Bioactive polysaccharides and their potential health benefits in reducing the risks of atherosclerosis: A review
Chao-Li Jiang
Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, Hefei, People's Republic of China
School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
Search for more papers by this authorXue-Ying Li
Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, Hefei, People's Republic of China
School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
Search for more papers by this authorWen-Di Shen
Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, Hefei, People's Republic of China
Search for more papers by this authorLi-Hua Pan
Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, Hefei, People's Republic of China
Search for more papers by this authorQiang-Ming Li
Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, Hefei, People's Republic of China
Search for more papers by this authorJian-Ping Luo
Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, Hefei, People's Republic of China
School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
Search for more papers by this authorCorresponding Author
Xue-Qiang Zha
Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, Hefei, People's Republic of China
School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
Key Laboratory of Metabolism and Regulation for Major Disease of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, People's Republic of China
Correspondence
Xue-Qiang Zha, Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, Hefei, People's Republic of China.
Email: [email protected]
Search for more papers by this authorChao-Li Jiang
Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, Hefei, People's Republic of China
School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
Search for more papers by this authorXue-Ying Li
Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, Hefei, People's Republic of China
School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
Search for more papers by this authorWen-Di Shen
Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, Hefei, People's Republic of China
Search for more papers by this authorLi-Hua Pan
Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, Hefei, People's Republic of China
Search for more papers by this authorQiang-Ming Li
Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, Hefei, People's Republic of China
Search for more papers by this authorJian-Ping Luo
Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, Hefei, People's Republic of China
School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
Search for more papers by this authorCorresponding Author
Xue-Qiang Zha
Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, Hefei, People's Republic of China
School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
Key Laboratory of Metabolism and Regulation for Major Disease of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, People's Republic of China
Correspondence
Xue-Qiang Zha, Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, Hefei, People's Republic of China.
Email: [email protected]
Search for more papers by this authorChao-Li Jiang and Xue-Ying Li contributed equally to this work.
Abstract
Atherosclerosis is a kind of lipid-driven chronic inflammatory disease of arteries and is the principal pathological basis of life-threatening cardiovascular disease events, such as strokes and heart attacks. Clinically, statins are the most commonly prescribed drugs for the treatment of atherosclerosis, but prolonged use of these drugs exhibit many adverse reactions and have limited efficacy. Polysaccharides are important natural biomacromolecules widely existing in plants, animals, microorganisms and algae. They have drawn considerable attention worldwide due to their multiple healthy functions, along with their non-toxic property. Importantly, a growing number of studies have demonstrated that bioactive polysaccharides exhibit prominent efficiency in controlling atherosclerotic risk factors like hyperlipemia, hypertension, oxidative stress, and inflammation. In recent decades, various bioactive polysaccharides with different structural features and anti-atherosclerotic potential from natural sources have been isolated, purified, and characterized. The aim of this review is to focus on the research progress of natural polysaccharides in reducing the risks of atherosclerosis based on evidence of in vitro and in vivo studies from 1966 to 2022.
Practical applications
In the future, it is still necessary to strengthen the research on the development and mechanism of polysaccharides with anti-atherosclerotic potential. These anti-atherosclerotic polysaccharides with different structural characteristics and physiochemical properties from different sources will constitute a huge source of materials for future applications, especially in functional foods and drugs. The information summarized here may serve as useful reference materials for further investigation, production, and application of these polysaccharides in functional foods and therapeutic agents.
CONFLICT OF INTEREST
The authors declare that they have no conflict of interests.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing not applicable to this article as no datasets were generated or analysed during the current study.
REFERENCES
- Amagase, H., & Farnsworth, N. R. (2011). A review of botanical characteristics, phytochemistry, clinical relevance in efficacy and safety of Lycium barbarum fruit (Goji). Food Research International, 44, 1702–1717. https://doi.org/10.1016/j.foodres.2011.03.027
- Baekey, P. A., Cerda, J. J., Burgin, C. W., Robbins, F. L., Rice, R. W., & Baumgartner, T. G. (2010). Grapefruit pectin inhibits hypercholesterolemia and atherosclerosis in miniature swine. Clinical Cardiology, 11(9), 595–600. https://doi.org/10.1002/clc.4960110903
- Ben, J. J., Zhang, Y., Zhou, R. M., Zhang, H. Y., Zhu, X. D., Li, X. Y., Zhang, H. W., Li, N., Zhou, X. D., Bai, H., Yang, Q., Xu, Y., & Chen, Q. (2013). Major vault protein regulates class A scavenger receptor-mediated tumor necrosis factor-α synthesis and apoptosis in macrophages. Journal of Biological Chemistry, 288, 20076–20084. https://doi.org/10.1074/jbc.M112.449538
- Bian, L., Chen, H. G., & Zhou, X. (2020). Recent advances in understanding the antitumor activity of polysaccharides from plants. Food Science, 41, 275–282.
- Burger, F., Baptista, D., Roth, A., Brandt, K. J., Sliva, R. F., Montecucco, F., Mach, F., & Miteva, K. (2022). Single-cell RNA-Seq reveals a crosstalk between hyaluronan receptor LYVE-1-expressing macrophages and vascular smooth muscle cells. Cell, 11(3), 1–22.
