Polysaccharides from traditional Asian food source and their antitumor activity
Shengfeng Yang
Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, China
Contribution: Writing - original draft
Search for more papers by this authorXingyu Chen
Qingdao Municipal Hospital, Qingdao, China
Contribution: Resources
Search for more papers by this authorJing Sun
Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, China
Contribution: Investigation
Search for more papers by this authorCorresponding Author
Chengming Qu
Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, China
Correspondence
Chengming Qu, Affiliated Qingdao Central Hospital, Qingdao University, No.127 Siliu South Road, 266000, Qingdao, China.
Email: [email protected]
Contribution: Visualization
Search for more papers by this authorXiaolin Chen
Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
Contribution: Writing - review & editing
Search for more papers by this authorShengfeng Yang
Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, China
Contribution: Writing - original draft
Search for more papers by this authorXingyu Chen
Qingdao Municipal Hospital, Qingdao, China
Contribution: Resources
Search for more papers by this authorJing Sun
Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, China
Contribution: Investigation
Search for more papers by this authorCorresponding Author
Chengming Qu
Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, China
Correspondence
Chengming Qu, Affiliated Qingdao Central Hospital, Qingdao University, No.127 Siliu South Road, 266000, Qingdao, China.
Email: [email protected]
Contribution: Visualization
Search for more papers by this authorXiaolin Chen
Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
Contribution: Writing - review & editing
Search for more papers by this authorAbstract
Polysaccharides extracted from Asian traditional food source have been demonstrated to possess different antitumor activities mostly without side effect. In this paper, we reviewed many kinds of polysaccharides from different Asian food source and their antitumor activities. Some are common food such as different mushroom with more research. Some are special e.g., Ginseng,Salvia,Astragalus,Lycium barbarum etc. with relatively fewer research. This review mainly focused on their structure, derivatives, antitumor activities and their mechanism of action in the last decades. It aimed to bridge traditional Asian ingredients with tumor and cancer curation in order to avoid side effect of traditional treatment.
Practical applications
There are abundant resources of Asian food. And polysaccharides from these resources have been showed good antitumor activities and immunopotentiating activity. This review introduced the advance of the polysaccharides and their antitumor activities, which will promote the development antitumor medicine derived from Asian food source, or their applications as Adjuvant therapy of traditional chemotherapy and radiotherapy. Due to their multiple antitumor activities, enhancing immunity potential, and non-toxic side-effects, it might be utilized for the treatment of multiple tumors and improve the health and the life quality of patients whether as anti-tumor drugs or as adjuvant therapy method. Furthermore, traditional Asian food source is rich. In the near future, more and more efficient polysaccharides with antitumor activities of Asian food source will be discovered. There will be broad application market for the polysaccharides.
CONFLICT OF INTEREST
The authors declare there are no competing interests.
REFERENCES
- Abou Zeid, A. H., Aboutabl, E. A., Sleem, A. A., & El-Rafie, H. M. (2014). Water soluble polysaccharides extracted from Pterocladia capillacea and Dictyopteris membranacea and their biological activities. Carbohydrate Polymers, 113, 62–66. https://doi.org/10.1016/j.carbpol.2014.06.004
- Bamodu, O. A., Kuo, K., Wang, C., Huang, W., Wu, A. T. H., Tsai, J., Lee, K., Yeh, C., & Wang, L. (2019). Astragalus polysaccharides (PG2) enhances the M1 polarization of macrophages, functional maturation of dendritic cells, and T cell-mediated anticancer immune responses in patients with lung cancer. Nutrients, 11, 2264. https://doi.org/10.3390/nu11102264
- Bisen, P. S., Baghel, R. K., Sanodiya, B. S., Thakur, G. S., & Prasad, G. B. (2010). Lentinus edodes: A macrofungus with pharmacological activities. Current Medicinal Chemistry, 17, 2419–2430.
