Epigallocatechin gallate: Phytochemistry, bioavailability, utilization challenges, and strategies
Shomaila Mehmood
Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei, P. R. China
Contribution: Conceptualization, Writing - original draft
Search for more papers by this authorMaria Maqsood
National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
Contribution: Writing - original draft, Writing - review & editing
Search for more papers by this authorNazia Mahtab
School of Resources and Environmental Engineering, Anhui University, Hefei, P. R. China
Contribution: Writing - original draft
Search for more papers by this authorCorresponding Author
Muhammad Issa Khan
National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
Correspondence
Muhammad Issa Khan, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan.
Email: [email protected]
Contribution: Conceptualization, Writing - review & editing
Search for more papers by this authorAmna Sahar
Department of Food Engineering, University of Agriculture, Faisalabad, Pakistan
Contribution: Writing - review & editing
Search for more papers by this authorSania Zaib
Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
Contribution: Writing - original draft, Writing - review & editing
Search for more papers by this authorShehla Gul
Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
Contribution: Writing - original draft
Search for more papers by this authorShomaila Mehmood
Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei, P. R. China
Contribution: Conceptualization, Writing - original draft
Search for more papers by this authorMaria Maqsood
National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
Contribution: Writing - original draft, Writing - review & editing
Search for more papers by this authorNazia Mahtab
School of Resources and Environmental Engineering, Anhui University, Hefei, P. R. China
Contribution: Writing - original draft
Search for more papers by this authorCorresponding Author
Muhammad Issa Khan
National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
Correspondence
Muhammad Issa Khan, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan.
Email: [email protected]
Contribution: Conceptualization, Writing - review & editing
Search for more papers by this authorAmna Sahar
Department of Food Engineering, University of Agriculture, Faisalabad, Pakistan
Contribution: Writing - review & editing
Search for more papers by this authorSania Zaib
Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
Contribution: Writing - original draft, Writing - review & editing
Search for more papers by this authorShehla Gul
Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
Contribution: Writing - original draft
Search for more papers by this authorAbstract
Epigallocatechin gallate (EGCG), a green tea catechin, has gained the attention of current study due to its excellent health-promoting effects. It possesses anti-obesity, antimicrobial, anticancer, anti-inflammatory activities, and is under extensive investigation in functional foods for improvement. It is susceptible to lower stability, lesser bioavailability, and lower absorption rate due to various environmental, processing, formulations, and gastrointestinal conditions of the human body. Therefore, it is the foremost concern for the researchers to enhance its bioactivity and make it the most suitable therapeutic compound for its clinical applications. In the current review, factors affecting the bioavailability of EGCG and the possible strategies to overcome these issues are reviewed and discussed. This review summarizes structural modifications and delivery through nanoparticle-based approaches including nano-emulsions, encapsulations, and silica-based nanoparticles for effective use of EGCG in functional foods. Moreover, recent advances to enhance EGCG therapeutic efficacy by specifically targeting its molecules to increase its bioavailability and stability are also described.
Practical applications
The main green tea constituent EGCG possesses several health-promoting effects making EGCG a potential therapeutic compound to cure ailments. However, its low stability and bioavailability render its uses in many disorders. Synthesizing EGCG prodrugs by structural modifications helps against its low bioavailability and stability by overcoming premature degradation and lower absorption rate. This review paper summarizes various strategies that benefit EGCG under different physiological conditions. The esterification, nanoparticle approaches, silica-based EGCG-NPs, and EGCG formulations serve as ideal EGCG modification strategies to deliver superior concentrations with lesser toxicity for its efficient penetration and absorption across cells both in vitro and in vivo. As a result of EGCG modifications, its bioactivities would be highly improved at lower doses. The protected or modified EGCG molecule would have enhanced potential effects and stability that would contribute to the clinical applications and expand its use in various food and cosmetic industries.
CONFLICT OF INTEREST
The authors declared that they have no conflict of interest.
REFERENCES
- Abbaraju, P. L., Kumar Meka, A., Jambhrunkar, S., Zhang, J., Xu, C., Popat, A., & Yu, C. (2014). Floating tablets from mesoporous silica nanoparticles. Journal of Materials Chemistry B, 2(47), 8298–8302.
- Abeer, M. M., Rewatkar, P., Qu, Z., Talekar, M., Kleitz, F., Schmid, R., Lindén, M., Kumeria, T., & Popat, A. (2020). Silica nanoparticles: A promising platform for enhanced oral delivery of macromolecules. Journal of Controlled Release, 326, 544–555.
- Abet, V., Filace, F., Recio, J., Alvarez-Builla, J., & Burgos, C. (2017). Prodrug approach: An overview of recent cases. European Journal of Medicinal Chemistry, 127, 810–827.
- Abo-Salem, O. M., Ali, T. M., Harisa, G. I., Mehanna, O. M., Younos, I. H., & Almalki, W. H. (2020). Beneficial effects of (−)-epigallocatechin-3-O-gallate on diabetic peripheral neuropathy in the rat model. Journal of Biochemical and Tolecular toxicology, 34(8), e22508.
- Aggarwal, V., Tuli, H. S., Tania, M., Srivastava, S., Ritzer, E. E., Pandey, A., Aggarwal, D., Barwal, T. S., Jain, A., & Kaur, G. (2020). Molecular mechanisms of action of epigallocatechin gallate in cancer: Recent trends and advancement. Seminars in cancer biology. Elsevier.
- Ahmad, R. S., Butt, M. S., Huma, N., & Sultan, M. T. (2013). Green tea catechins based functional drink (Green cool) improves the antioxidant status of SD rats fed on high cholesterol and sucrose diets. Pakistan Journal of Pharmaceutical Sciences, 26(4), 721–726.
- Ahmed, N. A., Radwan, N. M., Aboul Ezz, H. S., & Salama, N. A. (2017). The antioxidant effect of Green Tea Mega EGCG against electromagnetic radiation-induced oxidative stress in the hippocampus and striatum of rats. Electromagnetic Biology and Medicine, 36(1), 63–73.
- Akhtar, N., Mahmood, T., Khan, B. A., Khan, H. M. S., & Saeed, T. (2011). Depigmenting and anti erythematic effects of 3% green tea emulsion. HealthMED, 5(5), 1165–1169.
- Alizadeh, L., Alizadeh, E., Zarebkohan, A., Ahmadi, E., Rahmati-Yamchi, M., & Salehi, R. (2020). AS1411 aptamer-functionalized chitosan-silica nanoparticles for targeted delivery of epigallocatechin gallate to the SKOV-3 ovarian cancer cell lines. Journal of Nanoparticle Research, 22(1), 1–14.
- An, Z., Qi, Y., Huang, D., Gu, X., Tian, Y., Li, P., Li, H., & Zhang, Y. (2014). EGCG inhibits Cd2+-induced apoptosis through scavenging ROS rather than chelating Cd2+ in HL-7702 cells. Toxicology Mechanisms and Methods, 24(4), 259–267.
- Andreu Fernandez, V., Almeida Toledano, L., Pizarro Lozano, N., Navarro Tapia, E., Gómez Roig, M. D., De la Torre Fornell, R., & García Algar, Ó. (2020). Bioavailability of epigallocatechin gallate administered with different nutritional strategies in healthy volunteers. Antioxidants, 9(5), 440.
- Avadhani, K. S., Manikkath, J., Tiwari, M., Chandrasekhar, M., Godavarthi, A., Vidya, S. M., Hariharapura, R. C., Kalthur, G., Udupa, N., & Mutalik, S. (2017). Skin delivery of epigallocatechin-3-gallate (EGCG) and hyaluronic acid loaded nano-transfersomes for antioxidant and anti-aging effects in UV radiation induced skin damage. Drug Delivery, 24(1), 61–74.
- Babazadeh, A., Tabibiazar, M., Hamishehkar, H., & Shi, B. (2019). Zein-CMC-PEG multiple nanocolloidal systems as a novel approach for nutra-pharmaceutical applications. Advanced Pharmaceutical Bulletin, 9(2), 262.
- Bartosikova, L., & Necas, J. (2018). Epigallocatechin gallate: A review. Veterinární medicína, 63(10), 443–467.
- Bellmann-Strobl, J., Paul, F., Wuerfel, J., Dörr, J., Infante-Duarte, C., Heidrich, E., Körtgen, B., Brandt, A., Pfüller, C., & Radbruch, H. (2021). Epigallocatechin gallate in relapsing-remitting multiple sclerosis: A randomized, placebo-controlled trial. Neurology-Neuroimmunology Neuroinflammation, 8(3), e981. https://doi.org/10.1212/NXI.0000000000000981
- Bhatia, D., Bansal, M., Bhangu, S., & Singh, G. (2019). Hepatoprotective effects of epigallocatachin gallate via mitochondrial permeability transition pore in paracetamol induced hepatotoxicity. Plant Archives, 19(2), 2162–2167.
- Bianchi, A., Marchetti, N., & Scalia, S. (2011). Photodegradation of (−)-epigallocatechin-3-gallate in topical cream formulations and its photostabilization. Journal of Pharmaceutical and Biomedical Analysis, 56(4), 692–697.
