Ameliorating effect of ketogenic diet on acute status epilepticus: Insights into biochemical and histological changes in rat hippocampus
Nagwa I. Shehata
Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
Contribution: Methodology, Supervision, Validation, Visualization, Writing - review & editing
Search for more papers by this authorCorresponding Author
Mai A. Abdelsamad
Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
Correspondence
Mai A. Abdelsamad, Biochemistry Department, Faculty of Pharmacy, Cairo University, Kasr el Ainy st., Cairo 11562, Egypt.
Email: [email protected]
Contribution: Data curation, Formal analysis, Investigation, Resources, Software, Visualization, Writing - original draft
Search for more papers by this authorHebat Allah A. Amin
Pathology Department, Faculty of Medicine, Helwan University, Cairo, Egypt
Contribution: Data curation, Investigation, Methodology, Visualization, Writing - review & editing
Search for more papers by this authorNermin A. H. Sadik
Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
Contribution: Methodology, Supervision, Validation, Visualization, Writing - review & editing
Search for more papers by this authorAmira A. Shaheen
Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
Contribution: Conceptualization, Methodology, Project administration, Supervision, Validation, Visualization, Writing - review & editing
Search for more papers by this authorNagwa I. Shehata
Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
Contribution: Methodology, Supervision, Validation, Visualization, Writing - review & editing
Search for more papers by this authorCorresponding Author
Mai A. Abdelsamad
Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
Correspondence
Mai A. Abdelsamad, Biochemistry Department, Faculty of Pharmacy, Cairo University, Kasr el Ainy st., Cairo 11562, Egypt.
Email: [email protected]
Contribution: Data curation, Formal analysis, Investigation, Resources, Software, Visualization, Writing - original draft
Search for more papers by this authorHebat Allah A. Amin
Pathology Department, Faculty of Medicine, Helwan University, Cairo, Egypt
Contribution: Data curation, Investigation, Methodology, Visualization, Writing - review & editing
Search for more papers by this authorNermin A. H. Sadik
Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
Contribution: Methodology, Supervision, Validation, Visualization, Writing - review & editing
Search for more papers by this authorAmira A. Shaheen
Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
Contribution: Conceptualization, Methodology, Project administration, Supervision, Validation, Visualization, Writing - review & editing
Search for more papers by this authorAbstract
This study aimed to evaluate the potential neuroprotective effects of ketogenic diet (KD) against the neuronal disruptions induced by SE in lithium-pilocarpine rat model of status epilepticus (SE). Four groups of female rats include; groups I and III received standard diet and groups II and IV received KD for 3 weeks. Groups I and II were left untreated, while groups III and IV were injected with LiCl (127 mg/kg, i.p.) followed by pilocarpine HCl (10 mg/kg, i.p.) 18–24 h later, repeatedly, till induction of SE. 72 h post-SE, KD effectively ameliorated the balance between excitatory (glutamate) and inhibitory (GABA) neurotransmitters and the oxidative stress indices, increased adenine nucleotides and decreased immunoreactivity of iNOS, TNFα, glial fibrillary acidic protein, and synaptophysin. Thiswas in association with improvement in inflammatory response and neuronal tissue characteristics in hippocampus of SE rats. Histological changes showed preservation of neuronal integrity. These findings highlight the protective effects of KD in the acute phase post-SE via ameliorating biochemical and histological changes involved.
Practical applications
Epilepsy is the fourth most common neurological disorder that requires lifelong treatment. It stigmatizes patients and their families. The use of the ketogenic diet (KD) as a therapy for epilepsy developed from observations that fasting could reduce seizures. From 1920s, the KD was a common epilepsy treatment until it was gradually superseded by anticonvulsant drugs so that by the 1980s it was rarely used. However, there has been a resurgence of interest and usage of the KD for epilepsy since the turn of the century. Despite its long history, the mechanisms by which KD exhibits its anti-seizure action are not fully understood. Our study aims to identify the mechanism of KD which may help further studies to achieve the same benefits with a drug or supplement to overcome its unpalatability and gastrointestinal side effects.
CONFLICT OF INTEREST
The authors declare no competing interests.