- Castro, A. V. C., Shiga, T. M., & Nascimento, J. R. O. (2019). Polysaccharides from chayote enhance lipid efflux and regulate NLRP3 inflammasome priming in macrophage-like THP-1 cells exposed to cholesterol crystals. International Journal of Biological Macromolecules, 127, 502–510. https://doi.org/10.1016/j.ijbiomac.2019.01.048
- Chang, S. F., Hsieh, C. L., & Yen, G. C. (2008). The protective effect of Opuntia dillenii Haw fruit against low-density lipoprotein peroxidation and its active compounds. Food Chemistry, 106, 569–575. https://doi.org/10.1016/j.foodchem.2007.06.017
- Chen, C. J., Fu, Q., Li, Y. J., & Li, Z. L. (2015). Effect of Astragalus mongholicus polysaccharides on gene expression profiles of dendritic cells isolated from healthy donors (in Chinese). Journal of Central South University, 35, 1802–1805. https://doi.org/10.3969/j.issn.1673-4254.2015.12.27
- Chen, G., Luo, Y. C., Ji, B. P., Li, B., Guo, Y., Li, Y., Su, W., & Xiao, Z. L. (2008). Effect of polysaccharide from Auricularia auricula on blood lipid metabolism and lipoprotein lipase activity of ICR mice fed a cholesterol-enriched diet. Journal of Food Science, 73, 103–108. https://doi.org/10.1111/j.1750-3841.2008.00821.x
- Cheng, Y. F., Pan, X. D., Wang, J., Li, X., Yang, S. N., Yin, R. H., Ma, A. J., & Zhu, X. Y. (2020). Fucoidan inhibits nlrp3 inflammasome activation by enhancing p62/SQSTM1-dependent selective autophagy to alleviate atherosclerosis. Oxidative Medicine and, Cellular Longevity, 2020(3), 1–13. https://doi.org/10.1155/2020/3186306
- Cheng, Y. J., Tang, K., Wu, S. H., Liu, L. J., & Liu, B. Q. (2011). Astragalus polysaccharides lowers plasma cholesterol through mechanisms distinct from statins. PLoS One, 6, e27437. https://doi.org/10.1371/journal.pone.0027437
- Cui, X. W., Wang, S. Y., Cao, H., Guo, H., Li, Y. J., Xu, F. X., Zheng, M. M., Xi, X. Z., & Han, C. C. (2008). A review: The bioactivities and pharmacological applications of Polygonatum sibiricum polysaccharides. Molecules, 23, 1170. https://doi.org/10.3390/molecules23051170
- Deng, C., Shang, J. Y., Fu, H. T., Chen, J. X., Liu, H. Y., & Chen, J. H. (2016). Mechanism of the immunostimulatory activity by a polysaccharide from Dictyophora indusiate. International Journal of Biological Macromolecules, 91, 752–759. https://doi.org/10.1016/j.ijbiomac.2016.06.024
- Deniaud, B. E., Hardouin, K., Potin, P., Kloareg, B., & Hervé, C. (2017). A review about brown algal cell walls and fucose-containing sulfated polysaccharides: Cell wall context, biomedical properties and key research challenges. Carbohydrate Polymers, 175, 395–408. https://doi.org/10.1016/j.carbpol.2017.07.082
- Ding, J. F., Li, Y. Y., Xu, J. J., Su, X. R., Gao, X., & Yue, F. P. (2011). Study on effect of jellyfish collagen hydrolysate on anti-fatigue and anti-oxidation. Food Hydrocolloids, 25, 1350–1353. https://doi.org/10.1016/j.foodhyd.2010.12.013
- Farah, R., Groot, W., & Pavlova, M. (2021). Knowledge, attitudes and practices survey of cardiac rehabilitation among cardiologists and cardiac surgeons in Lebanon. The Egyptian Heart Journal, 1, 87. https://doi.org/10.1186/s43044-021-00212-2
10.1186/s43044?021?00212?2 Google Scholar
- Fisher, H., Siller, W. G., & Griminger, P. (1966). The retardation by pectin of cholesterol-induced atherosclerosis in the fowl. Journal of Atherosclerosis Research, 6(3), 292–298. https://doi.org/10.1016/S0368-1319(66)80012-1
- Ghoneim, M. A. M., Hassan, A. I., Mahmoud, M. G., & Asker, M. S. (2016). Effect of polysaccharide from Bacillus subtilis sp on cardiovascular diseases and atherogenic indices in diabetic rats. BMC Complementary and Alternative Medicine, 16, 112. https://doi.org/10.1186/s12906-016-1093-1
- Ghosh, S. S., Wang, J., Yannie, P. J., & Sandhu, Y. K. (2019). Dietary supplementation with galactooligosaccharides attenuates high-fat, high-cholesterol diet-induced glucose intolerance and disruption of colonic mucin layer in C57BL/6 mice and reduces atherosclerosis in Ldlr −/− mice. The Journal of Nutrition, 150(2), 285–293. https://doi.org/10.1093/jn/nxz233
- Godard, M., Decorde, K., Ventura, E., Soteras, G., Baccou, J. C., Cristol, J. P., & Rouanet, J. M. (2009). Polysaccharides from the green alga Ulva rigida improve the antioxidant status and prevent fatty streak lesions in the high cholesterol fed hamster, an animal model of nutritionally-induced atherosclerosis. Food Chemistry, 115, 176–180. https://doi.org/10.1016/j.foodchem.2008.11.084
- Gong, L., Zhang, H., Niu, Y. G., Chen, L., Liu, J., Alaxi, S., Shang, P. P., Yu, W. J., & Yu, L. L. (2015). A novel alkali extractable polysaccharide from Plantago asiatic L. seeds and its radical-scavenging and bile acid-binding activities. Journal of Agricultural and Food Chemistry, 63, 569–577. https://doi.org/10.1021/jf505909k
- Guo, S. F., Cheng, Y. X., & Sun, P. (2009). Effects of Auricularia Auricula Polysaccharide on the phenotypes of vascular smooth muscle cells and the expression of bFGF and PDGF in atherogenesis. Journal of Tropical Medicine, 9, 868–870.
- Guo, S. F., Li, Z. Q., Li, J., & Wang, Y. M. (2006). Effect of Auricularia Auricula polysaccharide on the proliferation of vascular smooth muscle cells in atherogenesis (in Chinese). Chinese Journal of Arteriosclerosis, 14, 767–770. https://doi.org/10.1016/j.chaos.2005.05.041
- Hamias, R., Wolak, T., Huleihel, M., Paran, E., & Levy-Ontman, O. (2018). Red alga polysaccharides attenuate angiotensin II-induced inflammation in coronary endothelial cells. Biochemical and Biophysical Research Communications, 500, 944–951. https://doi.org/10.1016/j.bbrc.2018.04.206
- Han, R. H., Tang, F. T., Lu, M. T., Xu, C. H., Hu, J., Mei, M., & Wang, H. X. (2016). Protective effects of Astragalus polysaccharides against endothelial dysfunction in hypertrophic rats induced by isoproterenol. International Immunopharmacology, 38, 306–312. https://doi.org/10.1016/j.intimp.2016.06.014
- Han, Y., Wu, J., Liu, T. T., Hu, Y. D., Zheng, Q. S., Wang, B. S., Lin, H. Y., & Li, X. (2016). Separation, characterization and anticancer activities of a sulfated polysaccharide from Undaria pinnatifida. International Journal of Biological Macromolecules, 83, 42–49. https://doi.org/10.1016/j.ijbiomac.2015.11.049
- Hartmann, F., Gorski, D. J., Newman, A. C., Homann, S., Petz, A., Owsiany, K. M., Serbulea, V., Zhou, Y. Q., Deaton, R. A., Bendeck, M., Owens, G. K., & Fischer, J. W. (2021). SMC-derived hyaluronan modulates vascular SMC phenotype in murine atherosclerosis. Circulation Research, 129(11), 992–1005. https://doi.org/10.1161/CIRCRESAHA.120.318479
- He, J. F. (2019). Study on hypolipidemic effects of Auricularia Auricula polysaccharides on hyperlipidemia and its related mechanism. MD thesis. Guangdong Pharmaceutical University.