- Bulboaca, A. E., Boarescu, P.-M., Porfire, A. S., Dogaru, G., Barbalata, C., Valeanu, M., Munteanu, C., Râjnoveanu, R. M., Nicula, C. A., & Stanescu, I. C. (2020). The effect of nano-epigallocatechin-gallate on oxidative stress and matrix metalloproteinases in experimental diabetes mellitus. Antioxidants, 9(2), 172.
- Cai, Y.-Z., Sun, M., Xing, J., Luo, Q., & Corke, H. (2006). Structure–radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sciences, 78(25), 2872–2888.
- Cai, Z.-Y., Li, X.-M., Liang, J.-P., Xiang, L.-P., Wang, K.-R., Shi, Y.-L., Yang, R., Shi, M., Ye, J.-H., & Lu, J.-L. (2018). Bioavailability of tea catechins and its improvement. Molecules, 23(9), 2346.
- Cakmak, H., Kumcuoglu, S., & Tavman, S. (2019). Electrospray coating of minimally processed strawberries and evaluation of the shelf-life quality properties. Journal of Food Process Engineering, 42(5), e13082.
- Casiraghi, A., Franzè, S., Selmin, F., Dazio, V., & Minghetti, P. (2017). Investigation of the effect of different emulsifiers on the transdermal delivery of EGCG entrapped in a polymeric micelle system. Planta medica, 83(05), 405–411.
- Cerbin-Koczorowska, M., Waszyk-Nowaczyk, M., Bakun, P., Goslinski, T., & Koczorowski, T. (2021). Current view on green tea catechins formulations, their interactions with selected drugs, and prospective applications for various health conditions. Applied Sciences, 11(11), 4905.
- Chang, C.-Y., Wang, M.-C., Miyagawa, T., Chen, Z.-Y., Lin, F.-H., Chen, K.-H., Liu, G.-S., & Tseng, C.-L. (2017). Preparation of arginine–glycine–aspartic acid-modified biopolymeric nanoparticles containing epigalloccatechin-3-gallate for targeting vascular endothelial cells to inhibit corneal neovascularization. International Journal of Nanomedicine, 12, 279.
- Chen, B.-H., Hsieh, C.-H., Tsai, S.-Y., Wang, C.-Y., & Wang, C.-C. (2020). Anticancer effects of epigallocatechin-3-gallate nanoemulsion on lung cancer cells through the activation of AMP-activated protein kinase signaling pathway. Scientific Reports, 10(1), 1–11.
- Chen, C.-C., Hsieh, D.-S., Huang, K.-J., Chan, Y.-L., Hong, P.-D., Yeh, M.-K., & Wu, C.-J. (2014). Improving anticancer efficacy of (–)-epigallocatechin-3-gallate gold nanoparticles in murine B16F10 melanoma cells. Drug design, development and therapy, 8, 459.
- Chen, J., Zhang, L., Li, C., Chen, R., Liu, C., & Chen, M. (2020). Lipophilized epigallocatechin gallate derivative exerts anti-proliferation efficacy through induction of cell cycle arrest and apoptosis on DU145 human prostate cancer cells. Nutrients, 12(1), 92.
- Chen, L., Wang, W., Zhang, J., Cui, H., Ni, D., & Jiang, H. (2021). Dual effects of ascorbic acid on the stability of EGCG by the oxidation product dehydroascorbic acid promoting the oxidation and inhibiting the hydrolysis pathway. Food Chemistry, 337, 127639.
- Chen, W., Zou, M., Ma, X., Lv, R., Ding, T., & Liu, D. (2019). Co-encapsulation of EGCG and quercetin in liposomes for optimum antioxidant activity. Journal of Food Science, 84(1), 111–120.
- Cheng, C.-Y., Barro, L., Tsai, S.-T., Feng, T.-W., Wu, X.-Y., Chao, C.-W., Yu, R.-S., Chin, T.-Y., & Hsieh, M. F. (2021). Epigallocatechin-3-Gallate-Loaded Liposomes Favor Anti-Inflammation of Microglia Cells and Promote Neuroprotection. International Journal of Molecular Sciences, 22(6), 3037.
- Chiou, W.-C., Chen, J.-C., Chen, Y.-T., Yang, J.-M., Hwang, L.-H., Lyu, Y.-S., Yang, H.-Y., & Huang, C. (2021). The inhibitory effects of PGG and EGCG against the SARS-CoV-2 3C-like protease. Biochemical and Biophysical Research Communications, 591, 130–136.
- Dai, W., Ruan, C., Zhang, Y., Wang, J., Han, J., Shao, Z., Sun, Y., & Liang, J. (2020). Bioavailability enhancement of EGCG by structural modification and nano-delivery: A review. Journal of Functional Foods, 65, 103732.
- Daraee, H., Etemadi, A., Kouhi, M., Alimirzalu, S., & Akbarzadeh, A. (2016). Application of liposomes in medicine and drug delivery. Artificial cells, Nanomedicine, and Biotechnology, 44(1), 381–391.
- De Oliveira, A., Adams, S. D., Lee, L. H., Murray, S. R., Hsu, S. D., Hammond, J. R., Dickinson, D., Chen, P., & Chu, T.-C. (2013). Inhibition of herpes simplex virus type 1 with the modified green tea polyphenol palmitoyl-epigallocatechin gallate. Food and Chemical Toxicology, 52, 207–215.
- De Pace, R. C. C., Liu, X., Sun, M., Nie, S., Zhang, J., Cai, Q., Gao, W., Pan, X., Fan, Z., & Wang, S. (2013). Anticancer activities of (−)-epigallocatechin-3-gallate encapsulated nanoliposomes in MCF7 breast cancer cells. Journal of Liposome Research, 23(3), 187–196.
- Desmet, T., Soetaert, W., Bojarová, P., Křen, V., Dijkhuizen, L., Eastwick-Field, V., & Schiller, A. (2012). Enzymatic glycosylation of small molecules: Challenging substrates require tailored catalysts. Chemistry-a European Journal, 18(35), 10786–10801.
- Ding, J., Kong, X., Yao, J., Wang, J., Cheng, X., Tang, B., & He, Z. (2012). Core–shell mesoporous silica nanoparticles improve HeLa cell growth and proliferation inhibition by (−)-epigallocatechin-3-gallate by prolonging the half-life. Journal of Materials Chemistry, 22(37), 19926–19931.
- Ding, J., Yao, J., Xue, J., Li, R., Bao, B., Jiang, L., Zhu, J.-J., & He, Z. (2015). Tumor-homing cell-penetrating peptide linked to colloidal mesoporous silica encapsulated (−)-epigallocatechin-3-gallate as drug delivery system for breast cancer therapy in vivo. ACS Applied Materials & Interfaces, 7(32), 18145–18155.
- Dostal, A. M., Samavat, H., Bedell, S., Torkelson, C., Wang, R., Swenson, K., Le, C., Wu, A. H., Ursin, G., & Yuan, J.-M. (2015). The safety of green tea extract supplementation in postmenopausal women at risk for breast cancer: Results of the Minnesota Green Tea Trial. Food and Chemical Toxicology, 83, 26–35.
- Du, G.-J., Zhang, Z., Wen, X.-D., Yu, C., Calway, T., Yuan, C.-S., & Wang, C.-Z. (2012). Epigallocatechin Gallate (EGCG) is the most effective cancer chemopreventive polyphenol in green tea. Nutrients, 4(11), 1679–1691.
- Dube, A., Nicolazzo, J. A., & Larson, I. (2010). Chitosan nanoparticles enhance the intestinal absorption of the green tea catechins (+)-catechin and (−)-epigallocatechin gallate. European Journal of Pharmaceutical Sciences, 41(2), 219–225.
- Dube, A., Nicolazzo, J. A., & Larson, I. (2011). Chitosan nanoparticles enhance the plasma exposure of (−)-epigallocatechin gallate in mice through an enhancement in intestinal stability. European Journal of Pharmaceutical Sciences, 44(3), 422–426.
- EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS), Younes, M., Aggett, P., Aguilar, F., Crebelli, R., Dusemund, B., Filipič, M., Frutos, M. J., Galtier, P., & Gott, D. (2018). Scientific opinion on the safety of green tea catechins. EFSA Journal, 16(4), e05239.
- Eng, Q. Y., Thanikachalam, P. V., & Ramamurthy, S. (2018). Molecular understanding of Epigallocatechin gallate (EGCG) in cardiovascular and metabolic diseases. Journal of Ethnopharmacology, 210, 296–310.
- Faheem, N. M., & Ali, T. M. (2021). The counteracting effects of (−)-Epigallocatechin-3-Gallate on the immobilization stress-induced adverse reactions in rat pancreas. Cell Stress and Chaperones, 26(1), 159–172.
- Fan, Y., Zhang, Y., Yokoyama, W., & Yi, J. (2017). β-Lactoglobulin–chlorogenic acid conjugate-based nanoparticles for delivery of (−)-epigallocatechin-3-gallate. RSC Advances, 7(35), 21366–21374.
- Fangueiro, J. F., Andreani, T., Fernandes, L., Garcia, M. L., Egea, M. A., Silva, A. M., & Souto, E. B. (2014). Physicochemical characterization of epigallocatechin gallate lipid nanoparticles (EGCG-LNs) for ocular instillation. Colloids and Surfaces B: Biointerfaces, 123, 452–460.