REFERENCES
- Achanta, L. B., & Rae, C. D. (2017). β-Hydroxybutyrate in the brain: One molecule, multiple mechanisms. Neurochemical Research, 42(1), 35–49. https://doi.org/10.1007/s11064-016-2099-2
- Alese, O. O., & Mabandla, V. M. (2019). Upregulation of hippocampal synaptophysin, GFAP and mGluR3 in a pilocarpine rat model of epilepsy with history of prolonged febrile seizure. Journal of Chemical Neuroanatomy, 100(6), 1–16. https://doi.org/10.1016/j.jchemneu.2019.101659
- Asadi-Pooya, A. A., Brigo, F., Kozlowska, K., Perez, D. L., Pretorius, C., Sawchuk, T., Saxena, A., Tolchin, B., & Valente, K. D. (2021). Social aspects of life in patients with functional seizures: Closing the gap in the biopsychosocial formulation. Epilepsy & Behavior, 117, 107903. https://doi.org/10.1016/J.YEBEH.2021.107903
- Attia, G. M., Elmansy, R. A., & Elsaed, W. M. (2019). Neuroprotective effect of nilotinib on pentylenetetrazol-induced epilepsy in adult rat hippocampus: Involvement of oxidative stress, autophagy, inflammation, and apoptosis. Folia Neuropathologica, 57(2), 146–160.
- Bell, G. S., & Sander, J. W. (2001). The epidemiology of epilepsy: The size of the problem. Seizure, 10(4), 306–316. https://doi.org/10.1053/seiz.2001.0584
- Buege, J. A., & Aust, S. D. (1974). Microsomal lipid peroxidation. Methods in Enzymology, 129, 302–310.
- Cheng, C. M., Hicks, K., Wang, J., Eagles, D. A., & Bondy, C. A. (2004). Caloric restriction augments brain glutamic acid decarboxylase-65 and -67 expression. Journal of Neuroscience Research, 77, 270–276. https://doi.org/10.1002/jnr.20144
- Chlipala, E. A., Bendzinski, C. M., Dorner, C., Sartan, R., Copeland, K., Pearce, R., Doherty, F., & Bolon, B. (2020). An image analysis solution for quantification and determination of immunohistochemistry staining reproducibility. Applied Immunohistochemistry and Molecular Morphology, 28(6), 428–436. https://doi.org/10.1097/PAI.0000000000000776
- Choi, H., Kim, Y. K., Oh, S. W., Im, H., Hwang, D. W., Kang, H., Lee, B., Lee, Y., Jeong, J. M., Kim, E. E., Chung, J., & Lee, D. S. (2014). In vivo imaging of mGluR5 changes during epileptogenesis using [11C] ABP688 PET in pilocarpine-induced epilepsy rat model. PLoS One, 9(3), e92765. https://doi.org/10.1371/journal.pone.0092765
- Clayton, C., Aguiar, T., Almeida, A. B., Victor, P., Ará, P., Neuma, R., Cavalcante De Abreu, D., Maria, E., Chaves, C., Cardoso Do Vale, O., Macêdo, D. S., Woods, D. J., Maria De França Fonteles, M., & Mendes Vasconcelos, S. M. (2012). Oxidative stress and epilepsy: Literature review. Oxidative Medicine and Cellular Longevity, 2012, 1–12. https://doi.org/10.1155/2012/795259
- Clemens, A. M., Lenschow, C., Beed, P., Wang, H., Schmitz, D., & Brecht, M. (2019). Estrus-cycle regulation of cortical inhibition article estrus-cycle regulation of cortical inhibition. Current Biology, 29(4), 605–615.e6. https://doi.org/10.1016/j.cub.2019.01.045
- Costa, M. S., Rocha, J. B. T., Perosa, S. R., Cavalheiro, E. A., & Naffah-Mazzacoratti, M. D. G. (2004). Pilocarpine-induced status epilepticus increases glutamate release in rat hippocampal synaptosomes. Neuroscience Letters, 356(1), 41–44. https://doi.org/10.1016/j.neulet.2003.11.019
- Cullingford, T. E. (2004). The ketogenic diet; fatty acids, fatty acid-activated receptors and neurological disorders. Prostaglandins Leukotrienes and Essential Fatty Acids, 70(3), 253–264. https://doi.org/10.1016/j.plefa.2003.09.008
- Da Silveira, V. G., Da Silva, R. S., De Paula Cognato, G., Capiotti, K. M., Figueiró, F., Bogo, M. R., Bonan, C. D., Perry, M. L. S., & Battastini, A. M. O. (2012). A ketogenic diet did not prevent effects on the ectonucleotidases pathway promoted by lithium-pilocarpine-induced status epilepticus in rat hippocampus. Metabolic Brain Disease, 27(4), 471–478. https://doi.org/10.1007/s11011-012-9333-7