- Hoffman, J. B., Petriello, M. D., Morris, A. J., Mottaleb, M. A., Sui, Y. P., Zhou, C. C., Deng, P., Wang, C. Y., & Henning, B. (2020). Prebiotic inulin consumption reduces dioxin-like PCB 126-mediated hepatotoxicity and gut dysbiosis in hyperlipidemic Ldlr deficient mice. Environmental Pollution, 261, 114183. https://doi.org/10.1016/j.envpol.2020.114183
- Hoving, L. R., Katiraei, S., Pronk, A., Heijink, M., Vonk, K. D., Bouazzaoui, A. E., Vermeulen, R., Giera, M., Harmelen, V. V., & Willems, K. (2018). The prebiotic inulin modulates gut microbiota but does not ameliorate atherosclerosis in hypercholesterolemic APOE* 3-Leiden.CETP mice. Scientific Reports, 8(1), 16515. https://doi.org/10.1038/s41598-018-34970-y
- Hu, J. L., Nie, S. P., Li, C., & Xie, M. Y. (2013). In vitro effects of a novel polysaccharide from the seeds of Plantago asiatica L. on intestinal function. International Journal of Biological Macromolecules, 54, 264–269. https://doi.org/10.1016/j.ijbiomac.2012.12.011
- Hu, S. M., Wang, J., Li, F. H., Huo, P. B., Yin, J. Y., Yang, Z. X., Yang, X. Q., Li, T., Xia, B., Zhou, G. H., Liu, M., Song, W. G., & Guo, S. D. (2019). Structural characterisation and cholesterol efflux improving capacity of the novel polysaccharides from Cordyceps militaris. International Journal of Biological Macromolecules, 131, 264–272. https://doi.org/10.1016/j.ijbiomac.2019.03.078
- Jia, X. J., Ma, L. S., Li, P., Chen, M. W., & He, C. W. (2016). Prospects of Poria cocos polysaccharides: Isolation process, structural features and bioactivities. Trends in Food Science and Technology, 54, 52–62. https://doi.org/10.1016/j.tifs.2016.05.021
- Jin, M. L., Huang, Q. S., Zhao, K., & Shang, P. (2012). Biological activities and potential health benefit effects of polysaccharides isolated from Lycium barbarum L. International Journal of Biological Macromolecules, 54, 16–23. https://doi.org/10.1016/j.ijbiomac.2012.11.023
- Jin, M. L., Zhao, K., Huang, Q. S., & Shang, P. (2014). Structural features and biological activities of the polysaccharides from Astragalus membranaceus. International Journal of Biological Macromolecules, 64, 257–266. https://doi.org/10.1016/j.ijbiomac.2013.12.002
- Jin, Y., Sun, H. J., Wang, C. Y., Liu, K. X., & Chang, N. (2015). Rhizoma Dioscoreae Nipponicae polysaccharides protect HUVECs from H2O2-induced injury by regulating PPARγ factor and the NADPH oxidase/ROS-NF-κB signal pathway. Toxicology Letters, 232, 149–158. https://doi.org/10.1016/j.toxlet.2014.10.006
- Kim, H., Han, J., & Park, J. H. (2020). Cyclodextrin polymer improves atherosclerosis therapy and reduces ototoxicity. Journal of Controlled Release, 319, 77–86. https://doi.org/10.1016/j.jconrel.2019.12.021
- Kim, K. J., Lee, O. H., Han, C. K., Kim, Y. C., & Hong, H. D. (2012). Acidic polysaccharide extracts from Gastrodia Rhizomes suppress the atherosclerosis risk index through inhibition of the serum cholesterol composition in Sprague Dawley rats fed a high-fat diet. International Journal of Molecular Sciences, 13, 1620–1631. https://doi.org/10.3390/ijms13021620
- Kim, S. B., Ahn, B., Kim, M., Ji, H. J., & Mi, K. L. (2014). Effect of Cordyceps militaris extract and active constituents on metabolic parameters of obesity induced by high-fat diet in C58BL/6J mice. Journal of Ethnopharmacology, 151, 478–484. https://doi.org/10.1016/j.jep.2013.10.064
- Lahaye, M. (1998). NMR spectroscopic characterisation of oligosaccharides from two Ulva rigida ulvan samples (Ulvales, Chlorophyta) degraded by a lyase. Carbohydrate Research, 314, 1–12. https://doi.org/10.1016/S0008-6215(98)00293-6
- Lai, P., & Liu, Y. X. (2015). Angelica sinensis polysaccharides inhibit endothelial progenitor cell senescence through the reduction of oxidative stress and activation of the Akt/hTERT pathway. Pharmaceutical Microbiology, 53, 1842–1849. https://doi.org/10.3109/13880209.2015.1027779
- Lesaki, T., Takeuchia, T., Takeuchi, M., Okano, R., Hashimoto, R., Kakigi, R., Ishii, Y., & Okada, T. (2014). Fucoidan, a ligand of scavenger receptor class A, causes vascular relaxation through a nitric oxide/cGMP-mediated pathway in rat aorta. Atherosclerosis, 235, e36.
- Li, B., Lu, F., Wei, X. J., & Zhao, R. X. (2008). Fucoidan: Structure and bioactivity. Molecules, 13, 1671–1695. https://doi.org/10.3390/molecules13081671
- Li, J., Bao, Y. X., Lam, W. K., Fang, W. W., & Xuan, L. (2008). Immunoregulatory and anti-tumor effects of polysaccharopeptide and Astragalus polysaccharides on tumor-bearing mice. Immunopharmacology and Immunotoxicology, 30, 771–782. https://doi.org/10.1080/08923970802279183
- Li, Q. M., Teng, H., Zha, X. Q., Pan, L. H., & Luo, J. P. (2018). Sulfated Laminaria japonica polysaccharides inhibit macrophage foam cell formation. International Journal of Biological Macromolecules, 111, 875–861. https://doi.org/10.1016/j.ijbiomac.2018.01.103
- Li, Q. M., Zha, X. Q., Zhang, W. N., Liu, J., Pan, L. H., & Luo, J. P. (2021). Laminaria japonica polysaccharide prevents high-fat-diet-induced insulin resistance in mice via regulating gut microbiota. Food & Function, 12, 5260–5273. https://doi.org/10.1039/d0fo02100h
- Li, S. F., Shi, T. J., & Zuo, S. Y. (2020). Research Progress on immune activity of plant polysaccharides (in Chinese). Anhui Agricultural Sciences, 48, 16–18.