- Fangueiro, J. F., Parra, A., Silva, A. M., Egea, M. A., Souto, E. B., Garcia, M. L., & Calpena, A. C. (2014). Validation of a high performance liquid chromatography method for the stabilization of epigallocatechin gallate. International Journal of Pharmaceutics, 475(1-2), 181–190.
- Farhan, M., Khan, H. Y., Oves, M., Al-Harrasi, A., Rehmani, N., Arif, H., Hadi, S. M., & Ahmad, A. (2016). Cancer therapy by catechins involves redox cycling of copper ions and generation of reactive oxygen species. Toxins, 8(2), 37.
- Forester, S. C., & Lambert, J. D. (2015). The catechol-O-methyltransferase inhibitor, tolcapone, increases the bioavailability of unmethylated (−)-epigallocatechin-3-gallate in mice. Journal of Functional Foods, 17, 183–188.
- Galati, G., Lin, A., Sultan, A. M., & O'Brien, P. J. (2006). Cellular and in vivo hepatotoxicity caused by green tea phenolic acids and catechins. Free Radical Biology and Medicine, 40(4), 570–580.
- Garcia-Fuentes, M., & Alonso, M. J. (2012). Chitosan-based drug nanocarriers: Where do we stand? Journal of Controlled Release, 161(2), 496–504.
- Gharib, A., Faezizadeh, Z., & Godarzee, M. (2013). Therapeutic efficacy of epigallocatechin gallate-loaded nanoliposomes against burn wound infection by methicillin-resistant Staphylococcus aureus. Skin Pharmacology and Physiology, 26(2), 68–75.
- Ghasemiyeh, P., & Mohammadi-Samani, S. (2018). Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages. Research in Pharmaceutical Sciences, 13(4), 288.
- Goktas, Z., Zu, Y., Abbasi, M., Galyean, S., Wu, D., Fan, Z., & Wang, S. (2020). Recent advances in nanoencapsulation of phytochemicals to combat obesity and its comorbidities. Journal of Agricultural and Food Chemistry, 68(31), 8119–8131.
- Gonzales, G. B., Van Camp, J., Vissenaekens, H., Raes, K., Smagghe, G., & Grootaert, C. (2015). Review on the use of cell cultures to study metabolism, transport, and accumulation of flavonoids: From mono-cultures to co-culture systems. Comprehensive Reviews in Food Science and ood Safety, 14(6), 741–754.
- Gonzalez-Alfonso, J. L., Leemans, L., Poveda, A., Jimenez-Barbero, J. S., Ballesteros, A. O., & Plou, F. J. (2018). Efficient α-glucosylation of epigallocatechin gallate catalyzed by cyclodextrin glucanotransferase from Thermoanaerobacter species. Journal of Agricultural and Food Chemistry, 66(28), 7402–7408.
- Gonzalez-Alfonso, J. L., Peñalver, P., Ballesteros, A. O., Morales, J. C., & Plou, F. J. (2019). Effect of α-glucosylation on the stability, antioxidant properties, toxicity, and neuroprotective activity of (–)-epigallocatechin gallate. Frontiers in Nutrition, 6, 30.
- Gu, Q., Chen, F., Chen, N., Wang, J., Li, Z., & Deng, X. (2021). Effect of EGCG on bronchial epithelial cell premalignant lesions induced by cigarette smoke and on its CYP1A1 expression. International Journal of Molecular Medicine, 48(6), 1–15.
- Hajipour, H., Hamishehkar, H., Ahmad, S. N. S., Barghi, S., Maroufi, N. F., & Taheri, R. A. (2018). Improved anticancer effects of epigallocatechin gallate using RGD-containing nanostructured lipid carriers. Artificial cells, Nanomedicine, and Biotechnology, 46(sup1), 283–292.
- Han, D.-W., Lee, J. J., Jung, D.-Y., Park, J.-C., & Hyon, S.-H. (2009). Development of epigallocatechin gallate-eluting polymeric stent and its physicochemical, biomechanical and biological evaluations. Biomedical Materials, 4(4), 044104.
- Han, S. Y., Kim, E., Hwang, K., Ratan, Z. A., Hwang, H., Kim, E.-M., Kim, D., Park, J., & Cho, J. Y. (2018). Cytoprotective effect of epigallocatechin gallate (EGCG)-5′-O-α-glucopyranoside, a novel EGCG derivative. International Journal of Molecular Sciences, 19(5), 1466.
- Hatano, T., Tsugawa, M., Kusuda, M., Taniguchi, S., Yoshida, T., Shiota, S., & Tsuchiya, T. (2008). Enhancement of antibacterial effects of epigallocatechin gallate, using ascorbic acid. Phytochemistry, 69(18), 3111–3116.
- Higdon, J. V., & Frei, B. (2003). Tea catechins and polyphenols: Health effects, metabolism, and antioxidant functions. Critical Revies in Food Science and Nutrition, 43(1), 89–143.
- Ho, S., Thoo, Y. Y., Young, D. J., & Siow, L. F. (2017). Cyclodextrin encapsulated catechin: Effect of pH, relative humidity and various food models on antioxidant stability. LWT-Food Science and Technology, 85, 232–239.
- Hong, Z., Xu, Y., Yin, J.-F., Jin, J., Jiang, Y., & Du, Q. (2014). Improving the effectiveness of (−)-epigallocatechin gallate (EGCG) against rabbit atherosclerosis by EGCG-loaded nanoparticles prepared from chitosan and polyaspartic acid. Journal of Agricultural and Food Chemistry, 62(52), 12603–12609.
- Hou, Z., Sang, S., You, H., Lee, M.-J., Hong, J., Chin, K.-V., & Yang, C. S. (2005). Mechanism of action of (−)-epigallocatechin-3-gallate: Auto-oxidation–dependent inactivation of epidermal growth factor receptor and direct effects on growth inhibition in human esophageal cancer KYSE 150 cells. Cancer Research, 65(17), 8049–8056.
- Hu, B., Ting, Y., Zeng, X., & Huang, Q. (2012). Cellular uptake and cytotoxicity of chitosan–caseinophosphopeptides nanocomplexes loaded with epigallocatechin gallate. Carbohydrate Polymers, 89(2), 362–370.
- Hu, B., Xie, M., Zhang, C., & Zeng, X. (2014). Genipin-structured peptide–polysaccharide nanoparticles with significantly improved resistance to harsh gastrointestinal environments and their potential for oral delivery of polyphenols. Journal of Agricultural and Food Chemistry, 62(51), 12443–12452.
- Hu, C., Wang, Q., Zhao, G., Yao, W., & Xia, Q. (2016). Improved oral absorption of (−)-epigallocatechin-3-gallate via self-double-emulsifying solid formulation. European Journal of Lipid Science and Technology, 118(8), 1115–1124.
- Hu, J., Webster, D., Cao, J., & Shao, A. (2018). The safety of green tea and green tea extract consumption in adults–results of a systematic review. Regulatory Toxicology and Pharmacology, 95, 412–433.
- Hu, J., Zhou, D., & Chen, Y. (2009). Preparation and antioxidant activity of green tea extract enriched in epigallocatechin (EGC) and epigallocatechin gallate (EGCG). Journal of Agricultural and ood Chemistry, 57(4), 1349–1353.
- Huang, T.-W., Ho, Y.-C., Tsai, T.-N., Tseng, C.-L., Lin, C., & Mi, F.-L. (2020). Enhancement of the permeability and activities of epigallocatechin gallate by quaternary ammonium chitosan/fucoidan nanoparticles. Carbohydrate Polymers, 242, 116312.
- Hugel, H. M., & Jackson, N. (2012). Redox chemistry of green tea polyphenols: Therapeutic benefits in neurodegenerative diseases. Mini Reviews in Medicinal Chemistry, 12(5), 380–387.
- Huo, C., Yang, H., Cui, Q. C., Dou, Q. P., & Chan, T. H. (2010). Proteasome inhibition in human breast cancer cells with high catechol-O-methyltransferase activity by green tea polyphenol EGCG analogs. Bioorganic & Medicinal Chemistry, 18(3), 1252–1258.
- Hurst, B., Dickinson, D., & Hsu, S. (2021). Epigallocatechin-3-Gallate (EGCG) inhibits Sars-Cov-2 infection in primate epithelial cells. Microbiology & Infectiouse Disease, 5(2), 1–6.
- Inoue, H., Maeda-Yamamoto, M., Nesumi, A., Tanaka, T., & Murakami, A. (2013). Low and medium but not high doses of green tea polyphenols ameliorated dextran sodium sulfate-induced hepatotoxicity and nephrotoxicity. Bioscience, Biotechnology, and Biochemistry, 77(6), 1223–1228.
- Isnan, A. P., & Jufri, M. (2017). Formulation of niosomal gel containing green tea extract (Camellia sinensis L. Kuntze) using thin-layer hydration. International Journal of Applied Pharmaceutics, 9, 38–43.