- De Lima, P. A., De Brito Sampaio, L. P., & Teixeira Damasceno, N. R. (2014). Neurobiochemical mechanisms of a ketogenic diet in refractory epilepsy. Clinics, 69(10), 699–705. https://doi.org/10.6061/clinics/2014(10)09
- Doná, F., Conceição, I. M., Ulrich, H., Ribeiro, E. B., Freitas, T. A., Nencioni, A. L. A., & da Silva Fernandes, M. J. (2016). Variations of ATP and its metabolites in the hippocampus of rats subjected to pilocarpine-induced temporal lobe epilepsy. Purinergic Signalling, 12(2), 295–302. https://doi.org/10.1007/s11302-016-9504-9
- Doyle, G. A., Reiner, B. C., Crist, R. C., Rao, A. M., Ojeah, N. S., Arauco-Shapiro, G., Levinson, R. N., Shah, L. D., Sperling, M. R., Ferraro, T. N., Buono, R. J., & Berrettini, W. H. (2021). Investigation of long interspersed element-1 retrotransposons as potential risk factors for idiopathic temporal lobe epilepsy. Epilepsia, 62(6), 1329–1342. https://doi.org/10.1111/EPI.16897
- Duncan, R., Hwang, S., & Koulen, P. (2005). Effects of Vesl/Homer proteins on intracellular signaling. Experimental Biology and Medicine, 230(8), 527–535. https://doi.org/10.1177/153537020523000803
- Elmali, A. D., Auvin, S., Bast, T., Rubboli, G., & Koutroumanidis, M. (2020). Seminar in epileptology how to diagnose and classify idiopathic (genetic) generalized epilepsies. Epileptic Disorders, 22(4), 399–420. https://doi.org/10.1684/epd.2020.1192
- Eynan, M., Mullokandov, M., Krinsky, N., Biram, A., & Arieli, Y. (2015). Alteration of blood glucose levels in the rat following exposure to hyperbaric oxygen. Journal of Applied Physiology, 119, 463–467. https://doi.org/10.1152/japplphysiol.00154.2015.-Find
- Fedchenko, N., & Reifenrath, J. (2014). Different approaches for interpretation and reporting of immunohistochemistry analysis results in the bone tissue—A review. Diagnostic Pathology, 9, 221. https://doi.org/10.1186/s13000-014-0221-9
- Freitas, R. M., Silvania, M. M. V., Souza, F. C. F., Viana, G. S. B., & Fonteles, M. M. F. (2005). Oxidative stress in the hippocampus after pilocarpine-induced status epilepticus in Wistar rats. FEBS Journal, 272, 1307–1312. https://doi.org/10.1111/j.1742-4658.2004.04537.x
- Glien, M., Brandt, C., Potschka, H., Voigt, H., Ebert, U., & Löscher, W. (2001). Repeated low-dose treatment of rats with pilocarpine: Low mortality but high proportion of rats developing epilepsy. Epilepsy Research, 46(2), 111–119. https://doi.org/10.1016/S0920-1211(01)00272-8
- Haces, M. L., Hernández-fonseca, K., Medina-campos, O. N., Montiel, T., Pedraza-chaverri, J., & Massieu, L. (2008). Antioxidant capacity contributes to protection of ketone bodies against oxidative damage induced during hypoglycemic conditions. Experimental Neurology, 211, 85–96. https://doi.org/10.1016/j.expneurol.2007.12.029
- Inostroza, M., Cid, E., Menendez de la Prida, L., & Sandi, C. (2012). Different emotional disturbances in two experimental models of temporal lobe epilepsy in rats. PLoS One, 7(6), 14–17. https://doi.org/10.1371/journal.pone.0038959
- Jain, S., Nirwan, N., Agarwal, N. B., & Vohora, D. (2021). Methods for the induction of status epilepticus and temporal lobe epilepsy in rodents: The Kainic acid model and the pilocarpine model. NeuroMethods, 167, 121–144. https://doi.org/10.1007/978-1-0716-1254-5_7
- Karyakin, V. B., Vasil, D. S., Zhuravin, I. A., & Zaitsev, A. V. (2017). Early morphological and functional changes in the GABAergic system of hippocampus in the rat lithium-pilocarpine model of epilepsy. Doklady Biological Sciences, 472(2), 230–233. https://doi.org/10.1134/S0012496617010045