- Boopathy, N. S., & Kathiresan, K. (2010). Anticancer drugs from marine flora: An overview. Journal of Oncology, 2010, 1–18. https://doi.org/10.1155/2010/214186
- Cao, X., Liu, R., Liu, J., Huo, Y., Yang, W., Zeng, M., & Yang, C. (2013). A novel polysaccharide from Lentinus edodes mycelia exhibits potential antitumor activity on laryngeal squamous cancer cell line Hep-2. Applied Biochemistry and Biotechnology, 171, 1444–1453. https://doi.org/10.1007/s12010-013-0441-6
- Chan, J. Y., Chan, E., Chan, S., Sze, S., Chan, M., Tsui, S., Leung, K., Chan, R. Y., & Chung, I. Y. (2011). Enhancement of in vitro and in vivo anticancer activities of polysaccharide peptide from Grifola frondosa by chemical modifications. Pharmaceutical Biology, 49(11), 1114–1120.
- Chandra, A. N., Susmitha, Y., Manjusha, O., Sreelatha, A., Manohari, V., & Visweswara Rao, C. H. (2011). Quantitative evaluation of carbohydrate levels in different natural foodstuffs by UV-visible spectrophometer. International Journal of Research in Pharmacy and Chemistry, 1, 44–45.
- Chihara, G. (1992). Recent progress in immunopharmacology and therapeutic effects of polysaccha-rides. Developments in Biological Standardization, 77, 191–197.
- Deng, X., Li, X., Luo, S., Zheng, Y., Luo, X., & Zhou, L. (2017). Antitumor activity of Lycium barbarum polysaccharides with different molecular weights: An in vitro and in vivo study. Food & Nutrition Research, 61, 1399770–1399779.
- Deng, X., Luo, S., Luo, X., Hu, M., Ma, F., Wang, Y., Zhou, L., & Huang, R. (2018). Fraction from Lycium barbarum polysaccharides reduces immunotoxicity and enhances antitumor activity of soxorubicin in mice. Integrative Cancer Therapies, 17(3), 860–866.
- Du, X., Zhao, B., Li, J., Cao, X., Diao, M., Feng, H., Chen, X., Chen, Z., & Zeng, X. (2012). Astragalus polysaccharides enhance immune responses of HBV DNA vaccination via promoting the dendritic cell maturation and suppressing Treg frequency in mice. International Immunopharmacology, 14, 463–470. https://doi.org/10.1016/j.intimp.2012.09.006
- Facchini, J. M., Alves, E. P., Aguilera, C., Gern, R. M. M., Silveira, M. L. L., Wisbeck, E., & Furlan, S. A. (2014). Antitumor activity of Pleurotus ostreatus polysaccharide fractions on Ehrlich tumor and Sarcoma 180. International Journal of Biological Macromolecules, 68, 72–77. https://doi.org/10.1016/j.ijbiomac.2014.04.033
- Fan, L., Soccol, A. T., Pandey, A., & Soccol, C. R. (2007). Effect of nutritional and environmental conditions on the production of exo-polysaccharide of Agaricus brasiliensis by submerged fermentation and its antitumor activity. LWT, 40, 30–35. https://doi.org/10.1016/j.lwt.2005.09.006
- Gan, L., Zhang, S. H., Yang, X. L., & Xu, H. B. (2004). Immunomodulation and antitumor activity by a polysaccharide–protein complex from Lycium barbarum. International Immunopharmacology, 4, 563–569. https://doi.org/10.1016/j.intimp.2004.01.023
- Hazama, S., Watanabe, S., Ohashi, M., Yagi, M., Suzuki, M., Matsuda, K., Yamamoto, T., Suga, Y., Suga, T., Nakazawa, S., & Oka, M. (2009). Efficacy of orally administered superfine dispersed lentinan (beta-1,3-glucan) for the treatment of advanced colorectal cancer. Anticancer Research, 29(7), 2611–2617.
- Huang, Q., Jin, Y., Zhang, L., Cheung, P. C. K., & Kennedy, J. F. (2007). Structure, molecular size and antitumor activities of polysaccharides from Poria cocos mycelia produced in fermenter. Carbohydrate Polymers, 70, 324–333. https://doi.org/10.1016/j.carbpol.2007.04.015
- Isoda, N., Eguchi, Y., Nukaya, H., Hosho, K., Suga, Y., Suga, T., Nakazawa, S., & Sugano, K. (2009). Clinical efficacy of superfine dispersed lentinan (beta-1,3-glucan) in patients with hepatocellular carcinoma. Hepato-Gastroenterology, 56, 437–441.