- Jang, M., Park, R., Park, Y.-I., Cha, Y.-E., Yamamoto, A., Lee, J. I., & Park, J. (2021). EGCG, a green tea polyphenol, inhibits human coronavirus replication in vitro. Biochemical and Biophysical Research Communications, 547, 23–28.
- Jatoi, A., Ellison, N., Burch, P. A., Sloan, J. A., Dakhil, S. R., Novotny, P., Tan, W., Fitch, T. R., Rowland, K. M., & Young, C. Y. (2003). A phase II trial of green tea in the treatment of patients with androgen independent metastatic prostate carcinoma. Cancer: Interdisciplinary International Journal of the American Cancer Society, 97(6), 1442–1446.
- Jin, P., Wu, H., Xu, G., Zheng, L., & Zhao, J. (2014). Epigallocatechin-3-gallate (EGCG) as a pro-osteogenic agent to enhance osteogenic differentiation of mesenchymal stem cells from human bone marrow: An in vitro study. Cell & Tissue Research, 356(2), 381–390.
- Kaihatsu, K., Yamabe, M., & Ebara, Y. (2018). Antiviral mechanism of action of epigallocatechin-3-O-gallate and its fatty acid esters. Molecules, 23(10), 2475.
- Karatas, A., Dagli, A. F., Orhan, C., Gencoglu, H., Ozgen, M., Sahin, N., Sahin, K., & Koca, S. S. (2020). Epigallocatechin 3-gallate attenuates arthritis by regulating Nrf2, HO-1, and cytokine levels in an experimental arthritis model. Biotechnology and Applied Biochemistry, 67(3), 317–322.
- Khan, M. F., Khan, M. A., Khan, Z. A., Ahamad, T., & Ansari, W. (2020). Identification of dietary molecules as therapeutic agents to combat COVID-19 using molecular docking studies. Research Article. https://doi.org/10.21203/rs.3.rs-19560/v1
10.21203/rs.3.rs?19560/v1 Google Scholar
- Kim, E., Hwang, K., Lee, J., Han, S. Y., Kim, E.-M., Park, J., & Cho, J. Y. (2018). Skin protective effect of epigallocatechin gallate. International Journal of Molecular Sciences, 19(1), 173.
- Kim, G.-E., Lee, J.-H., Jung, S.-H., Seo, E.-S., Jin, S.-D., Kim, G. J., Cha, J., Kim, E.-J., Park, K.-D., & Kim, D. (2010). Enzymatic synthesis and characterization of hydroquinone galactoside using Kluyveromyces lactis lactase. Journal of Agricultural and Food Chemistry, 58(17), 9492–9497.
- Kim, J., Nguyen, T. T. H., Kim, N. M., Moon, Y.-H., Ha, J.-M., Park, N., Lee, D.-G., Hwang, K.-H., Park, J.-S., & Kim, D. (2016). Functional properties of novel epigallocatechin gallate glucosides synthesized by using dextransucrase from Leuconostoc mesenteroides B-1299CB4. Journal of Agricultural and Food Chemistry, 64(48), 9203–9213.
- Koedrith, P., Rahman, M. M., Jang, Y. J., Shin, D. Y., & Seo, Y. R. (2021). Nanoparticles: Weighing the pros and cons from an eco-genotoxicological perspective. Journal of Cancer Prevention, 26(2), 83.
- Krupkova, O., Ferguson, S. J., & Wuertz-Kozak, K. (2016). Stability of (−)-epigallocatechin gallate and its activity in liquid formulations and delivery systems. The Journal of Nutritional Biochemistry, 37, 1–12.
- Kucera, O., Mezera, V., Moravcova, A., Endlicher, R., Lotkova, H., Drahota, Z., & Cervinkova, Z. (2015). In vitro toxicity of epigallocatechin gallate in rat liver mitochondria and hepatocytes. Oxidative Medicine and Cellular Longevity, 2015, 476180.
- Kurita, I., Maeda-Yamamoto, M., Tachibana, H., & Kamei, M. (2010). Antihypertensive effect of Benifuuki tea containing O-methylated EGCG. Journal of Agricultural and Food Chemistry, 58(3), 1903–1908.
- Labbé, D., Tremblay, A., & Bazinet, L. (2006). Effect of brewing temperature and duration on green tea catechin solubilization: Basis for production of EGC and EGCG-enriched fractions. Separation and Purification Technology, 49, 1–9.
- Lai, W.-F., Baig, M. M. F. A., Wong, W.-T., & Zhu, B. T. (2020). Epigallocatechin-3-gallate in functional food development: From concept to reality. Trends in Food Science & Technology, 102, 271–279.
- Lambert, J. D., Hong, J., Kim, D. H., Mishin, V. M., & Yang, C. S. (2004). Piperine enhances the bioavailability of the tea polyphenol (−)-epigallocatechin-3-gallate in mice. The Journal of Nutrition, 134(8), 1948–1952.
- Lambert, J. D., Kim, D. H., Zheng, R., & Yang, C. S. (2006). Transdermal delivery of (−)-epigallocatechin-3-gallate, a green tea polyphenol, in mice. Journal of Pharmacy and Pharmacology, 58(5), 599–604.
- Lambert, J. D., Lee, M.-J., Diamond, L., Ju, J., Hong, J., Bose, M., Newmark, H. L., & Yang, C. S. (2006). Dose-dependent levels of epigallocatechin-3-gallate in human colon cancer cells and mouse plasma and tissues. Drug Metabolism and Disposition, 34(1), 8–11.
- Lambert, J. D., Sang, S., Hong, J., Kwon, S.-J., Lee, M.-J., Ho, C.-T., & Yang, C. S. (2006). Peracetylation as a means of enhancing in vitro bioactivity and bioavailability of epigallocatechin-3-gallate. Drug Metabolism and Disposition, 34(12), 2111–2116.
- Landis-Piwowar, K. R., Huo, C., Chen, D., Milacic, V., Shi, G., Chan, T. H., & Dou, Q. P. (2007). A novel prodrug of the green tea polyphenol (−)-epigallocatechin-3-gallate as a potential anticancer agent. Cancer Research, 67(9), 4303–4310.
- Laudadio, E., Minnelli, C., Amici, A., Massaccesi, L., Mobbili, G., & Galeazzi, R. (2018). Liposomal formulations for an efficient encapsulation of epigallocatechin-3-gallate: An in-silico/experimental approach. Molecules, 23(2), 441.
- Lazzeroni, M., Guerrieri-Gonzaga, A., Gandini, S., Johansson, H., Serrano, D., Cazzaniga, M., Aristarco, V., Macis, D., Mora, S., & Caldarella, P. (2017). A presurgical study of lecithin formulation of green tea extract in women with early breast cancer. Cancer Prevention Research, 10(6), 363–370.
- Lemarié, F., Chang, C. W., Blatchford, D. R., Amor, R., Norris, G., Tetley, L., McConnell, G., & Dufès, C. (2013). Antitumor activity of the tea polyphenol epigallocatechin-3-gallate encapsulated in targeted vesicles after intravenous administration. Nanomedicine, 8(2), 181–192.
- Li, F., Gao, C., Yan, P., Zhang, M., Wang, Y., Hu, Y., Wu, X., Wang, X., & Sheng, J. (2018). EGCG reduces obesity and white adipose tissue gain partly through AMPK activation in mice. Frontiers in Pharmacology, 9, 1366.
- Li, K., Teng, C., & Min, Q. (2020). Advanced nanovehicles-enabled delivery systems of epigallocatechin gallate for cancer therapy. Frontiers in Chemistry, 8, 573297.
- Li, X., Li, S., Chen, M., Wang, J., Xie, B., & Sun, Z. (2018). (−)-Epigallocatechin-3-gallate (EGCG) inhibits starch digestion and improves glucose homeostasis through direct or indirect activation of PXR/CAR-mediated phase II metabolism in diabetic mice. Food & Function, 9(9), 4651–4663.
- Lin, Y., Huang, J., Gao, T., Wu, Y., Huang, D., Yan, F., & Weng, Z. (2021). Preliminary study on hepatoprotective effect and mechanism of (−)-epigallocatechin-3-gallate against acetaminophen-induced liver injury in rats. Iranian Journal of Pharmaceutical Research, 20(3), 46–56.
- Liu, B., Kang, Z., & Yan, W. (2021). Synthesis, stability, and antidiabetic activity evaluation of (−)-epigallocatechin gallate (EGCG) palmitate derived from natural tea polyphenols. Molecules, 26(2), 393.
- Liu, B., & Yan, W. (2019). Lipophilization of EGCG and effects on antioxidant activities. Food Chemistry, 272, 663–669.
- Livney, Y. D. (2015). Nanostructured delivery systems in food: Latest developments and potential future directions. Current Opinion in Food Science, 3, 125–135.
- Luo, K., Ma, C., Xing, S., An, Y., Feng, J., Dang, H., Huang, W., Qiao, L., Cheng, J., & Xie, L. (2020). White tea and its active polyphenols lower cholesterol through reduction of very-low-density lipoprotein production and induction of LDLR expression. Biomedicine & Pharmacotherapy, 127, 110146.