- Li, W. F., Zhao, J. M., Yao, Q., Li, W. Q., Zhi, W. B., Zang, L. L., Liu, F., & Niu, X. F. (2019). Polysaccharides from Poria cocos (PCP) inhibits ox-LDL-induced vascular smooth muscle cells proliferation and migration by suppressing TLR4/NF-κB p65 signaling pathway. Journal of Functional Foods, 60, 103391. https://doi.org/10.1016/j.jff.2019.05.047
- Li, Y., Miao, M., Yin, F., Shen, N., Yu, W. Q., & Guo, S. D. (2022). The polysaccharide–peptide complex from mushroom Cordyceps militaris ameliorates atherosclerosis by modulating the IncRNA–miRNA–mRNA axis. Food & Function, 13, 3185–3197. https://doi.org/10.1039/d1fo03285b
- Li, Y. H., Tang, J., Gao, H. L., Xu, Y. F., Han, Y. L., Shang, H. Q., Lu, Y. Z., & Qin, C. A. (2021). Ganoderma lucidum triterpenoids and polysaccharides attenuate atherosclerotic plaque in high-fat diet rabbits. Nutrition, Metabolism and Cardiovascular Diseases, 6, 1929–1938. https://doi.org/10.1016/j.numecd.2021.03.023
- Lin, Y. L., Liu, J. L., Hu, Y. B., Song, X., & Zhao, Y. R. (2012). An antioxidant exopolysaccharide devoid of pro-oxidant activity produced by the soil bacterium Bordetella sp. B4. Bioresource Technology, 124, 245–251. https://doi.org/10.1016/j.biortech.2012.05.145
- Liu, J. B., Cao, S. C., Yang, Y., Liu, M., & Zhang, H. F. (2019). Effects of short chain fructo-oligosaccharide on intestinal redox status and barrier function of weaning piglets (in Chinese). Chinese Journal of Animal Nutrition, 31(8), 3863–3871.
- Liu, L., Dong, Q., Dong, X. T., Fang, J. N., & Ding, K. (2007). Structural investigation of two neutral polysaccharides isolated from rhizome of Polygonatum sibiricum. Carbohydrate Polymers, 70, 304–309. https://doi.org/10.1016/j.carbpol.2007.04.012
- Lordan, S., Ross, R. P., & Stanton, C. (2011). Marine bioactives as functional food ingredients: potential to reduce the incidence of chronic diseases. Marine Drugs, 9, 1056–1110. https://doi.org/10.3390/md9061056
- Lu, H. L., Yang, Y. E., Gad, E., Wenner, C. A., Chang, A., Larson, E. R., Dang, Y. S., Martzen, M., Standish, L. J., & Disis, M. L. (2011). Polysaccharide krestin is a novel TLR2 agonist that mediates inhibition of tumor growth via stimulation of CD8 T cells and NK cells. Clinical Cancer Research, 17, 67–76. https://doi.org/10.1158/1078-0432.CCR-10-1763
- Luo, Q., Cai, Y. Z., Yan, J., Sun, M., & Corke, H. (2004). Hypoglycemic and hypolipidemic effects and antioxidant activity of fruit extracts from Lycium barbarum. Life Sciences, 76, 137–149. https://doi.org/10.1016/j.lfs.2004.04.056
- Lv, X. C., Guo, W. L., Li, L., Yu, X. D., & Liu, B. (2019). Polysaccharide peptides from Ganoderma lucidum ameliorate lipid metabolic disorders and gut microbiota dysbiosis in high-fat diet-fed rats. Journal of Functional Foods, 57, 48–58. https://doi.org/10.1016/j.jff.2019.03.043
- Ma, M., Liu, G. H., Yu, Z. H., Chen, G., & Zhang, X. (2009). Effect of the Lycium barbarum polysaccharides administration on blood lipid metabolism and oxidative stress of mice fed high-fat diet in vivo. Food Chemistry, 113, 872–877. https://doi.org/10.1016/j.foodchem.2008.03.064
- Ma, Q., Fan, Q., Han, X., Dong, Z. L., Xu, J. L., Bai, J. Y., Tao, W. W., Sun, D. D., & Wang, C. (2020). Platelet-derived extracellular vesicles to target plaque inflammation for effective anti-atherosclerotic therapy. Journal of Controlled Release, 329, 445–453. https://doi.org/10.1016/j.jconrel.2020.11.064
- Marinval, N., Saboural, P., Haddad, O., Letourneur, D., Charnaux, N., & Hlawaty, H. (2015). Angiogenesis potentialized by highly sulfated fucoidan: Role of the chemokines and the proteoglycans. Atherosclerosis, 241, e87. https://doi.org/10.1016/j.atherosclerosis.2015.04.304
- Medina, E. M. D., Rodriguez, E. M. R., & Romero, C. D. (2007). Chemical characterization of Opuntia dillenii and Opuntia ficus indica fruits. Food Chemistry, 103, 38–45. https://doi.org/10.1016/j.foodchem.2006.06.064
- Miao, X. Y., Zhu, X. X., Gu, Z. Y., Fu, B., Cui, S. Y., Zu, Y., Rong, L. J., Hu, F., Chen, X. M., Gong, Y. P., & Li, C. L. (2022). Astragalus polysaccharides reduce high-glucose-induced rat aortic endothelial cell senescence and inflammasome activation by modulating the mitochondrial Na+/Ca2+ exchanger. Cell Biochemistry and Biophysics, 80(2), 341–353. https://doi.org/10.1007/s12013-021-01058-w
- Niu, B., Feng, S. M., Xuan, S. Q., & Shao, P. (2021). Moisture and caking resistant Tremella fuciformis polysaccharides microcapsules with hypoglycemic activity. Food Research International, 146, 110420. https://doi.org/10.1016/j.foodres.2021.110420
- Oram, J. F., & Lawn, R. M. (2011). ABCA1. The gatekeeper for eliminating excess tissue cholesterol. Journal of Lipid Research, 21, 643–651. https://doi.org/10.1089/10799900152547911
- Pang, Z. J. (2003). Effect of polysaccharide Krestin on the up-regulation of macrophage colony-stimulating factor gene expression in protecting mouse peritoneal macrophages from oxidative injury. American Journal of Chinese Medicine, 31, 11–23. https://doi.org/10.1142/S0192415X03000813
- Pang, Z. J., Chen, Y., & Zhou, M. (2000). Polysaccharide Krestin enhances manganese superoxide dismutase activity and mRNA expression in mouse peritoneal macrophages. American Journal of Chinese Medicine, 28, 331–341. https://doi.org/10.1142/S0192415X00000398
