Niazimicin: A thiocarbamate glycoside from Moringa oleifera Lam. seeds with a novel neuroprotective activity
Corresponding Author
Eman M. Abdelsayed
School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
Correspondence
Eman M. Abdelsayed, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, 11578 Cairo, Egypt.
Email: [email protected] and [email protected]
Contribution: Conceptualization, Investigation, Resources, Writing - original draft
Search for more papers by this authorDalia Medhat
Department of Medical Biochemistry, National Research Centre, Giza, Egypt
Contribution: Formal analysis, Methodology, Writing - review & editing
Search for more papers by this authorYasmine M. Mandour
School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
Contribution: Formal analysis, Software, Writing - original draft
Search for more papers by this authorRasha S. Hanafi
Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
Contribution: Project administration, Supervision
Search for more papers by this authorAmira Abdel Motaal
Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
Contribution: Conceptualization, Supervision, Writing - review & editing
Search for more papers by this authorCorresponding Author
Eman M. Abdelsayed
School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
Correspondence
Eman M. Abdelsayed, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, 11578 Cairo, Egypt.
Email: [email protected] and [email protected]
Contribution: Conceptualization, Investigation, Resources, Writing - original draft
Search for more papers by this authorDalia Medhat
Department of Medical Biochemistry, National Research Centre, Giza, Egypt
Contribution: Formal analysis, Methodology, Writing - review & editing
Search for more papers by this authorYasmine M. Mandour
School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
Contribution: Formal analysis, Software, Writing - original draft
Search for more papers by this authorRasha S. Hanafi
Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
Contribution: Project administration, Supervision
Search for more papers by this authorAmira Abdel Motaal
Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
Contribution: Conceptualization, Supervision, Writing - review & editing
Search for more papers by this authorAbstract
Moringa oleifera (MO) known as the miracle tree is a famous nutritional source in many countries. In this study, the neuroprotective activity of MO seeds was investigated. Fractions of the 70% ethanol seed extract of MO were injected at a dose of 250 mg kg−1 day−1 to albino rats for 15 days, after-which induction of dementia was done using 100 mg/kg AlCl3 over 30 days. Results revealed that all fractions ameliorated the effects of AlCl3 where methylene chloride and ethyl acetate fractions, containing the major bioactive compound niazimicin (NZ), showed the best activities. Biological investigations proved NZ to be a highly potent neuroprotective drug lead as a first report, by causing a decrease in the levels of malondialdehyde, cholinesterase, nitric oxide (NO) and amyloid β by 47%, 34%, 53% and 59%, respectively, and increasing glutathione levels by 54%. Molecular docking studies suggested NZ neuroprotective effects to be mediated by inhibition of caspase-3 and inducible nitric oxide synthase enzymes.
Practical applications
The current findings present the neuroprotective effect of Moringa oleifera seeds consumed as a food supplement and in daily diet. In addition, niazimicin is a promising lead for the development of novel agents against Alzheimer’s disease as seen by the reported results.
CONFLICTS OF INTEREST
The author declares that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.
Supporting Information
Filename | Description |
---|---|
jfbc13992-sup-0001-Supinfo.docxWord 2007 document , 367.1 KB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Abdelsayed, E. M., Motaal, A. A., & Hanafi, R. S. (2021). Novel UPLC-MS/MS method for standardization of niazimicin content in edible seeds and leaves of Moringa oleifera Lam. Journal of Food & Drug Analysis, 29(1), https://doi.org/10.38212/2224-6614.3282
- Amaglo, N. K., Bennett, R. N., Lo Curto, R. B., Rosa, E. A. S., Lo Turco, V., Giuffrida, A., Curto, A. L., Crea, F., & Timpo, G. M. (2010). Profiling selected phytochemicals and nutrients in different tissues of the multipurpose tree Moringa oleifera L., grown in Ghana. Food Chemistry, 122(4), 1047–1054. https://doi.org/10.1016/j.foodchem.2010.03.073
- Anwar, F., Latif, S., Ashraf, M., & Gilani, A. H. (2007). Moringa oleifera: A food plant with multiple medicinal uses. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 21(1), 17–25. https://doi.org/10.1002/ptr.2023
- Barakat, H., & Ghazal, G. A. (2016). Physicochemical properties of Moringa oleifera seeds and their edible oil cultivated at different regions in Egypt. Food and Nutrition Sciences, 7(6), 472–484. https://doi.org/10.4236/fns.2016.76049
- Beutler, E. (1963). Improved method for the determination of blood glutathione. Journal of Laboratory & Clinical Medicine, 61, 882–888.