- Luo, P., Wang, F., Wong, N.-K., Lv, Y., Li, X., Li, M., Tipoe, G. L., So, K.-F., Xu, A., & Chen, S. (2020). Divergent roles of Kupffer cell TLR2/3 signaling in alcoholic liver disease and the protective role of EGCG. Cellular and Molecular Astroenterology and Hepatology, 9(1), 145–160.
- Luo, X., Guan, R., Chen, X., Tao, M., Ma, J., & Zhao, J. (2014). Optimization on condition of epigallocatechin-3-gallate (EGCG) nanoliposomes by response surface methodology and cellular uptake studies in Caco-2 cells. Nanoscale Research Letters, 9(1), 1–9.
- Lv, Z., Zhang, C., Shao, C., Liu, B., Liu, E., Yuan, D., Zhou, Y., & Shen, C. (2021). Research progress on the response of tea catechins to drought stress. Journal of the Science of Food and Agriculture, 101(13), 5305–5313.
- Mahato, R. (2017). Nanoemulsion as targeted drug delivery system for cancer therapeutics. Journal of Pharmaceutical Sciences and Pharmacology, 3(2), 83–97.
10.1166/jpsp.2017.1082 Google Scholar
- Mahaye, N., Thwala, M., Cowan, D., & Musee, N. (2017). Genotoxicity of metal based engineered nanoparticles in aquatic organisms: A review. Mutation Research/Reviews in Mutation Research, 773, 134–160.
- Maiti, S., & Banerjee, A. (2021). Epigallocatechin gallate and theaflavin gallate interaction in SARS-CoV-2 spike-protein central channel with reference to the hydroxychloroquine interaction: Bioinformatics and molecular docking study. Drug Development Research, 82(1), 86–96.
- Matsumura, K., Kaihatsu, K., Mori, S., Cho, H. H., Kato, N., & Hyon, S. H. (2008). Enhanced antitumor activities of (−)-epigallocatechin-3-O-gallate fatty acid monoester derivatives in vitro and in vivo. Biochemical and Biophysical Research Communications, 377(4), 1118–1122.
- McClements, D. J. (2020). Advances in nanoparticle and microparticle delivery systems for increasing the dispersibility, stability, and bioactivity of phytochemicals. Biotechnology Advances, 38, 107287.
- Meeran, S. M., Patel, S. N., Chan, T.-H., & Tollefsbol, T. O. (2011). A novel prodrug of epigallocatechin-3-gallate: Differential epigenetic hTERT repression in human breast cancer cells. Cancer Prevention Research, 4(8), 1243–1254.
- Mehnert, W., & Mäder, K. (2012). Solid lipid nanoparticles: Production, characterization and applications. Advanced rug Delivery Reviews, 64, 83–101.
- Meka, A. K., Jenkins, L. J., Dàvalos-Salas, M., Pujara, N., Wong, K. Y., Kumeria, T., Mariadason, J. M., & Popat, A. (2018). Enhanced solubility, permeability and anticancer activity of vorinostat using tailored mesoporous silica nanoparticles. Pharmaceutics, 10(4), 283.
- Meng, D., Zhu, L., Zhang, L., Ma, T., Zhang, Y., Chen, L., Shan, Y., Wang, Y., Wang, Z., & Zhou, Z. (2021). Succinylated ferritin as a novel nanocage-like vehicle of polyphenol: Structure, stability, and absorption analysis. Food Chemistry, 361, 130069.
- Mereles, D., & Hunstein, W. (2011). Epigallocatechin-3-gallate (EGCG) for clinical trials: More pitfalls than promises? International Journal of Molecular Sciences, 12(9), 5592–5603.
- Mielgo-Ayuso, J., Barrenechea, L., Alcorta, P., Larrarte, E., Margareto, J., & Labayen, I. (2014). Effects of dietary supplementation with epigallocatechin-3-gallate on weight loss, energy homeostasis, cardiometabolic risk factors and liver function in obese women: Randomised, double-blind, placebo-controlled clinical trial. British Journal of Nutrition, 111(7), 1263–1271.
- Minnelli, C., Galeazzi, R., Laudadio, E., Amici, A., Rusciano, D., Armeni, T., Cantarini, M., Stipa, P., & Mobbili, G. (2020). Monoalkylated epigallocatechin-3-gallate (C18-EGCG) as novel lipophilic EGCG derivative: Characterization and antioxidant evaluation. Antioxidants, 9(3), 208.
- Moon, Y.-H., Kim, Y.-M., & Kim, D. (2008). Characterization of novel glycosides using the glucansucrase. In Carbohydrate-Active Enzymes (pp. 206–228). Elsevier.
10.1533/9781845695750.2.206 Google Scholar
- Moon, Y.-H., Lee, J.-H., Ahn, J.-S., Nam, S.-H., Oh, D.-K., Park, D.-H., Chung, H.-J., Kang, S., Day, D. F., & Kim, D. (2006). Synthesis, structure analyses, and characterization of novel epigallocatechin gallate (EGCG) glycosides using the glucansucrase from Leuconostoc mesenteroides B-1299CB. Journal of Agricultural and Food Chemistry, 54(4), 1230–1237.
- Muqbil, I., Masood, A., Sarkar, F. H., Mohammad, R. M., & Azmi, A. S. (2011). Progress in nanotechnology based approaches to enhance the potential of chemopreventive agents. Cancers, 3(1), 428–445.
- Mura, C., Nácher, A., Merino, V., Merino-Sanjuan, M., Manconi, M., Loy, G., Fadda, A. M., & Díez-Sales, O. (2012). Design, characterization and in vitro evaluation of 5-aminosalicylic acid loaded N-succinyl-chitosan microparticles for colon specific delivery. Colloids and Surfaces B: Biointerfaces, 94, 199–205.
- Murakami, A. (2014). Dose-dependent functionality and toxicity of green tea polyphenols in experimental rodents. Archives of Biochemistry and Biophysics, 557, 3–10.
- Nadim, M., Auriol, D., Lamerant-FayeL, N., Lefevre, F., Dubanet, L., Redziniak, G., Kieda, C., & Grillon, C. (2014). Improvement of polyphenol properties upon glucosylation in a UV-induced skin cell ageing model. International Journal of Cosmetic Science, 36(6), 579–587.
- Naghavi, S., Peighambardoust, S., Azadmard-Damirchi, S., & Khiabani, M. S. (2016). Preparation and evaluation of nanoliposomes containing green tea extract and investigating its efficacy in extending the shelf life of fresh orange and pomegranate juices. Biological Forum- An International Journal., 8, 73–87.
- Naito, Y., Ushiroda, C., Mizushima, K., Inoue, R., Yasukawa, Z., Abe, A., & Takagi, T. (2020). Epigallocatechin-3-gallate (EGCG) attenuates non-alcoholic fatty liver disease via modulating the interaction between gut microbiota and bile acids. Journal of Clinical Biochemistry and Nutrition, 67, 2–9.
- Naumovski, N., Blades, B. L., & Roach, P. D. (2015). Food inhibits the oral bioavailability of the major green tea antioxidant epigallocatechin gallate in humans. Antioxidants, 4(2), 373–393.
- Negri, A., Naponelli, V., Rizzi, F., & Bettuzzi, S. (2018). Molecular targets of epigallocatechin—Gallate (EGCG): A special focus on signal transduction and cancer. Nutrients, 10(12), 1936.
- Nguyen, T. T. H., Jung, S.-H., Lee, S., Ryu, H.-J., Kang, H.-K., Moon, Y.-H., Kim, Y.-M., Kimura, A., & Kim, D. (2012). Inhibitory effects of epigallocatechin gallate and its glucoside on the human intestinal maltase inhibition. Biotechnology and Bioprocess Engineering, 17(5), 966–971.
- Nguyen, T. T. H., Kim, N. M., Yeom, S.-C., Han, S., Kwak, S.-H., Kim, S.-B., Park, J.-S., Mok, I. K., & Kim, D. (2017). Biological characterization of epigallocatechin gallate complex with different steviol glucosides. Biotechnology and Bioprocess Engineering, 22(5), 512–517.
- Nitta, S. K., & Numata, K. (2013). Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. International Journal of Molecular Sciences, 14(1), 1629–1654.
- Oritani, Y., Setoguchi, Y., Ito, R., Maruki-Uchida, H., Ichiyanagi, T., & Ito, T. (2013). Comparison of (−)-epigallocatechin-3-O-gallate (EGCG) and O-methyl EGCG bioavailability in rats. Biological and Pharmaceutical Bulletin, 36(10), 1577–1582.
- Osanai, K., Landis-Piwowar, K. R., Dou, Q. P., & Chan, T. H. (2007). A para-amino substituent on the D-ring of green tea polyphenol epigallocatechin-3-gallate as a novel proteasome inhibitor and cancer cell apoptosis inducer. Bioorganic & Medicinal Chemistry, 15(15), 5076–5082.
- Ouyang, J., Zhu, K., Liu, Z., & Huang, J. (2020). Prooxidant effects of epigallocatechin-3-gallate in health benefits and potential adverse effect. Oxidative Medicine and Cellular Longevity, 2020, 9723686.
- Pae, M., Ren, Z., Meydani, M., Shang, F., Smith, D., Meydani, S. N., & Wu, D. (2012). Dietary supplementation with high dose of epigallocatechin-3-gallate promotes inflammatory response in mice. The Journal of Nutritional Biochemistry, 23(6), 526–531.
