Diabetic cardiomyopathy was attenuated by cinnamon treatment through the inhibition of fibro-inflammatory response and ventricular hypertrophy in diabetic rats
Maryam Farazandeh
Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
Contribution: Data curation, Formal analysis, Investigation, Methodology, Software, Writing - original draft
Search for more papers by this authorCorresponding Author
Maryam Mahmoudabady
Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
Correspondence
Maryam Mahmoudabady, Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran.
Email: [email protected]
Contribution: Conceptualization, Funding acquisition, Project administration, Supervision, Validation, Writing - review & editing
Search for more papers by this authorAli Akbar Asghari
Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
Contribution: Data curation, Formal analysis, Methodology
Search for more papers by this authorSaeed Niazmand
Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
Contribution: Formal analysis, Software, Visualization
Search for more papers by this authorMaryam Farazandeh
Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
Contribution: Data curation, Formal analysis, Investigation, Methodology, Software, Writing - original draft
Search for more papers by this authorCorresponding Author
Maryam Mahmoudabady
Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
Correspondence
Maryam Mahmoudabady, Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran.
Email: [email protected]
Contribution: Conceptualization, Funding acquisition, Project administration, Supervision, Validation, Writing - review & editing
Search for more papers by this authorAli Akbar Asghari
Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
Contribution: Data curation, Formal analysis, Methodology
Search for more papers by this authorSaeed Niazmand
Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
Contribution: Formal analysis, Software, Visualization
Search for more papers by this authorAbstract
Diabetic cardiomyopathy (DCM) is a chronic complication of diabetes that emphasizes the urgency of developing new drug therapies. With an illustrious history in traditional medicine to improve diabetes, cinnamon has been shown to possess blood lipids lowering effects and antioxidative and anti-inflammatory properties. However, the extent to which it protects the diabetic heart has yet to be determined. Forty-eight rats were administered in the study and grouped as: control; diabetic; diabetic rats given 100, 200, or 400 mg/kg cinnamon extract, metformin (300 mg/kg), valsartan (30 mg/kg), or met/val (combination of both drugs), via gavage for six weeks. Fasting blood sugar (FBS) and markers of cardiac injury including creatine kinase-muscle/brain (CK-MB), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) were evaluated in blood samples. Malondialdehyde (MDA) levels, the total contents of thiol, superoxide dismutase (SOD), and catalase (CAT) activities were measured. Histopathology study and gene expression measurement of angiotensin II type 1 receptor (AT1), atrial natriuretic peptide (ANP), beta-myosin heavy chain (β-MHC), and brain natriuretic peptide (BNP) were done on cardiac tissue. FBS and cardiac enzyme indicators were reduced in all treated groups. A reduction in MDA level and enhancement in thiol content alongside with increase of SOD and CAT activities were observed in extract groups. The decrease of inflammation and fibrosis was obvious in treated groups, notably in the high-dose extract group. Furthermore, all treated diabetic groups showed a lowering trend in AT1, ANP, β-MHC, and BNP gene expression. Cinnamon extract, in addition to its hypoglycemic and antioxidant properties, can prevent diabetic heart damage by alleviating cardiac inflammation and fibrosis.
Practical applications
This study found that cinnamon extract might protect diabetic heart damage by reducing inflammation and fibrosis in cardiac tissue, in addition to lowering blood glucose levels and increasing antioxidant activity. Our data imply that including cinnamon in diabetic participants' diets may help to reduce risk factors of cardiovascular diseases.
CONFLICT OF INTEREST
There are no conflicts of interest declared by the authors.