- Bhattacharya, A., Tiwari, P., Sahu, P. K., & Kumar, S. (2018). A review of the phytochemical and pharmacological characteristics of Moringa oleifera. Journal of Pharmacy & Bioallied Sciences, 10(4), 181–191. https://doi.org/10.4103/JPBS.JPBS_126_18
- Brilhante, R. S. N., Sales, J. A., Pereira, V. S., Castelo-Branco, D. D. S. C. M., Cordeiro, R. D. A., de Souza Sampaio, C. M., de Araújo Neto Paiva, M., Santos, J. B. F. D., Sidrim, J. J. C., & Rocha, M. F. G. (2017). Research advances on the multiple uses of Moringa oleifera: A sustainable alternative for socially neglected population. Asian Pacific Journal of Tropical Medicine, 10(7), 621–630. https://doi.org/10.1016/j.apjtm.2017.07.002
- Coppin, J. P., Xu, Y., Chen, H., Pan, M.-H., Ho, C.-T., Juliani, R., Simon, J. E., & Wu, Q. (2013). Determination of flavonoids by LC/MS and anti-inflammatory activity in Moringa oleifera. Journal of Functional Foods, 5(4), 1892–1899. https://doi.org/10.1016/j.jff.2013.09.010
- Cummings, J. L. (2000). Cholinesterase inhibitors: A new class of psychotropic compounds. American Journal of Psychiatry, 157(1), 4–15. https://doi.org/10.1176/ajp.157.1.4
- Dhakad, A. K., Ikram, M., Sharma, S., Khan, S., Pandey, V. V., & Singh, A. (2019). Biological, nutritional, and therapeutic significance of Moringa oleifera Lam. Phytotherapy Research: PTR, 33(11), 2870–2903. https://doi.org/10.1002/ptr.6475
- El-Khayat, Z., El-Matty, D. A., Rasheed, W., Hussein, J., Shaker, O., & Raafat, J. (2013). Role of cell membrane fatty acids in insulin sensitivity in diabetic rats treated with flaxseed oil. International Journal of Pharmacy & Pharmaceutical Sciences, 5(2), 146–151.
- Ellman, G. L., Courtney, K. D., Andres, V. Jr, & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88–95. https://doi.org/10.1016/0006-2952(61)90145-9
- Fedorov, R., Hartmann, E., Ghosh, D. K., & Schlichting, I. (2003). Structural basis for the specificity of the nitric-oxide synthase inhibitors W1400 and Nω-Propyl-l-Arg for the inducible and neuronal isoforms. Journal of Biological Chemistry, 278(46), 45818–45825. https://doi.org/10.1074/jbc.M306030200
- Fernandes, Â., Bancessi, A., Pinela, J., Dias, M. I., Liberal, Â., Calhelha, R. C., Ćirić, A., Soković, M., Catarino, L., Ferreira, I. C. F. R., & Barros, L. (2021). Nutritional and phytochemical profiles and biological activities of Moringa oleifera Lam. edible parts from Guinea-Bissau (West Africa). Food Chemistry, 341(Pt 1), 128229. https://doi.org/10.1016/j.foodchem.2020.128229
- Ganguly, R., Hazra, R., Ray, K., & Guha, D. (2010). Effect of Moringa oleifera in experimental model of Alzheimer’s disease: Role of antioxidants. Annals of Neurosciences, 12(3), 33–36. https://doi.org/10.5214/ans.0972.7531.2005.120301
10.5214/ans.0972.7531.2005.120301 Google Scholar
- Garcia-Calvo, M., Peterson, E. P., Leiting, B., Ruel, R., Nicholson, D. W., & Thornberry, N. A. (1998). Inhibition of human caspases by peptide-based and macromolecular inhibitors. Journal of Biological Chemistry, 273(49), 32608–32613. https://doi.org/10.1074/jbc.273.49.32608
- Gervais, F. G., Xu, D., Robertson, G. S., Vaillancourt, J. P., Zhu, Y., Huang, J. Q., LeBlanc, A., Smith, D., Rigby, M., Shearman, M. S., Clarke, E. E., Zheng, H., Van Der Ploeg, L. H. T., Ruffolo, S. C., Thornberry, N. A., Xanthoudakis, S., Zamboni, R. J., Roy, S., & Nicholson, D. W. (1999). Involvement of caspases in proteolytic cleavage of Alzheimer’s amyloid-β precursor protein and amyloidogenic Aβ peptide formation. Cell, 97(3), 395–406. https://doi.org/10.1016/S0092-8674(00)80748-5
- González-Burgos, E., Ureña-Vacas, I., Sánchez, M., & Gómez-Serranillos, M. P. (2021). Nutritional value of Moringa oleifera Lam. leaf powder extracts and their neuroprotective effects via antioxidative and mitochondrial regulation. Nutrients, 13(7), 2203. https://doi.org/10.3390/nu13072203
- Gopalakrishnan, L., Doriya, K., & Kumar, D. S. (2016). Moringa oleifera: A review on nutritive importance and its medicinal application. Food Science and Human Wellness, 5(2), 49–56. https://doi.org/10.1016/j.fshw.2016.04.001
10.1016/j.fshw.2016.04.001 Google Scholar
- Häcker, H.-G., Sisay, M. T., & Gütschow, M. (2011). Allosteric modulation of caspases. Pharmacology & Therapeutics, 132(2), 180–195. https://doi.org/10.1016/j.pharmthera.2011.07.003
- Hardy, J. A., Lam, J., Nguyen, J. T., O’Brien, T., & Wells, J. A. (2004). Discovery of an allosteric site in the caspases. Proceedings of the National Academy of Sciences, 101(34), 12461–12466. https://doi.org/10.1073/pnas.0404781101
- Igado, O. O., & Olopade, J. O. (2016). A review on the possible neuroprotective effects of Moringa oleifera leaf extract. Nigerian Journal of Physiological Sciences, 31(2), 183–187.