- Panday, R., Poudel, A. J., Li, X., Adhikari, M., Ullah, M. W., & Yang, G. (2018). Amphiphilic core-shell nanoparticles: Synthesis, biophysical properties, and applications. Colloids and Surfaces B: Biointerfaces, 172, 68–81.
- Pandit, A. P., Joshi, S. R., Dalal, P. S., & Patole, V. C. (2019). Curcumin as a permeability enhancer enhanced the antihyperlipidemic activity of dietary green tea extract. BMC Complementary and Alternative Medicine, 19(1), 1–10.
- Paonessa, R., Nardi, M., Di Gioia, M. L., Olivito, F., Oliverio, M., & Procopio, A. (2018). Eco-friendly synthesis of lipophilic EGCG derivatives and antitumor and antioxidant evaluation. Natural Product Communications, 13(9), 1934578X1801300905.
- Park, J., Park, R., Jang, M., & Park, Y.-I. (2021). Therapeutic potential of EGCG, a green tea polyphenol, for treatment of coronavirus diseases. Life, 11(3), 197.
- Paximada, P., Kanavou, E., Apostolidis, E., & Mandala, I. G. (2021). Encapsulation of catechin in electrosprayed food-grade particles. Food Hydrocolloids for Health, 1, 100021.
- Peng, Y., Meng, Q., Zhou, J., Chen, B., Xi, J., Long, P., Zhang, L., & Hou, R. (2018). Nanoemulsion delivery system of tea polyphenols enhanced the bioavailability of catechins in rats. Food Chemistry, 242, 527–532.
- Peters, C. M., Green, R. J., Janle, E. M., & Ferruzzi, M. G. (2010). Formulation with ascorbic acid and sucrose modulates catechin bioavailability from green tea. Food Research International, 43(1), 95–102.
- Pillukat, M. H., Bester, C., Hensel, A., Lechtenberg, M., Petereit, F., Beckebaum, S., Müller, K.-M., & Schmidt, H. H. (2014). Concentrated green tea extract induces severe acute hepatitis in a 63-year-old woman–A case report with pharmaceutical analysis. Journal of Ethnopharmacology, 155(1), 165–170.
- Piyaviriyakul, S., Shimizu, K., Asakawa, T., Kan, T., Siripong, P., & Oku, N. (2011). Anti-angiogenic activity and intracellular distribution of epigallocatechin-3-gallate analogs. Biological and Pharmaceutical Bulletin, 34(3), 396–400.
- Pointner, A., Mölzer, C., Magnet, U., Zappe, K., Hippe, B., Tosevska, A., Tomeva, E., Dum, E., Gessner, D., & Lilja, S. (2021). The green tea polyphenol EGCG is differentially associated with telomeric regulation in normal human fibroblasts versus cancer cells. Functional Foods in Health and Disease, 11(3), 73–91.
- Proniuk, S., Liederer, B. M., & Blanchard, J. (2002). Preformulation study of epigallocatechin gallate, a promising antioxidant for topical skin cancer prevention. Journal of Pharmaceutical Sciences, 91(1), 111–116.
- Pujara, N., Giri, R., Wong, K. Y., Qu, Z., Rewatkar, P., Moniruzzaman, M., Begun, J., Ross, B. P., McGuckin, M., & Popat, A. (2021). pH–Responsive colloidal carriers assembled from β-lactoglobulin and Epsilon poly-L-lysine for oral drug delivery. Journal of Colloid and Interface Science, 589, 45–55.
- Purnaningtyas, S. R. D. (2020). The effect of EGCG in green tea (Camelia sinensis) for reducing cholesterol and uric acid levels. Strada Journal of Pharmacy, 2(1), 27–32.
- Qin, J., Fu, M., Wang, J., Huang, F., Liu, H., Huangfu, M., Yu, D., Liu, H., Li, X., & Guan, X. (2020). PTEN/AKT/mTOR signaling mediates anticancer effects of epigallocatechin-3-gallate in ovarian cancer. Oncology Reports, 43(6), 1885–1896.
- Raab, T., Barron, D., Vera, F. A., Crespy, V., Oliveira, M., & Williamson, G. (2010). Catechin glucosides: Occurrence, synthesis, and stability. Journal of Agricultural and Food Chemistry, 58(4), 2138–2149.
- Radhakrishnan, R., Kulhari, H., Pooja, D., Gudem, S., Bhargava, S., Shukla, R., & Sistla, R. (2016). Encapsulation of biophenolic phytochemical EGCG within lipid nanoparticles enhances its stability and cytotoxicity against cancer. Chemistry and Physics of Lipids, 198, 51–60.
- Rasheed, N. O. A., Ahmed, L. A., Abdallah, D. M., & El-Sayeh, B. M. (2017). Nephro-toxic effects of intraperitoneally injected EGCG in diabetic mice: Involvement of oxidative stress, inflammation and apoptosis. Scientific Reports, 7(1), 1–8.
- Rashidinejad, A., Birch, E. J., & Everett, D. W. (2016). Effects of (+)-catechin on the composition, phenolic content and antioxidant activity of full-fat cheese during ripening and recovery of (+)-catechin after simulated in vitro digestion. Antioxidants, 5(3), 29.
- Rashidinejad, A., Boostani, S., Babazadeh, A., Rehman, A., Rezaei, A., Akbari-Alavijeh, S., Shaddel, R., & Jafari, S. (2021). Opportunities and challenges for the nanodelivery of green tea catechins in functional foods. Food Research International, 142, 110186.
- Reddy, A. T., Lakshmi, S. P., Prasad, E. M., Varadacharyulu, N. C., & Kodidhela, L. D. (2020). Epigallocatechin gallate suppresses inflammation in human coronary artery endothelial cells by inhibiting NF-κB. Life Sciences, 258, 118136.
- Reygaert, W. C. (2018). Green tea catechins: Their use in treating and preventing infectious diseases. BioMed Research International, 2018, 9105261.
- Rodriguez, R., Kondo, H., Nyan, M., Hao, J., Miyahara, T., Ohya, K., & Kasugai, S. (2011). Implantation of green tea catechin α-tricalcium phosphate combination enhances bone repair in rat skull defects. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 98(2), 263–271.
- Sang, S., Lee, M.-J., Hou, Z., Ho, C.-T., & Yang, C. S. (2005). Stability of tea polyphenol (−)-epigallocatechin-3-gallate and formation of dimers and epimers under common experimental conditions. Journal of Agricultural and Food Chemistry, 53(24), 9478–9484.
- Scalia, S., Trotta, V., & Bianchi, A. (2014). In vivo human skin penetration of (–)-epigallocatechin-3-gallate from topical formulations. Acta Pharmaceutica, 64(2), 257–265.
- Senanayake, S. N. (2013). Green tea extract: Chemistry, antioxidant properties and food applications–A review. Journal of Functional Foods, 5(4), 1529–1541.
- Shao, Y., Liu, B., & Yan, W. (2019). A novel synthesis method of lipophilic EGCG palmitate and evaluation for its alpha amylase and alpha glucosidase inhibtory potential. Journal of Food Science & Technology, 4(6), 830–839.
- Sharma, P., Montes de Oca, M. K., Alkeswani, A. R., McClees, S. F., Das, T., Elmets, C. A., & Afaq, F. (2018). Tea polyphenols for the prevention of UVB-induced skin cancer. Photodermatology, Photoimmunology & Photomedicine, 34(1), 50–59.
- Shi, J., Nawaz, H., Pohorly, J., Mittal, G., Kakuda, Y., & Jiang, Y. (2005). Extraction of polyphenolics from plant material for functional foods—Engineering and technology. Food Reviews International, 21(1), 139–166.
- Shi, M., Shi, Y.-L., Li, X.-M., Yang, R., Cai, Z.-Y., Li, Q.-S., Ma, S.-C., Ye, J.-H., Lu, J.-L., & Liang, Y.-R. (2018). Food-grade encapsulation systems for (−)-epigallocatechin gallate. Molecules, 23(2), 445.
- Shidhaye, S., Vaidya, R., Sutar, S., Patwardhan, A., & Kadam, V. (2008). Solid lipid nanoparticles and nanostructured lipid carriers-innovative generations of solid lipid carriers. Current Drug Delivery, 5(4), 324–331.
- Shtay, R., Keppler, J. K., Schrader, K., & Schwarz, K. (2019). Encapsulation of (─)-epigallocatechin-3-gallate (EGCG) in solid lipid nanoparticles for food applications. Journal of Food Engineering, 244, 91–100.
- Siddiqui, I. A., Adhami, V. M., Bharali, D. J., Hafeez, B. B., Asim, M., Khwaja, S. I., Ahmad, N., Cui, H., Mousa, S. A., & Mukhtar, H. (2009). Introducing nanochemoprevention as a novel approach for cancer control: Proof of principle with green tea polyphenol epigallocatechin-3-gallate. Cancer Research, 69(5), 1712–1716.