- Ji, H., Chen, P., Yu, J., Feng, Y., & Liu, A. (2019). Effects of heat treatment on the structural characteristics and antitumor activity of polysaccharides from Grifola frondosa. Applied Biochemistry and Biotechnology, 188, 481–490. https://doi.org/10.1007/s12010-018-02936-5
- Ji, H., Yu, J., & Liu, A. (2019). Structural characterization of a low molecular weight polysaccharide from Grifola frondosa and its antitumor activity in H22 tumor-bearing mice. Journal of Functional Foods, 61, 103472–103482. https://doi.org/10.1016/j.jff.2019.103472
- Jiang, Y. Y., Wang, L., Zhang, L., Wang, T., Yu, L., Ding, C. B., Yang, R. W., Wang, X. L., & Zhou, Y. H. (2014). Characterization, antioxidant and antitumor activities of polysaccharides from Salvia miltiorrhiza Bunge. International Journal of Biological Macromolecules, 70, 92–99. https://doi.org/10.1016/j.ijbiomac.2014.06.036
- Khan, T., Date, A., Chawda, H., & Patel, K. (2019). Polysaccharides as potential anticancer agents—A review of their progress. Carbohydrate Polymers, 210, 412–428. https://doi.org/10.1016/j.carbpol.2019.01.064
- Li, C., Cai, J., Geng, J., Li, Y., Wang, Z., & Li, R. (2012). Purification, characterization and anticancer activity of a polysaccharide from Panax ginseng. International Journal of Biological Macromolecules, 51, 968–973. https://doi.org/10.1016/j.ijbiomac.2012.06.031
- Li, S., Bian, F., Yue, L., Jin, H., Hong, Z., & Shu, G. (2014). Selenium-dependent antitumor immunomodulating activity of polysaccharides from roots of A. membranaceus. International Journal of Biological Macromolecules, 69, 64–72. https://doi.org/10.1016/j.ijbiomac.2014.05.020
- Li, X. M. (2007). Protective effect of Lycium barbarum polysaccharides on streptozotocin-induced oxidative stress in rats. International Journal of Biological Macromolecules, 40, 461–465. https://doi.org/10.1016/j.ijbiomac.2006.11.002
- Li, X., Feng, T., Zhou, F., Zhou, S., Liu, Y., Li, W., Ye, R., & Yang, Y. (2015). Effects of drying methods on the tasty compounds of Pleurotus eryngii. Food Chemistry, 166, 358–364. https://doi.org/10.1016/j.foodchem.2014.06.049
- Li, X., Wang, Z., Zhao, Y., Luo, S., Zhang, D., Xiao, S., & Peng, Z. (2012). Isolation and antitumor activities of acidic polysaccharide from Gynostemma pentaphyllum Makino. Carbohydrate Polymers, 89, 942–994. https://doi.org/10.1016/j.carbpol.2012.04.040
- Liu, A., Yu, J., Ji, H., Zhang, H., Zhang, Y., & Liu, H. (2018). Extraction of a novel cold-water-soluble polysaccharide from Astragalus membranaceus and its antitumor and immunological activities. Molecules, 23, 62. https://doi.org/10.3390/molecules23010062
- Liu, J., Zhang, L., Ren, Y., Gao, Y., Kang, L. I., & Qiao, Q. (2014). Anticancer and immunoregulatory activity of Gynostemma pentaphyllum polysaccharides in H22 tumor-bearing mice. International Journal of Biological Macromolecules, 69, 1–4. https://doi.org/10.1016/j.ijbiomac.2014.05.014
- Liu, X., Wang, L., Zhang, C., Wang, H., Zhang, X., & Li, Y. (2015). Structure characterization and antitumor activity of a polysaccharide from the alkaline extract of king oyster mushroom. Carbohydrate Polymers, 118, 101–106. https://doi.org/10.1016/j.carbpol.2014.10.058
- Liu, X., Wang, X., Xu, X., & Zhang, X. (2019). Purification, antitumor and anti-inflammation activities of an alkalisoluble and carboxymethyl polysaccharide CMP33 from Poria cocos. International Journal of Biological Macromolecules, 127, 39–47. https://doi.org/10.1016/j.ijbiomac.2019.01.029
- Ma, G., Yang, W., Mariga, A. M., Fang, Y., Ma, N., Pei, F., & Hu, Q. (2014). Purification, characterization and antitumor activity of polysaccharides from Pleurotus eryngii residue. Carbohydrate Polymers, 114, 297–305. https://doi.org/10.1016/j.carbpol.2014.07.069
- Ma, X. Q., Duan, J. A., Dong, T. T., & Tsim, K. W. (2002). Chemical analysis of Radix astragali (Huangqi) in China: A comparison with its adulterants and seasonal variations. Journal of Agriculture and Food Chemistry, 50, 4861–4866.