10.1134/S0012496617010045 Google Scholar
- Kim, D. Y., & Rho, J. M. (2008). The ketogenic diet and epilepsy. Current Opinion in Clinical Nutrition and Metabolic Care, 11(2), 113–120. https://doi.org/10.1097/MCO.0b013e3282f44c06
- Kirschstein, T., Bauer, M., Müller, L., Rüschenschmidt, C., Reitze, M., Becker, A. J., Schoch, S., & Beck, H. (2007). Loss of metabotropic glutamate receptor-dependent long-term depression via downregulation of mGluR5 after status epilepticus. Neurobiology of Disease, 27(29), 7696–7704. https://doi.org/10.1523/JNEUROSCI.4572-06.2007
- Li, R. J., Liu, Y., Liu, H. Q., & Li, J. (2020). Ketogenic diets and protective mechanisms in epilepsy, metabolic disorders, cancer, neuronal loss, and muscle and nerve degeneration. Journal of Food Biochemistry, 44(3), 1–14. https://doi.org/10.1111/jfbc.13140
- Li, R., Ma, L., Huang, H., Ou, S., Yuan, J., Xu, T., Yu, X., Liu, X., Yang, J., Chen, Y., & Peng, X. (2017). Altered expression of CXCL13 and CXCR5 in intractable temporal lobe epilepsy patients and pilocarpine-induced epileptic rats. Neurochemical Research, 42(2), 526–540. https://doi.org/10.1007/s11064-016-2102-y
- Li, T., Jia, Y., Wang, Q., Shao, X., Zhang, P., & Lv, R. (2018). Correlation between tumor necrosis factor alpha mRNA and MicroRNA-155 expression in rat models and patients with temporal lobe epilepsy. Brain Research, 17(12), 56–65. https://doi.org/10.1016/j.brainres.2018.07.013
- Likhodii, S. S., Musa, K., & Cunnane, S. C. (2002). Breath acetone as a measure of systemic ketosis assessed in a rat model of the ketogenic diet. Clinical Chemistry, 48(1), 115–120.
- Linard, B., Ferrandon, A., Koning, E., Nehlig, A., & Raffo, E. (2010). Ketogenic diet exhibits neuroprotective effects in hippocampus but fails to prevent epileptogenesis in the lithium-pilocarpine model of mesial temporal lobe epilepsy in adult rats. Epilepsia, 51(9), 1829–1836. https://doi.org/10.1111/j.1528-1167.2010.02667.x
- Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C[T]) method. Methods, 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262
- Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. (1951). Protein measurementwith the Folin phenol reagent. The Journal of Biological Chemistry, 193(1), 193–265. https://doi.org/10.1007/978-94-007-0753-5_100521
- Lu, Y., Yang, Y., Zhou, M., Liu, N., Xing, H., Liu, X., & Li, F. (2018). Ketogenic diet attenuates oxidative stress and inflammation after spinal cord injury by activating Nrf2 and suppressing the NF-kB signaling pathways. Neuroscience Letters, 14(683), 13–18. https://doi.org/10.1016/j.neulet.2018.06.016
- Mazumder, A. G., Sharma, P., Patial, V., & Singh, D. (2017). Ginkgo biloba L. attenuates spontaneous recurrent seizures and associated neurological conditions in lithium-pilocarpine rat model of temporal lobe epilepsy through inhibition of mammalian target of rapamycin pathway hyperactivation. Journal of Ethnopharmacology, 204, 8–17. https://doi.org/10.1016/j.jep.2017.03.060
- Morizawa, Y. M., Hirayama, Y., Ohno, N., Shibata, S., Shigetomi, E., Sui, Y., Nabekura, J., Sato, K., Okajima, F., Takebayashi, H., Okano, H., & Koizumi, S. (2017). Reactive astrocytes function as phagocytes after brain ischemia via ABCA1-mediated pathway. Nature Communications, 8(28), 1–14. https://doi.org/10.1038/s41467-017-00037-1
- Muller-schwarze, A. B., Tandon, P., Liu, Z., Yang, Y., Holmes, G. L., & Stafstrom, C. E. (1999). Ketogenic diet reduces spontaneous seizures and mossy fiber sprouting in the kainic acid model. Neuroreport, 10(7), 1517–1522.