- Simion, V., Stan, D., Constantinescu, C. A., Deleanu, M., Dragan, E., Tucureanu, M. M., Gan, A.-M., Butoi, E., Constantin, A., & Manduteanu, I. (2016). Conjugation of curcumin-loaded lipid nanoemulsions with cell-penetrating peptides increases their cellular uptake and enhances the anti-inflammatory effects in endothelial cells. Journal of Pharmacy and Pharmacology, 68(2), 195–207.
- Singh, Y., Meher, J. G., Raval, K., Khan, F. A., Chaurasia, M., Jain, N. K., & Chourasia, M. K. (2017). Nanoemulsion: Concepts, development and applications in drug delivery. Journal of Controlled Release, 252, 28–49.
- Sivanesan, I., Gopal, J., Muthu, M., Chun, S., & Oh, J.-W. (2021). Retrospecting the antioxidant activity of japanese matcha green tea–Lack of enthusiasm? Applied Sciences, 11(11), 5087.
- Smith, A. J., Kavuru, P., Arora, K. K., Kesani, S., Tan, J., Zaworotko, M. J., & Shytle, R. D. (2013). Crystal engineering of green tea epigallocatechin-3-gallate (EGCg) cocrystals and pharmacokinetic modulation in rats. Molecular Pharmaceutics, 10(8), 2948–2961.
- Soleimanifar, M., Jafari, S. M., & Assadpour, E. (2020). Encapsulation of olive leaf phenolics within electrosprayed whey protein nanoparticles; production and characterization. Food Hydrocolloids, 101, 105572.
- Song, Q., Li, D., Zhou, Y., Yang, J., Yang, W., Zhou, G., & Wen, J. (2014). Enhanced uptake and transport of (+)-catechin and (−)-epigallocatechin gallate in niosomal formulation by human intestinal Caco-2 cells. International Journal of Nanomedicine, 9, 2157.
- Soussi, A., Gargouri, M., Aouedi, S., Akrouti, A., Magne, C., & Abdelfattah, E. (2020). The (−)-epigallocatechin gallate (EGCG) ameliorates hyperglycemia and hyperlipidemia-mediated oxidative stress in liver and kidney of alloxan induced diabetic mice. Research Square. https://doi.org/10.21203/rs.3.rs-28586/v1
10.21203/rs.3.rs?28586/v1 Google Scholar
- Su, J., & Tang, Z. (2019). Effects of (−)-epigallocatechin gallate and quercetin on the activity and structure of α-amylase. Tropical Journal of Pharmaceutical Research, 18(3), 585–590.
- Sudha, T., Salaheldin, T. A., Darwish, N. H. E., & Mousa, S. A. (2021). Enhanced anti-angiogenic and anticancer efficacy of nanoformulated catechin in the chemoprevention of skin cancer. Research Square. https://doi.org/10.21203/rs.3.rs-741762/v1
10.21203/rs.3.rs?741762/v1 Google Scholar
- Summerlin, N., Qu, Z., Pujara, N., Sheng, Y., Jambhrunkar, S., McGuckin, M., & Popat, A. (2016). Colloidal mesoporous silica nanoparticles enhance the biological activity of resveratrol. Colloids and Surfaces B: Biointerfaces, 144, 1–7.
- Suresh, S. V., & Byers, D. M. (2021). Combined curcumin and EGCG target key markers in hepatocellular and colorectal cancers. Journal of Restorative Medicine, 11(1). https://doi.org/10.14200/jrm.2021.0103
10.14200/jrm.2021.0103 Google Scholar
- Suzuki, M., Yoshino, K., Maeda-Yamamoto, M., Miyase, T., & Sano, M. (2000). Inhibitory effects of tea catechins and O-methylated derivatives of (−)-epigallocatechin-3-O-gallate on mouse type IV allergy. Journal of Agricultural and Food chemistry, 48(11), 5649–5653.
- Thuan, N. H., & Sohng, J. K. (2013). Recent biotechnological progress in enzymatic synthesis of glycosides. Journal of Industrial Microbiology and Biotechnology, 40(12), 1329–1356.
- Tominari, T., Ichimaru, R., Yoshinouchi, S., Matsumoto, C., Watanabe, K., Hirata, M., Grundler, F. M., Inada, M., & Miyaura, C. (2017). Effects of O-methylated (−)-epigallocatechin gallate (EGCG) on LPS-induced osteoclastogenesis, bone resorption, and alveolar bone loss in mice. FEBS Open Bio, 7(12), 1972–1981.
- Tong, X., Taylor, A. W., Giles, L., Wittert, G. A., & Shi, Z. (2014). Tea consumption is inversely related to 5-year blood pressure change among adults in Jiangsu, China: A cross-sectional study. Nutrition Journal, 13(1), 1–12.
- Tsvetkov, V., Varizhuk, A., Kozlovskaya, L., Shtro, A., Lebedeva, O., Komissarov, A., Vedekhina, T., Manuvera, V., Zubkova, O., & Eremeev, A. (2021). EGCG as an anti-SARS-CoV-2 agent: Preventive versus therapeutic potential against original and mutant virus. Biochimie, 191, 27–32.
- Tyagi, N., De, R., Begun, J., & Popat, A. (2017). Cancer therapeutics with epigallocatechin-3-gallate encapsulated in biopolymeric nanoparticles. International Journal of Pharmaceutics, 518(1-2), 220–227.
- Wang, C. C., Xu, H., Man, G. C. W., Zhang, T., Chu, K. O., Chu, C. Y., Cheng, J. T. Y., Li, G., He, Y. X., & Qin, L. (2013). Prodrug of green tea epigallocatechin-3-gallate (Pro-EGCG) as a potent anti-angiogenesis agent for endometriosis in mice. Angiogenesis, 16(1), 59–69.
- Wang, D., Gao, Q., Wang, T., Kan, Z., Li, X., Hu, L., Peng, C.-Y., Qian, F., Wang, Y., & Granato, D. (2020). Green tea polyphenols and epigallocatechin-3-gallate protect against perfluorodecanoic acid induced liver damage and inflammation in mice by inhibiting NLRP3 inflammasome activation. Food Research International, 127, 108628.
- Wang, D., Taylor, E. W., Wang, Y., Wan, X., & Zhang, J. (2012). Encapsulated nanoepigallocatechin-3-gallate and elemental selenium nanoparticles as paradigms for nanochemoprevention. International Journal of Nanomedicine, 7, 1711.
- Wang, M., Zhang, X., Zhong, Y. J., Perera, N., & Shahidi, F. (2016). Antiglycation activity of lipophilized epigallocatechin gallate (EGCG) derivatives. Food chemistry, 190, 1022–1026.
- Wang, S., Jin, R., Wang, R., Hu, Y., Dong, X., & e Xu, A. (2016). The design, synthesis and biological evaluation of pro-EGCG derivatives as novel anti-vitiligo agents. RSC Advances, 6(108), 106308–106315.
- Wang, W., Zhang, Z.-Z., Wu, Y., Wang, R.-Q., Chen, J.-W., Chen, J., Zhang, Y., Chen, Y.-J., Geng, M., & Xu, Z.-D. (2018). (–)-Epigallocatechin-3-gallate ameliorates atherosclerosis and modulates hepatic lipid metabolic gene expression in apolipoprotein E knockout mice: Involvement of TTC39B. Frontiers in Pharmacology, 9, 195.
- Wei, R., Wirkus, J., Yang, Z., Machuca, J., Esparza, Y., & Mackenzie, G. G. (2020). EGCG sensitizes chemotherapeutic-induced cytotoxicity by targeting the ERK pathway in multiple cancer cell lines. Archives of Biochemistry and Biophysics, 692, 108546.
- Weignerová, L., & Křen, V. (2010). Enzymatic processing of bioactive glycosides from natural sources. Carbohydrates in Sustainable Development, II, 121–146.
- Wu, W., Dong, J., Gou, H., Geng, R., Yang, X., Chen, D., Xiang, B., Zhang, Z., Ren, S., & Chen, L. (2021). EGCG synergizes the therapeutic effect of irinotecan through enhanced DNA damage in human colorectal cancer cells. Journal of Cellular and Molecular Medicine., 25(16), 7913–7921.
- Wu, Y., Lu, Z., Li, Y., Yang, J., & Zhang, X. (2020). Surface modification of iron oxide-based magnetic nanoparticles for cerebral theranostics: Application and prospection. Nanomaterials, 10(8), 1441.
- Xia, S., Xu, S., Zhang, X., Zhong, F., & Wang, Z. (2009). Nanoliposomes mediate coenzyme Q10 transport and accumulation across human intestinal Caco-2 cell monolayer. Journal of Agricultural and Food Chemistry, 57(17), 7989–7996.
- Xu, J., Xu, Z., & Zheng, W. (2017). A review of the antiviral role of green tea catechins. Molecules, 22(8), 1337.
- Xu, Y.-Q., Yu, P., & Zhou, W. (2019). Combined effect of pH and temperature on the stability and antioxidant capacity of epigallocatechin gallate (EGCG) in aqueous system. Journal of Food Engineering, 250, 46–54.
- Xue, J., Tan, C., Zhang, X., Feng, B., & Xia, S. (2014). Fabrication of epigallocatechin-3-gallate nanocarrier based on glycosylated casein: Stability and interaction mechanism. Journal of Agricultural and Food Chemistry, 62(20), 4677–4684.
