43, 95–108.
- Wang, Z., Zhang, H., Liu, Z., Ma, Z., An, D., & Xu, D. (2020). Apigenin attenuates myocardial infarction-induced cardiomyocyte injury by modulating Parkin-mediated mitochondrial autophagy. Journal of Biosciences, 45, 75.
- Wang, Z. K., Chen, R. R., Li, J. H., Chen, J. Y., Li, W., Niu, X. L., Wang, F. F., Wang, J., & Yang, J. X. (2020). Puerarin protects against myocardial ischemia/reperfusion injury by inhibiting inflammation and the NLRP3 inflammasome: The role of the SIRT1/NF-κB pathway. International Immunopharmacology, 89, 107086.
- Wu, D. N., Guan, L., Jiang, Y. X., Ma, S. H., Sun, Y. N., Lei, H. T., Yang, W. F., & Wang, Q. F. (2019). Microbiome and metabonomics study of quercetin for the treatment of atherosclerosis. Cardiovascular Diagnosis and Therapy, 9, 545–560.
- Wu, Y., Song, F., Li, Y., Li, J., Cui, Y., Hong, Y., Han, W., Wu, W., Lakhani, I., Li, G., & Wang, Y. (2021). Acacetin exerts antioxidant potential against atherosclerosis through Nrf2 pathway in apoE-/- mice. Journal of Cellular and Molecular Medicine, 25, 521–534.
- Wu, Y., Wang, F., Fan, L., Zhang, W., Wang, T., Du, Y., & Bai, X. (2018). Baicalin alleviates atherosclerosis by relieving oxidative stress and inflammatory responses via inactivating the NF-κB and p38 MAPK signaling pathways. Biomedicine & Pharmacotherapy, 97, 1673–1679.
- Xin, L., Gao, J., Lin, H., Qu, Y., Shang, C., Wang, Y., Lu, Y., & Cui, X. (2020). Regulatory mechanisms of baicalin in cardiovascular diseases: A review. Frontiers in Pharmacology, 11, 583200.
- Yamagata, K., Hashiguchi, K., Yamamoto, H., & Tagami, M. (2019). Dietary apigenin reduces induction of LOX-1 and NLRP3 expression, leukocyte adhesion, and acetylated low-density lipoprotein uptake in human endothelial cells exposed to trimethylamine-N-oxide. Journal of Cardiovascular Pharmacology, 74, 558–565.
- Yamagata, K., & Yamori, Y. (2020). Inhibition of endothelial dysfunction by dietary flavonoids and preventive effects against cardiovascular disease. Journal of Cardiovascular Pharmacology, 75, 1–9.
- Yan, L., Jia, Q., Cao, H., Chen, C., Xing, S., Huang, Y., & Shen, D. (2021). Fisetin ameliorates atherosclerosis by regulating PCSK9 and LOX-1 in apoE-/- mice. Experimental and Therapeutic Medicine, 21, 25.
- Yang, G., Lin, C. C., Yang, Y., Yuan, L., Wang, P., Wen, X., Pan, M. H., Zhao, H., Ho, C. T., & Li, S. (2019). Nobiletin prevents trimethylamine oxide-induced vascular inflammation via inhibition of the NF-κB/MAPK pathways. Journal of Agricultural and Food Chemistry, 67, 6169–6176.
- Yang, J. Y., Li, M., Zhang, C. L., & Liu, D. (2021). Pharmacological properties of baicalin on liver diseases: A narrative review. Pharmacological Reports, 73, 1230–1239.
- Yang, M., Xiong, J., Zou, Q., Wang, D. D., & Huang, C. X. (2018). Chrysin attenuates interstitial fibrosis and improves cardiac function in a rat model of acute myocardial infarction. Journal of Molecular Histology, 49, 555–565.
- Yang, R., Jia, Q., Mehmood, S., Ma, S., & Liu, X. (2021). Genistein ameliorates inflammation and insulin resistance through mediation of gut microbiota composition in type 2 diabetic mice. European Journal of Nutrition, 60, 2155–2168.
- Yao, Y., Chen, Y., Adili, R., McKeown, T., Chen, P., Zhu, G., Li, D., Ling, W., Ni, H., & Yang, Y. (2017). Plant-based food cyanidin-3-glucoside modulates human platelet glycoprotein VI signaling and inhibits platelet activation and thrombus formation. The Journal of Nutrition, 147, 1917–1925.
- Yoshida, N., Sasaki, K., Sasaki, D., Yamashita, T., Fukuda, H., Hayashi, T., Tabata, T., Osawa, R., Hirata, K. I., & Kondo, A. (2019). Effect of resistant starch on the gut microbiota and its metabolites in patients with coronary artery disease. Journal of Atherosclerosis and Thrombosis, 26, 705–719.
- Yu, X. H., Chen, J. J., Deng, W. Y., Xu, X. D., Liu, Q. X., Shi, M. W., & Ren, K. (2002). Biochanin A mitigates atherosclerosis by inhibiting lipid accumulation and inflammatory response. Oxidative Medicine and Cellular Longevity, 2020, 8965047.
- Zhang, B. F., Jiang, H., Chen, J., Guo, X., Li, Y., Hu, Q., & Yang, S. (2019). Nobiletin ameliorates myocardial ischemia and reperfusion injury by attenuating endoplasmic reticulum stress-associated apoptosis through regulation of the PI3K/AKT signal pathway. International Immunopharmacology, 73, 98–107.
- Zhang, M., Zhang, X., Zhu, J., Zhao, D. G., Ma, Y. Y., Li, D., Ho, C. T., & Huang, Q. (2021). Bidirectional interaction of nobiletin and gut microbiota in mice fed with a high-fat diet. Food & Function, 12, 3516–3526.
- Zhang, X., Qin, Y., Ruan, W., Wan, X., Lv, C., He, L., Lu, L., & Guo, X. (2021). Targeting inflammation-associated AMPK//Mfn-2/MAPKs signaling pathways by baicalein exerts anti-atherosclerotic action. Phytotherapy Research, 35, 4442–4455.
- Zhang, Y., Xu, D., Huang, P., Zhang, Y., Li, Q., Fan, Z., & Ren, L. (2021). Essential role of protein kinase C βI in icariin-mediated protection against atherosclerosis. The Journal of Pharmacy and Pharmacology, 73, 1169–1179.
- Zhao, L., Zhou, Z., Zhu, C., Fu, Z., & Yu, D. (2020). Luteolin alleviates myocardial ischemia reperfusion injury in rats via Siti1/NLRP3/NF-κB pathway. International Immunopharmacology, 85, 106680.
- Zhou, M., Ren, H., Han, J., Wang, W., Zheng, Q., & Wang, D. (2015). Protective effects of kaempferol against myocardial ischemia/reperfusion injury in isolated rat heart via antioxidant activity and inhibition of glycogen synthase kinase-3β. Oxidative Medicine and Cellular Longevity, 2015, 481405.
- Zhou, P., Hua, F., Wang, X., & Huang, J. L. (2020). Therapeutic potential of IKK-β inhibitors from natural phenolics for inflammation in cardiovascular diseases. Inflammopharmacology, 28, 19–37.
- Zhu, K., Zhao, Y., Yang, Y., Bai, Y., & Zhao, T. (2020). Icariin alleviates bisphenol A induced disruption of intestinal epithelial barrier by maintaining redox homeostasis on vivo and on vitro. ACS Omega, 5, 20399–20408.