Supporting Information
Filename | Description |
---|---|
jfbc14206-sup-0001-DataS1.docxWord 2007 document , 21.2 KB |
DataS 1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Abd-Allah, A. R., Ahmad, S. F., Alrashidi, I., Abdel-Hamied, H. E., Zoheir, K. M., Ashour, A. E., Bakheet, S. A., & Attia, S. M. (2014). Involvement of histamine 4 receptor in the pathogenesis and progression of rheumatoid arthritis. International Immunology, 26(6), 325–340. https://doi.org/10.1093/intimm/dxt075
- Abdi, T., Mahmoudabady, M., Marzouni, H. Z., Niazmand, S., & Khazaei, M. (2021). Ginger (Zingiber Officinale roscoe) extract protects the heart against inflammation and fibrosis in diabetic rats. Canadian Journal of Diabetes, 45(3), 220–227. https://doi.org/10.1016/j.jcjd.2020.08.102
- Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121–126. https://doi.org/10.1016/s0076-6879(84)05016-3
- Ahmad, S. F., Ansari, M. A., Nadeem, A., Zoheir, K. M., Bakheet, S. A., al-Shabanah, O. A., al Rikabi, A. C., & Attia, S. M. (2016). The tyrosine kinase inhibitor tyrphostin AG126 reduces activation of inflammatory cells and increases Foxp3(+) regulatory T cells during pathogenesis of rheumatoid arthritis. Molecular Immunology, 78, 65–78. https://doi.org/10.1016/j.molimm.2016.08.017
- Ahmad, S. F., Ansari, M. A., Nadeem, A., Zoheir, K. M. A., Bakheet, S. A., Alsaad, A. M. S., Al-Shabanah, O. A., & Attia, S. M. (2017). STA-21, a STAT-3 inhibitor, attenuates the development and progression of inflammation in collagen antibody-induced arthritis. Immunobiology, 222(2), 206–217. https://doi.org/10.1016/j.imbio.2016.10.001
- Ahmad, S. F., Zoheir, K. M., Ansari, M. A., Nadeem, A., Bakheet, S. A., Al-Hoshani, A. R., Al-Shabanah, O. A., Al-Harbi, M. M., & Attia, S. M. (2015). Histamine 4 receptor promotes expression of costimulatory B7.1/B7.2 molecules, CD28 signaling and cytokine production in stress-induced immune responses. Journal of Neuroimmunology, 289, 30–42. https://doi.org/10.1016/j.jneuroim.2015.10.008
- Allen, R. W., Schwartzman, E., Baker, W. L., Coleman, C. I., & Phung, O. J. (2013). Cinnamon use in type 2 diabetes: An updated systematic review and meta-analysis. Annals of Family Medicine, 11(5), 452–459. https://doi.org/10.1370/afm.1517
- Anand, P., Murali, K. Y., Tandon, V., Murthy, P. S., & Chandra, R. (2010). Insulinotropic effect of cinnamaldehyde on transcriptional regulation of pyruvate kinase, phosphoenolpyruvate carboxykinase, and GLUT4 translocation in experimental diabetic rats. Chemico-Biological Interactions, 186(1), 72–81. https://doi.org/10.1016/j.cbi.2010.03.044
- Ansari, M. A., Nadeem, A., Bakheet, S. A., Attia, S. M., Shahid, M., Alyousef, F. S., Alswailem, M. A., Alqinyah, M., & Ahmad, S. F. (2021). Chemokine receptor 5 antagonism causes reduction in joint inflammation in a collagen-induced arthritis mouse model. Molecules, 26(7), 1839. https://doi.org/10.3390/molecules26071839
- Bafadam, S., Mahmoudabady, M., Niazmand, S., Rezaee, S. A., & Soukhtanloo, M. (2021). Cardioprotective effects of fenugreek (Trigonella foenum-graceum) seed extract in streptozotocin induced diabetic rats. Journal of Cardiovascular and Thoracic Research, 13(1), 28–36. https://doi.org/10.34172/jcvtr.2021.01
- Bakheet, S. A., Ansari, M. A., Nadeem, A., Attia, S. M., Alhoshani, A. R., Gul, G., Al-Qahtani, Q. H., Albekairi, N. A., Ibrahim, K. E., & Ahmad, S. F. (2019). CXCR3 antagonist AMG487 suppresses rheumatoid arthritis pathogenesis and progression by shifting the Th17/Treg cell balance. Cell signaling, 64, 109395. https://doi.org/10.1016/j.cellsig.2019.109395