- Yan, Z., Zhong, Y., Duan, Y., Chen, Q., & Li, F. (2020). Antioxidant mechanism of tea polyphenols and its impact on health benefits. Animal Nutrition, 6(2), 115–123.
- Yang, H., Sun, D. K., Chen, D., Cui, Q. C., Gu, Y. Y., Jiang, T., Chen, W., Wan, S. B., & Dou, Q. P. (2010). Antitumor activity of novel fluoro-substituted (–)-epigallocatechin-3-gallate analogs. Cancer Letters, 292(1), 48–53.
- Yang, Y., Han, X., Chen, Y., Wu, J., Li, M., Yang, H., Xu, W., & Wei, L. (2021). EGCG induces pro-inflammatory response in macrophages to prevent bacterial infection through the 67LR/p38/JNK signaling pathway. Journal of Agricultural and Food Chemistry, 69(20), 5638–5651.
- Yasuda, M., Matsuda, C., Ohshiro, A., Inouye, K., & Tabata, M. (2012). Effects of metal ions (Cu2+, Fe2+ and Fe3+) on HPLC analysis of catechins. Food Chemistry, 133(2), 518–525.
- Ye, J.-H., & Augustin, M. A. (2019). Nano-and micro-particles for delivery of catechins: Physical and biological performance. Critical Reviews in Food Science and Nutrition, 59(10), 1563–1579.
- Yi, Z., Chen, G., Chen, X., Sun, Z., Ma, X., Su, W., Deng, Z., Ma, L., Ran, Y., & Tong, Q. (2020). Modular assembly of versatile nanoparticles with epigallocatechin gallate. ACS Sustainable Chemistry & Engineering, 8(26), 9833–9845.
- Zawani, M., & Fauzi, M. B. (2021). Epigallocatechin gallate: The emerging wound healing potential of multifunctional biomaterials for future precision medicine treatment strategies. Polymers, 13(21), 3656.
- Zeng, J., Xu, H., Cai, Y., Xuan, Y., Liu, J., Gao, Y., & Luan, Q. (2018). The effect of ultrasound, oxygen and sunlight on the stability of (−)-epigallocatechin gallate. Molecules, 23(9), 2394.
- Zeng, L., Ma, M., Li, C., & Luo, L. (2017). Stability of tea polyphenols solution with different pH at different temperatures. International Journal of Food Properties, 20(1), 1–18.
- Zeng, L., Yan, J., Luo, L., Ma, M., & Zhu, H. (2017). Preparation and characterization of (−)-Epigallocatechin-3-gallate (EGCG)-loaded nanoparticles and their inhibitory effects on Human breast cancer MCF-7 cells. Scientific Reports, 7(1), 1–15.
- Zhang, B., Yao, R., Hu, C., Maitz, M. F., Wu, H., Liu, K., Yang, L., Luo, R., & Wang, Y. (2021). Epigallocatechin gallate mediated sandwich-like coating for mimicking endothelium with sustained therapeutic nitric oxide generation and heparin release. Biomaterials, 269, 120418.
- Zhang, G., & Zhang, J. (2018). Enhanced oral bioavailability of EGCG using pH-sensitive polymeric nanoparticles: Characterization and in vivo investigation on nephrotic syndrome rats. Drug Design, Development and Therapy, 12, 2509.
- Zhang, J., Nie, S., Martinez-Zaguilan, R., Sennoune, S. R., & Wang, S. (2016). Formulation, characteristics and antiatherogenic bioactivities of CD36-targeted epigallocatechin gallate (EGCG)-loaded nanoparticles. The Journal of Nutritional Biochemistry, 30, 14–23.
- Zhang, J., Nie, S., & Wang, S. (2013). Nanoencapsulation enhances epigallocatechin-3-gallate stability and its antiatherogenic bioactivities in macrophages. Journal of Agricultural and Food Chemistry, 61(38), 9200–9209.
- Zhang, J., Zhou, X., Yu, Q., Yang, L., Sun, D., Zhou, Y., & Liu, J. (2014). Epigallocatechin-3-gallate (EGCG)-stabilized selenium nanoparticles coated with Tet-1 peptide to reduce amyloid-β aggregation and cytotoxicity. ACS Applied Materials & Interfaces, 6(11), 8475–8487.
- Zhang, L., Chen, W., Tu, G., Chen, X., Lu, Y., Wu, L., & Zheng, D. (2020). Enhanced chemotherapeutic efficacy of PLGA-encapsulated epigallocatechin gallate (EGCG) against human lung cancer. International Journal of Nanomedicine, 15, 4417.
- Zhang, M., Zhang, X., Ho, C.-T., & Huang, Q. (2018). Chemistry and health effect of tea polyphenol (−)-epigallocatechin 3-O-(3-O-methyl) gallate. Journal of Agricultural and Food Chemistry, 67(19), 5374–5378.
- Zhang, W.-H., Chen, Y., Gao, L.-M., & Cao, Y.-N. (2021). Neuroprotective role of epigallocatechin-3-gallate in acute glaucoma via the nuclear factor-κB signalling pathway. Experimental and Therapeutic Medicine, 22(5), 1–9.
- Zhang, X., Wang, J., Hu, J.-M., Huang, Y.-W., Wu, X.-Y., Zi, C.-T., Wang, X.-J., & Sheng, J. (2016). Synthesis and biological testing of novel glucosylated epigallocatechin gallate (EGCG) derivatives. Molecules, 21(5), 620.
- Zhang, Z., Zhang, X., Bi, K., He, Y., Yan, W., Yang, C. S., & Zhang, J. (2021). Potential protective mechanisms of green tea polyphenol EGCG against COVID-19. Trends in Food Science & Technology, 114, 11–24.
- Zhao, J., Blayney, A., Liu, X., Gandy, L., Jin, W., Yan, L., Ha, J.-H., Canning, A. J., Connelly, M., & Yang, C. (2021). EGCG binds intrinsically disordered N-terminal domain of p53 and disrupts p53-MDM2 interaction. Nature Communications, 12(1), 1–11.
- Zhong, Y., Ma, C.-M., & Shahidi, F. (2012). Antioxidant and antiviral activities of lipophilic epigallocatechin gallate (EGCG) derivatives. Journal of Functional Foods, 4(1), 87–93.
- Zhong, Y., & Shahidi, F. (2011). Lipophilized epigallocatechin gallate (EGCG) derivatives as novel antioxidants. Journal of Agricultural and Food Chemistry, 59(12), 6526–6533.
- Zhong, Y., & Shahidi, F. (2012). Lipophilised epigallocatechin gallate (EGCG) derivatives and their antioxidant potential in food and biological systems. Food Chemistry, 131(1), 22–30.
- Zhu, S., Meng, N., Chen, S., & Li, Y. (2020). Study of acetylated EGCG synthesis by enzymatic transesterification in organic media. Arabian Journal of Chemistry, 13(12), 8824–8834.
- Zi, C.-T., Sun, P.-Y., Zhang, N., Tang, H., Yang, H.-N., Wang, Q., Wang, Y.-N., Wang, J., Wang, X.-J., & Sheng, J. (2020). Synthesis of (−)-epigallocatechin-3-gallate derivative containing a triazole ring and combined with cisplatin/paclitaxel inhibits NSCLC cancer cells by decreasing phosphorylation of the EGFR. Journal of Chemical Research, 44(9-10), 586–591.
- Zinellu, A., Sotgia, S., Scanu, B., Forteschi, M., Giordo, R., Cossu, A., Posadino, A. M., Carru, C., & Pintus, G. (2015). Human serum albumin increases the stability of green tea catechins in aqueous physiological conditions. PLoS ONE, 10(7), e0134690.
- Zokti, J., Badlishah, A., Baharin, S., Abdulkarim, S., & Abas, F. (2016). Microencapsulation of green tea extracts and its effects on the physico-chemical and functional properties of mango drinks. International Journal of Basic & Applied Sciences, IJBAS-IJENS, 16, 16–32.
- Zou, L., Peng, S., Liu, W., Chen, X., & Liu, C. (2015). A novel delivery system dextran sulfate coated amphiphilic chitosan derivatives-based nanoliposome: Capacity to improve in vitro digestion stability of (−)-epigallocatechin gallate. Food Research International, 69, 114–120.
- Zou, L.-Q., Peng, S.-F., Liu, W., Gan, L., Liu, W.-L., Liang, R.-H., Liu, C.-M., Niu, J., Cao, Y.-L., & Liu, Z. (2014). Improved in vitro digestion stability of (−)-epigallocatechin gallate through nanoliposome encapsulation. Food Research International, 64, 492–499.
- Zu, Y., Yuan, S., Zhao, X., Zhang, Y., Zhang, X., & Jiang, R. (2009). "Preparation, activity and targeting ability evaluation in vitro on folate mediated epigallocatechin-3-gallate albumin nanoparticles." Yao xue xue bao=. Acta Pharmaceutica Sinica, 44(5), 525–531.
- Zwolak, I. (2021). Epigallocatechin gallate for management of heavy metal-induced oxidative stress: Mechanisms of action, efficacy, and concerns. International Journal of Molecular Sciences, 22(8), 4027.