- Mao, F., Xiao, B., Jiang, Z., Zhao, J., Xia, H., & Guo, J. (2011). Anticancer effect of Lycium barbarum polysaccharides on colon cancer cells involves G0/G1 phase arrest. Medical Oncology, 28, 121–126. https://doi.org/10.1007/s12032-009-9415-5
- Mao, G., Ren, Y., Feng, W., Li, Q., Wu, H., Jin, D., Zhao, T., Xu, C., Yang, L., & Wu, X. (2015). Antitumor and immunomodulatory activity of a water-soluble polysaccharide from Grifola frondosa. Carbohydrate Polymers, 134, 406–412. https://doi.org/10.1016/j.carbpol.2015.08.020
- Misuno, T., Wasa, T., Ito, H., Suzuki, C., & Ukai, N. (1992). Antitumor-active polysaccharides isolated from the fruiting body of Hericium erinaceum, an edible and medicinal mushroom called Yamabushitake or Houtou. Bioscience Biotechnology and Biochemistry, 56(2), 347–348.
- Ni, W., Zhang, X., Wang, X., Chen, Y., Han, H., Fan, Y., Zhou, Y., & Tai, G. (2010). Antitumor activities and immunomodulatory effects of Ginseng neutral polysaccharides in combination with 5-Fluorouracil. Journal of Medicinal Food, 13(2), 270–277. https://doi.org/10.1089/jmf.2009.1119
- Oba, K., Kobayashi, M., Matsui, T., Kodera, Y., & Sakamoto, J. (2009). Individual patient based meta-analysis of lentinan for unresectable/recurrent gastric cancer. Anticancer Research, 29, 2739–2745.
- Oka, M., Hazama, S., Suzuki, M., Wang, F., Wadamori, K., Iizuka, N., Takeda, S., Akitomi, Y., Ohba, Y., Kajiwara, K., Suga, T., & Suzuki, T. (1996). In vitro and in vivo analysis of human leukocyte binding by the antitumor polysaccharide, lentinan. International Journal of Immunopharmacology, 18(3), 211–216. https://doi.org/10.1016/0192-0561(95)00115-8
- Oliveira, G. K. F., Silva, E. V. D., Ruthes, A. C., Lião, L. M., Iacomini, M., & Carbonero, E. R. (2018). Chemical structure of a partially 3-O-methylated mannofucogalactan from edible mushroom Grifola frondosa. Carbohydrate Polymers, 187, 110–117. https://doi.org/10.1016/j.carbpol.2018.01.080
- Ooi, V. E. C., & Liu, F. (2000). Immunomodulation and anti-cancer activity of polysaccharide-protein complexes. Current Medicinal Chemistry, 7, 715–729. https://doi.org/10.2174/0929867003374705
- Pakrokh, G. P. (2015). The extraction process optimization of antioxidant polysaccharides from Marshmallow (Althaea officinalis L.) roots. International Journal of Biological Macromolecules, 75, 51–57. https://doi.org/10.1016/j.ijbiomac.2014.11.047
- Park, H., Hwang, D., Suh, H., Yu, K. W., Kim, T. Y., & Shin, K. S. (2017). Antitumor and antimetastatic activities of rhamnogalacturonan-II-type polysaccharide isolated from mature leaves of green tea via activation of macrophages and natural killer cells. International Journal of Biological Macromolecules, 99, 179–186. https://doi.org/10.1016/j.ijbiomac.2017.02.043
- Pei, J., Wang, Z., Ma, H., & Yan, J. (2015). Structural features and antitumor activity of a novel polysaccharide from alkaline extract of Phellinus linteus mycelia. Carbohydrate Polymers, 115, 472–477. https://doi.org/10.1016/j.carbpol.2014.09.017