- Murugan, M., & Boison, D. (2020). Ketogenic diet, neuroprotection, and antiepileptogenesis. Epilepsy Research, 167, 106444. https://doi.org/10.1016/J.EPLEPSYRES.2020.106444
- Naima, C., Luis, B., Luis, H., & Pedro, R. (2017). A ketogenic diet modifies glutamate, gamma-aminobutyric acid and agmatine levels in the hippocampus of rats: A microdialysis study. Neuroscience Letters, 3(642), 158–162. https://doi.org/10.1016/j.neulet.2017.02.014
- Ni, H., Zhao, D., & Tian, T. (2016). Ketogenic diet change cPLA2/clusterin and autophagy related gene expression and correlate with cognitive deficits and hippocampal MFs sprouting following neonatal seizures. Epilepsy Research, 120, 13–18. https://doi.org/10.1016/j.eplepsyres.2015.11.021
- Oby, E., & Janigro, D. (2006). The blood-brain barrier and epilepsy. Epilepsia, 47(11), 1761–1774. https://doi.org/10.1111/j.1528-1167.2006.00817.x
- Pinto, A., Bonucci, A., Maggi, E., Corsi, M., & Businaro, R. (2018). Anti-oxidant and anti-inflammatory activity of ketogenic diet: New perspectives for neuroprotection in alzheimer's disease. Antioxidants, 7(63), 1–16. https://doi.org/10.3390/antiox7050063
- Proper, E. A., Oestreicher, A. B., Jansen, G. H., Veelen, C. W. M. V., Van Rijen, P. C., Gispen, W. H., & De Graan, P. N. E. (2000). Immunohistochemical characterization of mossy fibre sprouting in the hippocampus of patients with pharmaco-resistant temporal lobe epilepsy. Brain, 123, 19–30.
- Racine, R. J. (1972). Modification of seizure activity by electrical modification of after-discharge. Electroencephalography and Clinical Neurophysiology, 32, 281–294.
- Reddy, D. S., & Kuruba, R. (2013). Experimental models of status epilepticus and neuronal injury for evaluation of therapeutic interventions. International Journal of Molecular Sciences, 14, 18284–18318. https://doi.org/10.3390/ijms140918284
- Rizzardi, A. E., Johnson, A. T., Vogel, R. I., Pambuccian, S. E., Henriksen, J., Skubitz, A. P. N., Metzger, G. J., & Schmechel, S. C. (2012). Quantitative comparison of immunohistochemical staining measured by digital image analysis versus pathologist visual scoring. Diagnostic Pathology, 7(42), 1–10. https://doi.org/10.1186/1746-1596-7-42
- Roy, M., Beauvieux, M., Naulin, J., El Hamrani, D., Gallis, J., & Cunnane, S. C. (2015). Rapid adaptation of rat brain and liver metabolism to a ketogenic diet: An integrated study using 1 H- and 13 C-NMR spectroscopy. Journal of Cerebral Blood Flow & Metabolism, 35 (7), 1154–1162. https://doi.org/10.1038/jcbfm.2015.29
- Rubio, C., Rubio-Osornio, M., Retana-Márquez, S., López, M., Custodio, V., & Paz, C. (2010). In vivo experimental models of epilepsy. Central Nervous System Agents in Medicinal Chemistry, 10(55), 298–309.