- Park, J., Yeom, M., & Hahm, D. H. (2016). Fucoidan improves serum lipid levels and atherosclerosis through hepatic SREBP-2-mediated regulation. Journal of Pharmacological Sciences, 131, 84–92. https://doi.org/10.1016/j.jphs.2016.03.007
- Patil, N. P., Le, V., Sligar, A. D., Mei, L., Chavarria, D., Yang, E. Y., & Baker, A. B. (2018). Algal polysaccharides as therapeutic agents for atherosclerosis. Frontiers in Cardiovascular Medicine, 5, 153. https://doi.org/10.3389/fcvm.2018.00153
- Peng, F. H., Zha, X. Q., Cui, S. H., Asghar, M. N., Pan, L. H., Wang, J. H., & Luo, J. P. (2015). Purification, structure features and anti-atherosclerosis activity of a Laminaria japonica polysaccharide. International Journal of Biological Macromolecules, 81, 926–935. https://doi.org/10.1016/j.ijbiomac.2015.09.027
- Piko, P., Kosa, Z., Sandor, J., & Adany, R. (2021). Comparative risk assessment for the development of cardiovascular diseases in the hungarian general and roma population. Scientific Reports, 11, 3085. https://doi.org/10.1038/s41598-021-82689-0
- Potterat, O. (2010). Goji (Lycium barbarum and L-chinense): Phytochemistry, pharmacology and safety in the perspective of traditional uses and recent popularity. Planta Medica, 76, 7–19. https://doi.org/10.1055/s-0029-1186218
- Putra, A. B. N., Nishi, K., Shiraishi, R., Doi, M., & Sugahara, T. (2014). Jellyfish collagen stimulates production of TNF-alpha and IL-6 by J774.1 cells through activation of NF-κB and JNK via TLR4 signaling pathway. Molecular Immunology, 58, 32–37. https://doi.org/10.1016/j.molimm.2013.11.003
- Rault-Nania, M. H., Gueux, E., Demougeot, C., Demigné, C., & Mazur, A. (2006). Inulin attenuates atherosclerosis in apolipoprotein e-deficient mice. British Journal of Nutrition, 96(5), 840–844. https://doi.org/10.1017/bjn20061913
- Rjeibi, I., Feriani, A., Hentati, F., Hfaiedha, N., Michaud, P., & Pierre, G. (2019). Structural characterization of water-soluble polysaccharides from Nitraria retusa fruits and their antioxidant and hypolipidemic activities. International Journal of Biological Macromolecules, 129, 422–432. https://doi.org/10.1016/j.ijbiomac.2019.02.049
- Sargowo, D., Ovianti, N., Susilowati, E., Ubaidillah, N., Nugraha, A. W., Proboretno, K. S., Failasufi, M., Ramadhan, F., Wulandari, H., Waranugraha, Y., & Putri, D. H. (2018). The role of polysaccharide peptide of Ganoderma lucidum as a potent antioxidant against atherosclerosis in high risk and stable angina patients. Indian Heart Journal, 70, 608–614. https://doi.org/10.1016/j.ihj.2017.12.007
- Shao, P., Feng, J., Sun, P., Xiang, N., Lu, B., & Qiu, D. (2020). Recent advances in improving stability of food emulsion by plant polysaccharides. Food Research International, 137, 109376. https://doi.org/10.1016/j.foodres.2020.109376
- Shi, Y. Y., Xiong, Q. P., Wang, X. L., Li, X., Yu, C. H., Wu, J., Yi, J., Zhao, X. J., Xu, Y., & Cui, H. (2016). Characterization of a novel purified polysaccharide from the flesh of Cipangopaludina chinensis. Carbohydrate Polymers, 136, 875–883. https://doi.org/10.1016/j.carbpol.2015.09.062
- Song, H. M., & Sun, Z. X. (2017). Hypolipidaemic and hypoglycaemic properties of pumpkin polysaccharides. 3 Biotech, 7, 159. https://doi.org/10.1007/s13205-017-0843-1
- Song, Z. Y., Li, H. L., Liang, J., Xu, Y. T., Zhu, L. J., Ye, X. Y., Wu, J., Li, W., Xiong, Q. P., & Li, S. J. (2019). Sulfated polysaccharide from Undaria pinnatifida stabilizes the atherosclerotic plaque via enhancing the dominance of the stabilizing components. International Journal of Biological Macromolecules, 140, 621–630. https://doi.org/10.1016/j.ijbiomac.2019.08.173
- Sun, X. B. (2004). Study on isolation, purity, pharmacological activity and mechanism of trametes versiolor polysaccharide. PhD thesis. Jilin Agricultural University.
- Wang, C., Manabu, N., Teruo, W., Wang, Y., Liang, J., & Fan, J. (2018). Treatment of atherosclerosis by traditional Chinese medicine: Questions and quandaries. Atherosclerosis, 277, 136–144. https://doi.org/10.1016/j.atherosclerosis.2018.08.039
- Wang, D. D., Yin, Z. Q., Ma, L. K., Han, L., Chen, Y., Pan, W. J., Gong, K., Gao, Y. Y., Yang, X. X., Chen, Y. L., Han, J. H., & Duan, Y. J. (2021). Polysaccharide MCP extracted from Morchella esculenta reduces atherosclerosis in LDLR-deficient mice. Food & Function, 11, 4842–4854. https://doi.org/10.1039/d0fo03475d
- Wang, H., Zhang, X. W., Yu, B., Peng, X. H., Liu, Y., Wang, A. B., Zhao, D. Z., Pang, D. X., Ouyang, H. S., & Tang, X. C. (2019). Cyclodextrin ameliorates the progression of atherosclerosis via increasing high-density lipoprotein cholesterol plasma levels and anti-inflammatory effects in rabbits. Journal of Cardiovascular Pharmacology, 73(5), 334–342. https://doi.org/10.1097/FJC.0000000000000660
- Wang, L. Q., Nuo, X., Zhang, J. J., Zhao, H. J., Lin, L., Jia, S. H., & Jia, L. (2015). Antihyperlipidemic and hepatoprotective activities of residue polysaccharide from Cordyceps militaris SU-12. Carbohydrate Polymers, 131, 355–362. https://doi.org/10.1016/j.carbpol.2015.06.016
- Wang, S., Zhao, D. X., Han, C. F., Wang, X. L., Li, J., Zhang, L. L., Chen, N., & Han, P. P. (2021). A comparative study on the structure, properties and antioxidant activity of six active polysaccharides. Food Research International, 42, 7–15.