- Beheshti, F., Hosseini, M., Hashemzehi, M., Hadipanah, M. R., & Mahmoudabady, M. (2020). The cardioprotective effects of aminoguanidine on lipopolysaccharide induced inflammation in rats. Cardiovascular Toxicology, 20(5), 474–481. https://doi.org/10.1007/s12012-020-09570-w
- Ding, Y., Qiu, L., Zhao, G., Xu, J., & Wang, S. (2010). Influence of cinnamaldehyde on viral myocarditis in mice. The American Journal of the Medical Sciences, 340(2), 114–120. https://doi.org/10.1097/MAJ.0b013e3181dd3b43
- Foretz, M., Guigas, B., Bertrand, L., Pollak, M., & Viollet, B. (2014). Metformin: From mechanisms of action to therapies. Cell Metabolism, 20(6), 953–966. https://doi.org/10.1016/j.cmet.2014.09.018
- Frati, G., Schirone, L., Chimenti, I., Yee, D., Biondi-Zoccai, G., Volpe, M., & Sciarretta, S. (2017). An overview of the inflammatory signalling mechanisms in the myocardium underlying the development of diabetic cardiomyopathy. Cardiovascular Research, 113(4), 378–388. https://doi.org/10.1093/cvr/cvx011
- Ghoreyshi, M., Mahmoudabady, M., Bafadam, S., & Niazmand, S. (2020). The protective effects of pharmacologic postconditioning of hydroalcoholic extract of Nigella sativa on functional activities and oxidative stress injury during ischemia–reperfusion in isolated rat heart. Cardiovascular Toxicology, 20(2), 130–138. https://doi.org/10.1007/s12012-019-09540-x
- Habeeb, A. F. (1972). Reaction of protein sulfhydryl groups with Ellman's reagent. Methods in Enzymology, 25, 457–464. https://doi.org/10.1016/s0076-6879(72)25041-8
- Hagenlocher, Y., Hösel, A., Bischoff, S. C., & Lorentz, A. (2016). Cinnamon extract reduces symptoms, inflammatory mediators and mast cell markers in murine IL-10(−/−) colitis. Journal of Nutritional Biochemistry, 30, 85–92. https://doi.org/10.1016/j.jnutbio.2015.11.015
- Hagenlocher, Y., Satzinger, S., Civelek, M., Feilhauer, K., Köninger, J., Bischoff, S. C., & Lorentz, A. (2017). Cinnamon reduces inflammatory response in intestinal fibroblasts in vitro and in colitis in vivo leading to decreased fibrosis. Molecular Nutrition & Food Research, 61(9), 1601085. https://doi.org/10.1002/mnfr.201601085
- Hao, P. P., Yang, J. M., Zhang, M. X., Zhang, K., Chen, Y. G., Zhang, C., & Zhang, Y. (2015). Angiotensin-(1–7) treatment mitigates right ventricular fibrosis as a distinctive feature of diabetic cardiomyopathy. American Journal of Physiology-Heart and Circulatory Physiology, 308(9), H1007–H1019. https://doi.org/10.1152/ajpheart.00563.2014
- Jubaidi, F. F., Zainalabidin, S., Taib, I. S., Hamid, Z. A., & Budin, S. B. (2021). The potential role of flavonoids in ameliorating diabetic cardiomyopathy via alleviation of cardiac oxidative stress, inflammation and apoptosis. International Journal of Molecular Sciences, 22(10), 5094. https://doi.org/10.3390/ijms22105094
- Junod, A., Lambert, A. E., Orci, L., Pictet, R., Gonet, A. E., & Renold, A. E. (1967). Studies of the diabetogenic action of streptozotocin. Proceedings of the Society for Experimental Biology and Medicine, 126(1), 201–205. https://doi.org/10.3181/00379727-126-32,401
- Kang, L. L., Zhang, D. M., Ma, C. H., Zhang, J. H., Jia, K. K., Liu, J. H., Wang, R., & Kong, L. D. (2016). Cinnamaldehyde and allopurinol reduce fructose-induced cardiac inflammation and fibrosis by attenuating CD36-mediated TLR4/6-IRAK4/1 signaling to suppress NLRP3 inflammasome activation. Scientific Reports, 6, 27460. https://doi.org/10.1038/srep27460