- Sampaio, L. P. B. (2016). Ketogenic diet for epilepsy treatment. Arquivos de Neuro-Psiquiatria, 74(10), 842–848. https://doi.org/10.1590/0004-282X20160116
- Scorza, F. A., Arida, R. M., Naffah-Mazzacoratti, M. G., Scerni, D. A., Calderazzo, L., & Cavalheiro, E. A. (2009). The pilocarpine model of epilepsy: What have we learned? Anais da Academia Brasileira de Ciencias, 81(3), 345–365. https://doi.org/10.1590/S0001-37652009000300003
- Seo, J. G., Kim, J. M., & Park, S. P. (2015). Perceived stigma is a critical factor for interictal aggression in people with epilepsy. Seizure, 26, 26–31. https://doi.org/10.1016/j.seizure.2015.01.011
- Sharma, S., Carlson, S., Sreekanth Puttachary, S. S., Showman, L., Putra, M., Kanthasamy, A. G., & Thippeswamy, T. (2019). Role of the Fyn-PKCδ signaling in SE-induced neuroinflammation and epileptogenesis in experimental models of temporal lobe epilepsy. Neurobiology of Disease, 110, 102–121. https://doi.org/10.1016/j.nbd.2017.11.008.Role
- Sharma, V., Nehru, B., Munshi, A., & Jyothy, A. (2010). Antioxidant potential of curcumin against oxidative insult induced by pentylenetetrazol in epileptic rats. Methods and Findings in Experimental and Clinical Pharmacology, 32(4), 1–6. https://doi.org/10.1358/mf.2010.32.4.1452090
- Shia, Y., Miaoa, W., Tenga, J., & Zhangb, L. (2018). Ginsenoside Rb1 protects the brain from damage induced by epileptic seizure via Nrf2/ARE signaling. Cellular Physiology and Biochemistry, 45, 212–225. https://doi.org/10.1159/000486768
- Shin, E.-J., Jeong, J. H., Chung, Y. H., Kim, W.-K., Ko, K.-H., Bach, J.-H., Hong, J.-S., Yoneda, Y., & Kim, H.-C. (2011). Role of oxidative stress in epileptic seizures. Neurochemical International, 59(2), 122–137. https://doi.org/10.1038/jid.2014.371
- Stafstrom, C. E., & Carmant, L. (2015). Seizures and epilepsy: An overview for neuroscientists. Cold Spring Harbor Perspectives in Biology, 7(5), 1–19. https://doi.org/10.1101/cshperspect.a022426
- Staley, K. (2015). Molecular mechanisms of epilepsy. Nature Neuroscience, 18(3), 367–372. https://doi.org/10.1038/nn.3947
- Stelzer, A., Laas, R., & Fleissner, A. (1985). Subcellular distribution of glutamic acid decarboxylase in rat brain regions following electroconvulsive stimulation. Journal of Neural Transmission, 62(1–2), 99–106. https://doi.org/10.1007/BF01260419
- Tang, Y., Chávez, C. E., Oyarzú, J. E., Avendaño, B. C., Mellado, L. A., Inostroza, C. A., Alvear, T. F., & Orellana, J. A. (2019). The opening of connexin 43 hemichannels alters hippocampal astrocyte function and neuronal survival in prenatally LPS-exposed adult offspring. Frontiers in Cellular Neuroscience, 13(10), 1–19. https://doi.org/10.3389/fncel.2019.00460
- Teerlink, T., Hennekes, M., Bussemaker, J., & Groeneveld, J. (1993). Simultaneous determination of creatine compounds and adenine nucleotides in myocardial tissue by high-performance liquid chromatography. Analytical Biochemistry, 214(1), 278–283. https://doi.org/10.1006/abio.1993.1488
- Thambi, M., Nathan, J., Bailur, S., Unnikrishnan, M. K., Ballal, M., & Radhakrishnan, K. (2021). Is the antiseizure effect of ketogenic diet in children with drug-resistant epilepsy mediated through proinflammatory cytokines? Epilepsy Research, 176, 106724. https://doi.org/10.1016/J.EPLEPSYRES.2021.106724
- Thijs, R. D., Surges, R., O'Brien, T. J., & Sander, J. W. (2019). Epilepsy in adults. The Lancet, 393(10172), 689–701. https://doi.org/10.1016/S0140-6736(18)32596-0