- Wang, W. S., Liu, H. H., Zhang, Y. W., Feng, Y. B., Yuan, F. F., Song, X. L., Gao, Z., Zhang, J. J., Song, Z., & Jia, L. (2019). Antihyperlipidemic and hepatoprotective properties of alkali- and enzyme-extractable polysaccharides by Dictyophora indusiate. Scientific Reports, 9, 14266. https://doi.org/10.1038/s41598-019-50717-9
- Wang, Y. C., Qi, Z. P., Liu, Z. Z., Li, T., & Chi, N. (2015). Therapeutic effects and mechanisms of Opuntia dillenii Haw on atherosclerosis of rats. Acta Pharmaceutica Sinica B, 50, 453–458. https://doi.org/10.16438/j.0513-4870.2015.04.003
- Wang, Y. F., Yang, X. F., Cheng, B., Mei, C. L., & Li, Q. X. (2010). Protective effect of Astragalus polysaccharides on ATP binding cassette transporter A1 in THP-1 derived foam cells exposed to tumor necrosis factor-alpha. Phytotherapy Research, 24, 393–398. https://doi.org/10.1002/ptr.2958
- Wang, Z. J., Xie, J. H., Shen, M. Y., Nie, S. P., & Xie, M. Y. (2018). Sulfated modification of polysaccharides: synthesis, characterization and bioactivities. Trends in Food Science & Technology, 74, 147–157. https://doi.org/10.1016/j.tifs.2018.02.010
- Wihastuti, T. A., Amiruddin, R., Cesa, F. Y., Alkaf, A. I., Setiawan, M., & Heriansyah, T. (2020). Decreasing angiogenesis vasa vasorum through Lp-PLA2 and H2O2 inhibition by PSP from ganoderma lucidum in atherosclerosis: in vivo diabetes mellitus type 2. Journal of Basic and Clinical Physiology and Pharmacology, 30, 2129–2140. https://doi.org/10.1515/jbcpp-2019-0349
10.1515/jbcpp?2019?0349 Google Scholar
- Wihastuti, T. A., & Heriansyah, T. (2017). The inhibitory effects of polysaccharide peptides (PsP) of Ganoderma lucidum against atherosclerosis in rats with dyslipidemia. International Heart Journal, 12, e1–e7. https://doi.org/10.5301/heartint.5000234
- Wijesinghe, W. A. J. P., & Jeon, Y. J. (2012). Biological activities and potential industrial applications of fucose rich sulfated polysaccharides and fucoidans isolated from brown seaweeds: A review. Carbohydrate Polymers, 88, 13–20. https://doi.org/10.1016/j.carbpol.2011.12.029
- World Health Organization. (2021). Cardiovascular diseases (CVDs). https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
- Wu, D. G., Li, X. Q., Wang, Y. F., Liu, K., & Shi, S. W. (2012). Protection of astragalus polysaccharides in atherosclerosis (in Chinese). Lishizhen Medicine and Materia Medica Research, 28, 147–152.
- Wu, J. M. (2016). Extraction, isolation, structural identification and biological of Polysaccharide from Coriolus versicolor fruiting body Activity study. MD thesis. Zhejiang University of technology.
- Xie, J. H., Jin, M. L., Morris, G. A., Zha, X. Q., & Chen, H. Q. (2016). Advances on Bioactive Polysaccharides from Medicinal Plants. Critical Reviews in Food Science and Nutrition, 56, S60–S84. https://doi.org/10.1080/10408398.2015.1069255
- Xie, J. H., Tang, W., Jin, M. L., & Xie, M. Y. (2016). Recent advances in bioactive polysaccharides from Lycium barbarum L., Zizyphus jujuba Mill, Plantago spp., and Morus spp.: Structures and functionalities. Food Hydrocolloids, 60, 148–160. https://doi.org/10.1016/j.foodhyd.2016.03.030
- Xie, L., Chen, M. H., Li, J., Yang, X. M., & Huang, Q. J. (2011). Antithrombotic effect of a polysaccharide fraction from Laminaria japonica from the South China Sea. Phytotherapy Research, 25, 1362–1366. https://doi.org/10.1002/ptr.3433
- Xie, S. Z., Yang, G., Jiang, X. M., Qin, D. Y., & Luo, J. P. (2020). Polygonatum cyrtonema Hua polysaccharide promotes GLP-1 secretion from enteroendocrine L-cells through sweet taste receptor-mediated cAMP signaling. Journal of Agricultural and Food Chemistry, 68, 6864–6872. https://doi.org/10.1021/acs.jafc.0c02058
- Xiong, Q. P., Zhu, L. J., Zhang, F. M., Li, H. L., Wu, J., Liang, J., Yuan, J., Shi, Y. Y., Zhang, Q. H., & Hu, Y. D. (2019). Protective activities of polysaccharides from Cipangopaludina chinensis against high-fat-diet-induced atherosclerosis via regulating gut microbiota in ApoE-deficient mice. Food Function, 10, 6644–6654. https://doi.org/10.1039/c9fo01530b
- Xu, Y. J., Xu, J., Ge, K. L., Tian, Q. W., Zhao, P., & Guo, Y. L. (2018). Anti-inflammatory effect of low molecular weight fucoidan from Saccharina japonica on atherosclerosis in apoE-knockout mice. International Journal of Biological Macromolecules, 118, 365–374. https://doi.org/10.1016/j.ijbiomac.2018.06.054
- Xu, Y. J., Zhu, W. L., Wang, T. T., Jin, L. Y., Liu, T. W., Li, X., Guan, Z. J., Jiang, Z. F., Meng, X. Z., Wang, J. G., & Guo, Y. L. (2019). Low molecule weight fucoidan mitigates atherosclerosis in ApoE (−/−) mouse model through activating multiple signal pathway. Carbohydrate Polymers, 206, 110–120. https://doi.org/10.1016/j.carbpol.2018.10.097
- Yang, J. X., Wu, S., Huang, X. L., Hu, X. Q., & Zhang, Y. (2015). Hypolipidemic activity and antiatherosclerotic effect of polysaccharide of Polygonatum sibiricum in rabbit model and related cellular mechanisms. Evidence-based Complementary and Alternative Medicine, 2015, 391065. https://doi.org/10.1155/2015/391065
- Yang, L. Q., Zhao, T., & Wei, H. (2011). Carboxymethylation of polysaccharides from Auricularia auricula and their antioxidant activities in vitro. International Journal of Biological Macromolecules, 49, 1124–1130. https://doi.org/10.1016/j.ijbiomac.2011.09.011