- Popov, S. V., Ovodova, R. G., Golovchenko, V. V., Khramova, D. S., Markov, P. A., Smirnov, V. V., Shashkov, A. S., & Ovodov, Y. S. (2014). Pectic polysaccharides of the fresh plum Prunus domestica L. isolated with a simulated gastric fluid and their anti-inflammatory and antioxidant activities. Food Chemistry, 143, 106–113. https://doi.org/10.1016/j.foodchem.2013.07.049
- Ren, D., Jiao, Y., Yang, X., Yuan, L., Guo, J., & Zhao, Y. (2015). Antioxidant and antitumor effects of polysaccharides from the fungus Pleurotus abalonus. Chemico-Biological Interactions, 237, 166–174. https://doi.org/10.1016/j.cbi.2015.06.017
- Ren, L. U., Perera, C., & Hemar, Y. (2012). Antitumor activity of mushroom polysaccharides: A review. Food & Function, 3, 1118–1130. https://doi.org/10.1039/c2fo10279j
- Shi, B. J., Nie, X., Chen, L., Liu, Y., & Tao, W. (2007). Anticancer activities of a chemically sulfated polysaccharide obtained from Grifola frondosa and its combination with 5-Fluorouracil against human gastric carcinoma cells. Carbohydrate Polymers, 68, 687–692. https://doi.org/10.1016/j.carbpol.2006.08.003
- Shimizu, K., Watanabe, S., Watanabe, S., Matsuda, K., Suga, T., Nakazawa, S., & Shiratori, K. (2009). Efficacy of oral administered superfine dispersed lentinan for advanced pancreatic cancer. Hepato-Gastroenterology, 56, 240–244.
- Shu, G., Zhao, W., Yue, L., Su, H., & Xiang, M. (2015). Antitumor immunostimulatory activity of polysaccharides from Salvia chinensis Benth. Journal of Ethnopharmacology, 168, 237–247. https://doi.org/10.1016/j.jep.2015.03.065
- Sun, Y. X. (2011). Structure and biological activities of the polysaccharides from the leaves, roots and fruits of Panax ginseng C.A. Meyer: An overview. Carbohydrate Polymers, 85, 490–499. https://doi.org/10.1016/j.carbpol.2011.03.033
- Suzuki, I., Takeyama, T., Ohno, N., Oikawa, S., Sato, K., Suzuki, Y., & Yadomae, T. (1987). Antitumor effect of polysaccharide Grifolan NMF-5N on syngeneic tumor in mice. Journal of Pharmacobio-Dynamics, 10, 72–77. https://doi.org/10.1248/bpb1978.10.72
- Takeyama, T., Suzuki, I., Ohno, N., Oikawa, S., Sato, K., Ohsawa, M., & Yadomae, T. (1987). Host-mediated antitumor effect of Grifolan NMF-5N, a polysaccharide obtained from Grofola frondosa. Journal of Pharmacobio-Dynamics, 10, 644–651.
- Tohda, C., Tamur, A. T., Matsuyama, S., Komatsu, K., (2006). Promotion of axonal maturation and prevention of memory loss in mice by extracts of Astragalus mongholicus. British Journal of Pharmacology, 149, 532–541.
- Wang, X., Gao, A., Jiao, Y., Zhao, Y., & Yang, X. (2018). Antitumor effect and molecular mechanism of antioxidant polysaccharides from Salvia miltiorrhiza Bunge in human colorectal. International Journal of Biological Macromolecules, 108, 625–634.