- Tkachenko, V., Kovalchuk, Y., Bondarenko, N., Bondarenko, P., Ushakova, G., & Shevtsova, A. (2018). The cardio-and neuroprotective effects of corvitin and 2-oxoglutarate in rats with pituitrin-isoproterenol-induced myocardial damage. Biochemistry Research International, 2018, 1–11. https://doi.org/10.1155/2018/9302414
- Voutsinos-Porche, B., Koning, E., Kaplan, H., Ferrandon, A., Guenounou, M., Nehlig, A., & Motte, J. (2004). Temporal patterns of the cerebral inflammatory response in the rat lithium-pilocarpine model of temporal lobe epilepsy. Neurobiology of Disease, 17(3), 385–402. https://doi.org/10.1016/j.nbd.2004.07.023
- Wang, A., Si, Z., Li, X., Lu, L., Pan, Y., & Liu, J. (2019). FK506 attenuated pilocarpine-induced epilepsy by reducing inflammation in rats. Frontiers in Neurology, 10(September), 1–9. https://doi.org/10.3389/fneur.2019.00971
- Wang, X., Wu, X., Liu, Q., Kong, G., Zhou, J., Jiang, J., Wu, X., Huang, Z., Su, W., & Zhu, Q. (2017). Ketogenic metabolism inhibits histone deacetylase (HDAC) and reduces oxidative stress after spinal cord injury in rat. Neuroscience, 366(12), 36–43. https://doi.org/10.1016/j.neuroscience.2017.09.056
- Xiang Ping, X., Ruo Peng, S., & Rui Feng, J. (2006). Effect of ketogenic diet on hippocampus mossy fiber sprouting and GluR5 expression in kainic acid induced rat model. Chinese Medical Journal, 119(22), 1925–1929. https://doi.org/10.1097/00029330-200611020-00013
- Yang, L., Mao, L., Tang, Q., Samdani, S., Liu, Z., & Wang, J. Q. (2004). A novel Ca2+−independent signaling pathway to extracellular signal-regulated protein kinase by coactivation of NMDA receptors and metabotropic glutamate receptor 5 in neurons. Journal of Neuroscience, 24(48), 10846–10857. https://doi.org/10.1523/JNEUROSCI.2496-04.2004
- Yang, L., Youngblood, H., Wu, C., & Zhang, Q. (2020). Mitochondria as a target for neuroprotection: Role of methylene blue and photobiomodulation. Translational Neurodegeneration, 9(19), 1–22. https://doi.org/10.1186/s40035-020-00197-z
- Yang, T., Lin, Z., Xie, L., Wang, Y., & Pan, S. (2017). 4,4 Diisothiocyanatostilbene-2,2?-disulfonic acid attenuates spontaneous recurrent seizures and vasogenic edema following lithium-pilocarpine induced status epilepticus. Neuroscience Letters, 653, 51–57. https://doi.org/10.1016/j.neulet.2017.05.015
- Yu, K., Hu, S., Huang, J., & Mei, L. (2011). A high-throughput colorimetric assay to measure the activity of glutamate decarboxylase. Enzyme and Microbial Technology, 49(3), 272–276. https://doi.org/10.1016/j.enzmictec.2011.06.007
- Zeng, X., Hu, K., Chen, L., Zhou, L., Luo, W., Li, C., Zong, W., Chen, S., Gao, Q., Zeng, G., Jiang, D., & Li, X. (2018). The effects of ginsenoside compound K against epilepsy by enhancing the γ-aminobutyric acid signaling pathway. Frontiers in Pharmacology, 9(September), 1–13. https://doi.org/10.3389/fphar.2018.01020
- Zhang, W., Yamawaki, R., Wen, X., Uhl, J., Diaz, J., Prince, D., & Buckmaster, P. (2009). Axon sprouting and synaptic reorganization of gabaergic interneurons:afocused look at a general question. The Journal of Neuroscience, 29(45), 14247–14256.
- Ziegler, D. R., Oliveira, D. L., Pires, C., Ribeiro, L., Leite, M., Mendez, A., Gonçalves, D., Tramontina, F., Portela, L. V., Wofchuk, S. T., Perry, M. L., & Gonçalves, C. A. (2004). Ketogenic diet fed rats have low levels of S100B in cerebrospinal fluid. Neuroscience Research, 50(4), 375–379. https://doi.org/10.1016/j.neures.2004.07.013
- Ziegler, D. R., Ribeiro, L. C., Hagenn, M., Siqueira, R., Araújo, E., Torres, I. L. S., Gottfried, C., Netto, C. A., & Gonçalves, C. (2003). Ketogenic diet increases glutathione peroxidase activity in rat hippocampus. Neurochemical Research, 28(12), 1793–1797.