- Yang, X. Q., Lin, P., Wang, J., Liu, N., Yin, F., Shen, N., & Guo, S. D. (2021). Purification, characterization and anti-atherosclerotic effects of the polysaccharides from the fruiting body of Cordyceps militaris. International Journal of Biological Macromolecules, 181, 890–904. https://doi.org/10.1016/j.ijbiomac.2021.04.083
- Yang, Y., Li, W., Li, Y., Wang, Q., Gao, L., & Zhao, J. J. (2014). Dietary Lycium barbarum polysaccharide induces Nrf2/ARE pathway and ameliorates insulin resistance induced by high-fat via activation of PI3K/AKT signaling. Oxidative Medicine and Cellular Longevity, 2014, 145641. https://doi.org/10.1155/2014/196198
- Yang, Z. W., Ouyang, K. H., Zhao, J., Chen, H., Xiong, L., & Wang, W. J. (2016). Structural characterization and hypolipidemic effect of Cyclocarya paliurus polysaccharide in rat. International Journal of Biological Macromolecules, 91, 1073–1080. https://doi.org/10.1016/j.ijbiomac.2016.06.063
- Yao, X. Y., Zheng, Y. P., Shen, M. J., Hu, L. P., Li, D. Y., & Gong, K. M. (1993). Effect of pectin on hyperlipidemia model rabbits (in Chinese). Chinese Journal of Modern Applied Pharmacy, 10(1), 11–15. https://doi.org/10.13748/j.cnki.issn1007-7693.1993.01.005
10.13748/j.cnki.issn1007?7693.1993.01.005 Google Scholar
- Yin, D., Li, H. T., Zhang, X., Zhou, C. J., Ding, H., Zhao, C. X., Wei, Z. Q., & Cao, J. (2018). Effect of fucoidan sulfate on Atherosclerosis in patients with chronic kindey disease (in Chinese). Chinese Journal of Integrative Medicine, 27, 3903–3906. https://doi.org/10.3969/j.issn.1008-8849.2018.35.008
10.3969/j.issn.1008?8849.2018.35.008 Google Scholar
- Yin, J. Y., Lin, H. X., Li, J., Wang, Y. X., Cui, S. W., Nie, S. P., & Xie, M. Y. (2012). Structural characterization of a highly branched polysaccharide from the seeds of Plantago asiatica L. Carbohydrate Polymers, 87, 2416–2424. https://doi.org/10.1016/j.carbpol.2011.11.009
- Yin, J. Y., Wang, J., Li, F. H., Yang, Z. X., Yang, X. Q., Sun, W. L., Xia, B., Li, T., Song, W. G., & Guo, S. D. (2019). The fucoidan from the brown seaweed Ascophyllum nodosum ameliorates atherosclerosis in apolipoprotein E-defificient mice. Food & Function, 10, 5124–5139. https://doi.org/10.1039/C9FO00619B
- Yokota, T., Nomura, K., Nagashima, M., & Kamimura, N. (2016). Fucoidan alleviates high-fat diet-induced dyslipidemia and atherosclerosis in ApoEshl mice deficient in apolipoprotein E expression. Journal of Nutritional Biochemistry, 32, 46–54. https://doi.org/10.1016/j.jnutbio.2016.01.011
- Yoshida, N., Emoto, T., Yamashita, T., Watanabe, H., Hayashi, T., Tabata, T., Hoshi, N., Hatano, N., Ozawa, G., Sasaki, N., Mizoguchi, T., Amin, H. Z., Hirota, Y., Ogawa, W., Yamada, T., & Hirata, K. (2018). Bacteroides vulgatus and bacteroides dorei reduce gut microbial lipopolysaccharide production and inhibit atherosclerosis. Circulation, 138(22), 2486–2498. https://doi.org/10.1161/circulationaha.118.033714
- Yu, B. W., Pan, X. Q., Chen, J. D. X., & Hu, Z. (2021). Effect of Astragalus Polysaccharides on glucose and lipid metabolism in diabetic atherosclerotic rats and vascular endothelial protection mechanism (in Chinese). Zhejiang Zhong Yi Yao Da Xue Xue Bao, 45, 447–453.
- Yu, N., Song, N., Yang, G. L., & Jia, L. Q. (2021). Study on anti-AS mechanism of pachyman by improving HDL function and mediating PPARγ/LXRα/ABCAl (in Chinese). Chinese Journal of Immunology, 37, 389–394. https://doi.org/10.3969/j.issn.1000-484x.2021.04.002
10.3969/j.issn.1000?484x.2021.04.002 Google Scholar
- Yu, Y., Shen, M. Y., Song, Q. Q., & Xie, J. H. (2018). Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review. Carbohydrate Polymers, 183, 91–101. https://doi.org/10.1016/j.carbpol.2017.12.009
- Yuan, C., Mei, Z., Liu, S. G., & Yi, L. (1996). PSK protects macrophages from lipoperoxide accumulation and foam cell formation caused by oxidatively modified low-density lipoprotein. Atherosclerosis, 124, 171–181. https://doi.org/10.1016/0021-9150(96)05835-2
- Yuan, Y. Q., Liu, Q. B., Zhao, F. Q., Cao, J., Shen, X. R., & Li, C. (2019). Holothuria Leucospilota polysaccharides ameliorate hyperlipidemia in high-fat diet-induced rats via short-chain fatty acids production and lipid metabolism regulation. International Journal of Molecular Sciences, 20, 4738. https://doi.org/10.3390/ijms20194738
- Zha, X. Q., Xiao, J. J., Zhang, H. N., Wang, J. H., Pan, L. H., Yang, X. F., & Luo, J. P. (2012). Polysaccharides in Laminaria japonica (LP): Extraction, physicochemical properties and their hypolipidemic activities in diet-induced mouse model of atherosclerosis. Food Chemistry, 134, 244–252. https://doi.org/10.1016/j.foodchem.2012.02.129
- Zha, X. Q., Xue, L., Zhang, H. L., Asghar, M. N., Pan, L. H., Liu, J., & Luo, J. P. (2015). Molecular mechanism of a new Laminaria japonica polysaccharide on the suppression of macrophage foam cell formation via regulating cellular lipid metabolism and suppressing cellular inflammation. Molecular Nutrition & Food Research, 59, 2008–2021. https://doi.org/10.1002/mnfr.201500113
- Zha, X. Q., Zhang, W. N., Peng, F. H., Xue, L., Liu, J., & Luo, J. P. (2017). Alleviating VLDL overproduction is an important mechanism for Laminaria japonica polysaccharide to inhibit atherosclerosis in LDLr(−/−) mice with diet-induced insulin resistance. Molecular Nutrition & Food Research, 61, 4. https://doi.org/10.1002/mnfr.201600456