- Khan, M. S., Felker, G. M., Piña, I. L., Camacho, A., Bapat, D., Ibrahim, N. E., Maisel, A. S., Prescott, M. F., Ward, J. H., Solomon, S. D., Januzzi, J. L., & Butler, J. (2021). Reverse cardiac remodeling following initiation of Sacubitril/valsartan in patients with heart failure with and without diabetes. JACC: Heart Failure, 9(2), 137–145. https://doi.org/10.1016/j.jchf.2020.09.014
- Kim, S. H., Hyun, S. H., & Choung, S. Y. (2006). Anti-diabetic effect of cinnamon extract on blood glucose in db/db mice. Journal of Ethnopharmacology, 104(1–2), 119–123. https://doi.org/10.1016/j.jep.2005.08.059
- Kumar, S., Kumari, R., & Mishra, S. (2019). Pharmacological properties and their medicinal uses of Cinnamomum: A review. Journal of Pharmacy and Pharmacology, 71(12), 1735–1761. https://doi.org/10.1111/jphp.13173
- Liu, X., Song, F., Liu, C., & Zhang, Y. (2020). 25-OH-PPD inhibits hypertrophy on diabetic cardiomyopathy via the PI3k/Akt/GSK-3β signaling pathway. Experimental and Therapeutic Medicine, 20(3), 2141–2147. https://doi.org/10.3892/etm.2020.8893
- Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C[T]) method. Methods, 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262
- Lopes, B. P., Gaique, T. G., Souza, L. L., Paula, G. S., Kluck, G. E., Atella, G. C., Gomes, A. C., Simas, N. K., Kuster, R. M., Ortiga-Carvalho, T. M., Pazos-Moura, C. C., & Oliveira, K. J. (2015). Cinnamon extract improves the body composition and attenuates lipogenic processes in the liver and adipose tissue of rats. Food & Function, 6(10), 3257–3265. https://doi.org/10.1039/c5fo00569h
- Madesh, M., & Balasubramanian, K. A. (1997). A microtiter plate assay for superoxide using MTT reduction method. Indian Journal of Biochemistry and Biophysics, 34(6), 535–539.
- Mahmoudabady, M., Mathieu, M., Touihri, K., Hadad, I., Da Costa, A. M., Naeije, R., & Mc Entee, K. (2009). Cardiac insulin-like growth factor-1 and cyclins gene expression in canine models of ischemic or overpacing cardiomyopathy. BMC Cardiovascular Disorders, 9, 49. https://doi.org/10.1186/1471-2261-9-49
- Malek, V., & Gaikwad, A. B. (2019). Telmisartan and thiorphan combination treatment attenuates fibrosis and apoptosis in preventing diabetic cardiomyopathy. Cardiovascular Research, 115(2), 373–384. https://doi.org/10.1093/cvr/cvy226
- Mang, B., Wolters, M., Schmitt, B., Kelb, K., Lichtinghagen, R., Stichtenoth, D. O., & Hahn, A. (2006). Effects of a cinnamon extract on plasma glucose, HbA, and serum lipids in diabetes mellitus type 2. European Journal of Clinical Investigation, 36(5), 340–344. https://doi.org/10.1111/j.1365-2362.2006.01629.x
- Mir Heidar, H. (2004). Encyclopedia of medicinal plant of Iran (Vol. 2, 5th ed.). Islamic Culture Press.
- Murphy, S. P., Kakkar, R., McCarthy, C. P., & Januzzi, J. L., Jr. (2020). Inflammation in heart failure: JACC state-of-the-art review. Journal of the American College of Cardiology, 75(11), 1324–1340. https://doi.org/10.1016/j.jacc.2020.01.014
- Nanayakkara, G., Viswaprakash, N., Zhong, J., Kariharan, T., Quindry, J., & Amin, R. (2013). PPARγ activation improves the molecular and functional components of I(to) remodeling by angiotensin II. Current Pharmaceutical Design, 19(27), 4839–4847. https://doi.org/10.2174/1381612811319270006
- Niazmand, S., Mirzaei, M., Hosseinian, S., Khazdair, M. R., Gowhari Shabgah, A., Baghcheghi, Y., & Hedayati-Moghadam, M. (2021). The effect of Cinnamomum cassia extract on oxidative stress in the liver and kidney of STZ-induced diabetic rats. Journal of Complementary and Integrative Medicine. https://doi.org/10.1515/jcim-2021-0142 [Online ahead of print].