- Jones, G., Willett, P., Glen, R. C., Leach, A. R., & Taylor, R. (1997). Development and validation of a genetic algorithm for flexible docking. Journal of Molecular Biology, 267(3), 727–748. https://doi.org/10.1006/JMBI.1996.0897
- Kang, H. J., Lee, Y., Jeong, M. S., Kim, M., Bae, K.-H., Kim, S. J., & Chung, S. J. (2012). Molecular insight into the role of the leucine residue on the L2 loop in the catalytic activity of caspases 3 and 7. Bioscience Reports, 32(3), 305–313. https://doi.org/10.1042/BSR20120009
- Khusro, A., Aarti, C., Salem, A. Z. M., Pliego, A. B., & Rivas-Caceres, R. R. (2020). Methyl-coenzyme M reductase (MCR) receptor as potential drug target for inhibiting methanogenesis in horses using Moringa oleifera L.: An in silico docking study. Journal of Equine Veterinary Science, 88, 102949. https://doi.org/10.1016/j.jevs.2020.102949
- Kou, X., Li, B., Olayanju, J. B., Drake, J. M., & Chen, N. (2018). Nutraceutical or pharmacological potential of Moringa oleifera Lam. Nutrients, 10(3), 343. https://doi.org/10.3390/nu10030343
- Krishna Deepak, R. N. V., Abdullah, A., Talwar, P., Fan, H., & Ravanan, P. (2018). Identification of FDA-approved drugs as novel allosteric inhibitors of human executioner caspases. Proteins: Structure, Function, and Bioinformatics, 86(11), 1202–1210. https://doi.org/10.1002/prot.25601
- Labrousse, V. F., Nadjar, A., Joffre, C., Costes, L., Aubert, A., Gregoire, S., Bretillon, L., & Laye, S. (2012). Short-term long chain omega3 diet protects from neuroinflammatory processes and memory impairment in aged mice. PLoS One, 7(5), e36861. https://doi.org/10.1371/journal.pone.0036861
- Lakshmi, B. V. S., Sudhakar, M., & Prakash, K. S. (2015). Protective effect of selenium against aluminum chloride-induced Alzheimer’s disease: Behavioral and biochemical alterations in rats. Biological Trace Element Research, 165(1), 67–74. https://doi.org/10.1007/s12011-015-0229-3
- Lee, H.-J., Jeong, Y.-J., Lee, T.-S., Park, Y.-Y., Chae, W.-G., Chung, I.-K., Chang, H.-W., Kim, C.-H., Choi, Y.-H., & Kim, W.-J. (2013). Moringa fruit inhibits LPS-induced NO/iNOS expression through suppressing the NF-κB activation in RAW264. 7 cells. The American Journal of Chinese Medicine, 41(5), 1109–1123. https://doi.org/10.1142/S0192415X13500754
- Leone, A., Spada, A., Battezzati, A., Schiraldi, A., Aristil, J., & Bertoli, S. (2016). Moringa oleifera seeds and oil: Characteristics and uses for human health. International Journal of Molecular Sciences, 17(12), 2141. https://doi.org/10.3390/ijms17122141
- Mannaa, F., Ahmed, H. H., Estefan, S. F., Sharaf, H. A., & Eskander, E. F. (2005). Saccharomyces cerevisiae intervention for relieving flutamide-induced hepatotoxicity in male rats. Die Pharmazie-An International Journal of Pharmaceutical Sciences, 60(9), 689–695.
- Montgomery, H. A. C., & Dymock, J. F. (1962). The rapid determination of nitrate in fresh and saline waters. Analyst, 87(1034), 374–378.
- Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351–358. https://doi.org/10.1016/0003-2697(79)90738-3
- Omotoso, G. O., Gbadamosi, I. T., Olajide, O. J., Dada-Habeeb, S. O., Arogundade, T. T., & Yawson, E. O. (2018). Moringa oleifera phytochemicals protect the brain against experimental nicotine-induced neurobehavioral disturbances and cerebellar degeneration. Pathophysiology, 25(1), 57–62. https://doi.org/10.1016/j.pathophys.2017.12.003
- Omotoso, O. D., Adelakun, S. A., Idomeh, I. J., & Ogbonna, E. (2019). Histomorphological characterization of Moringa oleifera oil and walnut oil on cadmium induced lateral geniculate body damage in adult Wistar rats (Rattus novergiccus). Journal of Biology and Medicine, 3(1), 1–7. https://doi.org/10.17352/jbm.000005
10.17352/jbm.000005 Google Scholar
- Omotoso, O. D., Olumorin, O. I., Sunday, A., Aderemi, A. S., & Ogbonna, E. (2019). Neuroprotective properties of Moringa oleifera in cadmium and herbal alcoholic beverage induced frontal cortex damage in Wistar rats. IP Indian Journal of Neurosciences, 5(4), 206–213. https://doi.org/10.18231/j.ijn.2019.034
10.18231/j.ijn.2019.034 Google Scholar
- Pangastuti, A., Amin, I. F., Amin, A. Z., & Amin, M. (2016). Natural bioactive compound from Moringa oleifera against cancer based on in silico screening. Jurnal Teknologi, 78(5), 315–318. https://doi.org/10.11113/jt.v78.8328
- Raafat, K., & Hdaib, F. (2017). Neuroprotective effects of Moringa oleifera: Bio-guided GC-MS identification of active compounds in diabetic neuropathic pain model. Chinese Journal of Integrative Medicine, 1–10. https://doi.org/10.1007/s11655-017-2758-4
- Saa, R. W., Fombang, E. N., Ndjantou, E. B., & Njintang, N. Y. (2019). Treatments and uses of Moringa oleifera seeds in human nutrition: A review. Food Science & Nutrition, 7(6), 1911–1919. https://doi.org/10.1002/fsn3.1057
- Said, M. M., & Abd Rabo, M. M. (2017). Neuroprotective effects of eugenol against aluminiuminduced toxicity in the rat brain. Arhiv Za Higijenu Rada I Toksikologiju, 68(1), 27–36. https://doi.org/10.1515/aiht-2017-68-2878
- Saito, H., Murai, S., Abe, E., Masuda, Y., & Itoh, T. (1992). Rapid and simultaneous assay of monoamine neurotransmitters and their metabolites in discrete brain areas of mice by HPLC with coulometric detection. Pharmacology Biochemistry and Behavior, 42(2), 351–356. https://doi.org/10.1016/0091-3057(92)90539-R
- Schreiber, R., Vivian, J., Hedley, L., Szczepanski, K., Secchi, R. L., Zuzow, M., van Laarhoven, S., Moreau, J.-L., Martin, J. R., Sik, A., & Blokland, A. (2007). Effects of the novel 5-HT6 receptor antagonist RO4368554 in rat models for cognition and sensorimotor gating. European Neuropsychopharmacology, 17(4), 277–288. https://doi.org/10.1016/j.euroneuro.2006.06.009
- Vlahov, G., Chepkwony, P. K., & Ndalut, P. K. (2002). 13C NMR characterization of triacylglycerols of Moringa oleifera seed oil: An “oleic-vaccenic acid” oil. Journal of Agricultural and Food Chemistry, 50(5), 970–975. https://doi.org/10.1021/jf011054a
- Zeng, K., Li, Y., Yang, W., Ge, Y., Xu, L., Ren, T., Zhang, H., Zhuo, R., Peng, L., Chen, C., Zhou, Y., Zhao, Y., Li, W. J., Jin, X., & Yang, L. (2019). Moringa oleifera seed extract protects against brain damage in both the acute and delayed stages of ischemic stroke. Experimental Gerontology, 122, 99–108. https://doi.org/10.1016/j.exger.2019.04.014
- Zhou, J., Yang, W.-S., Suo, D.-Q., Li, Y., Peng, L., Xu, L.-X., Zeng, K.-Y., Ren, T., Wang, Y., Zhou, Y., Zhao, Y., Yang, L.-C., & Jin, X. (2018). Moringa oleifera seed extract alleviates scopolamine-induced learning and memory impairment in mice. Frontiers in Pharmacology, 9, 389. https://doi.org/10.3389/fphar.2018.00389