- Zhang, H., Nie, S. P., Cui, S. W., Xu, M., Ding, H. H., & Xie, M. Y. (2017). Characterization of a bioactive polysaccharide from Ganoderma atrum: Re-elucidation of the fine structure. Carbohydrate Polymers, 158, 58–67. https://doi.org/10.1016/j.carbpol.2016.11.088
- Zhang, H. L., Cui, S. H., Zha, X. Q., Bansal, V., Xue, L., Li, X. L., Hao, R., Pan, L. H., & Luo, J. P. (2014). Jellyfish skin polysaccharides: extraction and inhibitory activity on macrophage-derived foam cell formation. Carbohydrate Polymers, 106, 393–402. https://doi.org/10.1016/j.carbpol.2014.01.041
- Zhang, H. X., Cao, Y. Z., Chen, L. X., Wang, J. J., Tian, Q. H., Wang, N., Liu, Z. J., & Li, J. (2015). A polysaccharide from Polygonatum sibiricum attenuates amyloid-beta-induced neurotoxicity in PC12 cells. Carbohydrate Polymers, 117, 879–886. https://doi.org/10.5897/AJB11.2847
- Zhang, J. X., Wen, C. T., Duan, Y. Q., Zhang, H. H., & Ma, H. L. (2019). Advance in Cordyceps militaris (Linn) Link polysaccharides: Isolation, structure, and bioactivities: A review. International Journal of Biological Macromolecules, 132, 906–914. https://doi.org/10.1016/j.ijbiomac.2019.04.020
- Zhang, J. X., Wen, C. T., Zhang, H. H., & Duan, Y. Q. (2019). Review of isolation, structural properties, chain conformation, and bioactivities of psyllium polysaccharides. International Journal of Biological Macromolecules, 139, 409–420. https://doi.org/10.1016/j.ijbiomac.2019.08.014
- Zhang, M. H., Li, F., Pokharel, S., Ma, T., Wang, X. Y., Wang, Y. Y., Wang, W. R., & Lin, R. (2020). Lycium barbarum polysaccharide protects against Homocysteine-induced Vascular smooth muscle cell proliferation and phenotypic transformation via PI3K/Akt pathway. Journal of Molecular Histology, 51, 629–637. https://doi.org/10.1007/s10735-020-09909-1
- Zhang, N., Wang, S. M., Che, W. W., Zhang, R., Guo, Y., & Xu, S. J. (2009). Inhibition and mechanism of plantain seed polysaccharide on proliferation of vascular smooth muscle cells induced by oxidized low density lipoprotein (in Chinese). Chinese Journal of Cell Biology, 31, 683–688.
- Zhang, T. T., Zhao, W. Y., Xie, B. Z., & Liu, H. (2021). Effects of Auricularia auricula and its polysaccharides on hypolipidemic and regulating intestinal flora in high-fat diet rats (in Chinese). Journal of Chinese Institute of Food Science and Technology, 21, 89–101.
- Zhang, X. L., Wang, J., Xu, Z. Z., Li, Z. Q., Feng, S. L., & Lu, H. (2013). The impact of rhubarb polysaccharides on Toll-like receptor 4-mediated activation of macrophages. International Immunopharmacology, 17, 1116–1119. https://doi.org/10.1016/j.intimp.2013.10.015
- Zhang, X. W., Sui, Y., Liu, X. X., Fu, C. Y., Qiao, Y. H., Liu, X. J., Li, Z. Z., Li, X. Q., & Cao, W. (2020). Structures and anti-atherosclerotic effects of 1,6-α-glucans from fructus corni. International Journal of Biological Macromolecules, 161, 1346–1357. https://doi.org/10.1016/j.ijbiomac.2020.08.038
- Zhang, Y. F., Shi, P. Y., Yao, H., Shao, Q., & Fan, X. F. (2012). Metabolite profiling and pharmacokinetics of herbal compounds following oral administration of a cardiovascular multi-herb medicine (Qishen Yiqi Pills) in rat. Current Drug Metabolism, 13, 510–523. https://doi.org/10.2174/1389200211209050510
- Zhao, J. R., Hu, B., Xiao, H., Yang, Q., Cao, Q., Li, X., Zhang, Q., Ji, A. G., & Song, S. L. (2021). Fucoidan reduces lipid accumulation by promoting foam cell autophagy via TFEB. Carbohydrate Polymers, 268, 118247. https://doi.org/10.1016/j.carbpol.2021.118247
- Zhao, L. Y., Huang, W., Yuan, Q. X., Chen, J., Huang, Z. C., Ouyuan, L. J., & Zeng, F. H. (2012). Hypolipidaemic effects and mechanisms of the main component of Opuntia dillenii Haw. polysaccharides in high-fat emulsion-induced hyperlipidaemic rats. Food Chemistry, 134, 964–971. https://doi.org/10.1016/j.foodchem.2012.03.001
- Zhao, S., Rong, C. B., Liu, Y., Xu, F., Wang, S. X., Duan, C. L., Chen, J., & Wu, X. Y. (2015). Extraction of a soluble polysaccharide from Auricularia polytricha and evaluation of its anti-hypercholesterolemic effect in rats. Carbohydrate Polymers, 122, 39–45. https://doi.org/10.1016/j.carbpol.2014.12.041
- Zhu, J., Liu, W., Yu, J. P., Zou, S., Wang, J. J., Yao, W. B., & Gao, X. D. (2013). Characterization and hypoglycemic effect of a polysaccharide extracted from the fruit of Lycium barbarum L. Carbohydrate Polymers, 98, 8–16. https://doi.org/10.1016/j.carbpol.2013.04.057
- Zhu, X., Li, Q., Lu, F., Wang, H., Yan, S., Wang, Q., & Zhu, W. (2015). Antiatherosclerotic potential of rhizoma polygonati polysaccharide in hyperlipidemia-induced atherosclerotic hamsters. Drug research (Stuttgart), 65, 479–483. https://doi.org/10.1055/s-0034-1387756
- Zhu, X. D., Li, G. H., Hu, S. T., Zhou, X., & Ding, J. (2016). Effect of High fat diet on smooth muscle cell apoptosis rate of the thoracic aorta and the intervention of Lycium Barbarum polysaccharides (in Chinese). Journal of Ningxia Medical University, 38, 1232–1235.
- Zhu, Y. P., Shen, T., Lin, Y. J., Chen, B. D., & Jian, L. (2013). Astragalus polysaccharides suppress ICAM-1 and VCAM-1 expression in TNF-α-treated human vascular endothelial cells by blocking NF-κB activation. Acta Pharmacologica Sinica, 34, 1036–1042. https://doi.org/10.1038/aps.2013.46
- Zou, L. N., Lin, Z. J., Zhang, X. M., Zhang, B., & Huang, Z. K. (2021). Early warning of risks of statins in atherosclerosis therapy based on bioinformatics (in Chinese). Journal of Chinese Pharmaceutical Sciences, 18, 184–118.