- Qin, B., Panickar, K. S., & Anderson, R. A. (2010). Cinnamon: Potential role in the prevention of insulin resistance, metabolic syndrome, and type 2 diabetes. Journal of Diabetes Science and Technology, 4(3), 685–693. https://doi.org/10.1177/193229681000400324
- Rafehi, H., Ververis, K., & Karagiannis, T. C. (2012). Controversies surrounding the clinical potential of cinnamon for the management of diabetes. Diabetes, Obesity and Metabolism, 14(6), 493–499. https://doi.org/10.1111/j.1463-1326.2011.01538.x
- Rao, P. V., & Gan, S. H. (2014). Cinnamon: A multifaceted medicinal plant. Evidence-Based Complementary and Alternative Medicine, 2014, 642942. https://doi.org/10.1155/2014/642942
- Schink, A., Naumoska, K., Kitanovski, Z., Kampf, C. J., Fröhlich-Nowoisky, J., Thines, E., Pöschl, U., Schuppan, D., & Lucas, K. (2018). Anti-inflammatory effects of cinnamon extract and identification of active compounds influencing the TLR2 and TLR4 signaling pathways. Food & Function, 9(11), 5950–5964. https://doi.org/10.1039/c8fo01286e
- Sciarretta, S., Paneni, F., Palano, F., Chin, D., Tocci, G., Rubattu, S., & Volpe, M. (2009). Role of the renin-angiotensin-aldosterone system and inflammatory processes in the development and progression of diastolic dysfunction. Clinical Science (London), 116(6), 467–477. https://doi.org/10.1042/cs20080390
- Shabab, S., Gholamnezhad, Z., & Mahmoudabady, M. (2021). Protective effects of medicinal plant against diabetes induced cardiac disorder: A review. Journal of Ethnopharmacology, 265, 113328. https://doi.org/10.1016/j.jep.2020.113328
- Shang, C., Lin, H., Fang, X., Wang, Y., Jiang, Z., Qu, Y., Xiang, M., Shen, Z., Xin, L., Lu, Y., & Cui, X. (2021). Beneficial effects of cinnamon and its extracts in the management of cardiovascular diseases and diabetes. Food & Function, 12(24), 12194–12220. https://doi.org/10.1039/d1fo01935j
- Sharma, S., Mandal, A., Kant, R., Jachak, S., & Jagzape, M. (2020). Is cinnamon efficacious for glycaemic control in type-2 diabetes mellitus? Journal of Pakistan Medical Association, 70(11), 2065–2069.
- Tian, J., Zhao, Y., Liu, Y., Liu, Y., Chen, K., & Lyu, S. (2017). Roles and mechanisms of herbal medicine for diabetic cardiomyopathy: Current status and perspective. Oxidative Medicine and Cellular Longevity, 2017, 8214541. https://doi.org/10.1155/2017/8214541
- Wu, T., Dong, Z., Geng, J., Sun, Y., Liu, G., Kang, W., Zhang, Y., & Ge, Z. (2011). Valsartan protects against ER stress-induced myocardial apoptosis via CHOP/puma signaling pathway in streptozotocin-induced diabetic rats. European Journal of Pharmaceutical Sciences, 42(5), 496–502. https://doi.org/10.1016/j.ejps.2011.02.005
- Yan, S. F., Ramasamy, R., Naka, Y., & Schmidt, A. M. (2003). Glycation, inflammation, and RAGE: A scaffold for the macrovascular complications of diabetes and beyond. Circulation Research, 93(12), 1159–1169. https://doi.org/10.1161/01.res.0000103862.26506.3d
- Yilmaz, S., Canpolat, U., Aydogdu, S., & Abboud, H. E. (2015). Diabetic cardiomyopathy; summary of 41 years. Korean Circulation Journal, 45(4), 266–272. https://doi.org/10.4070/kcj.2015.45.4.266
- Zargari, A. (1997). Medical plants (Vol. 4, 7th ed.). Institute of Tehran University Publications and Printing.
- Zhou, Y., He, X., Chen, Y., Huang, Y., Wu, L., & He, J. (2015). Exendin-4 attenuates cardiac hypertrophy via AMPK/mTOR signaling pathway activation. Biochemical and Biophysical Research Communications, 468(1–2), 394–399. https://doi.org/10.1016/j.bbrc.2015.09.179