- Wu, C., Ke, Y., Zeng, Y., Zhang, Y., & Yu, H. (2017). Anticancer activity of Astragalus polysaccharide in human non-small cell lung cancer cells. Cancer Cell International, 17, 115–123. https://doi.org/10.1186/s12935-017-0487-6
- Wu, J., Wang, J., Su, Q., Ding, W., Li, T., Yu, J., & Cao, B. (2018). Traditional Chinese medicine Astragalus polysaccharide enhanced antitumor effects of the angiogenesis inhibitor apatinib in pancreatic cancer cells on proliferation, invasiveness, and apoptosis. OncoTargets and Therapy, 11, 2685–2698.
- Wu, J., Yu, J., Wang, J., Zhang, G., Shang, K., Yao, X., & Cao, B. (2018). Astragalus polysaccharide enhanced antitumor effects of Apatinib in gastric cancer AGS cells by inhibiting AKT signalling pathway. Biomedicine & Pharmacotherapy, 100, 176–183. https://doi.org/10.1016/j.biopha.2018.01.140
- Yang, K. E., Li, Y.-W., Gao, Z.-Y., Xiao, W., Li, T.-Q., Song, W., Zheng, J., Chen, H., Chen, G.-H., & Zou, H.-Y. (2019). MiR-93 functions as a tumor promoter in prostate cancer by targeting disabled homolog 2 (DAB2) and an antitumor polysaccharide from green tea (Camellia sinensis) on their expression. International Journal of Biological Macromolecules, 125, 557–565. https://doi.org/10.1016/j.ijbiomac.2018.12.088
- Yang, Z., Xu, J., Fu, Q., Fu, X., Shu, T., Bi, Y., & Song, B. (2013). Antitumor activity of a polysaccharide from Pleurotus eryngii on mice bearing renal cancer. Carbohydrate Polymers, 95, 615–620. https://doi.org/10.1016/j.carbpol.2013.03.024
- Yoshino, S., Watanabe, S., Imano, M., Imano, M., Suga, T., Nakazawa, S., Hazama, S., & Oka, M. (2010). Improvement of QOL and prognosis by treatment of superfine dispersed lentinan in patients with advanced gastric cancer. Hepato-Gastroenterology, 57, 172–177.
- Yu, J., Ji, H., & Liu, A. (2018). Alcohol-soluble polysaccharide from Astragalus membranaceus: Preparation, characteristics and antitumor activity. International Journal of Biological Macromolecules, 118, 2057–2064. https://doi.org/10.1016/j.ijbiomac.2018.07.073
- Yu, J., Ji, H., Yang, Z., & Liu, A. (2019). Relationship between structural properties and antitumor activity of Astragalus polysaccharides extracted with different temperatures. International Journal of Biological Macromolecules, 124, 469–477. https://doi.org/10.1016/j.ijbiomac.2018.11.156
- Zhang, M., Cui, S. W., Cheung, P. C., & Wang, Q. (2007). Antitumor polysaccharides from mushrooms: A review on their isolation process, structural characteristics and antitumor activity. Trends in Food Science & Technology, 18, 4–19. https://doi.org/10.1016/j.tifs.2006.07.013
- Zhang, Y., Gu, M., Wang, K., Chen, Z., Dai, L., Liu, J., & Zeng, F. (2010). Structure, chain conformation and antitumor activity of a novel polysaccharide from Lentinus edodes. Fitoterapia, 81(8), 1163–1170. https://doi.org/10.1016/j.fitote.2010.07.019
- Zhao, C., Zhao, K., Liu, X., Huang, Y., & Liu, B. (2013). In vitro antioxidant and antitumor activities of polysaccharides extracted from the mycelia of liquid-cultured Flammulina velutipes. Food Science and Technology Research, 19(4), 661–667. https://doi.org/10.3136/fstr.19.661
- Zhou, X., Shi, H., Jiang, G., Zhou, Y., & Xu, J. (2014). Antitumor activities of ginseng polysaccharide in C57BL/6 mice with Lewis lung carcinoma. Tumor Biology, 35, 12561–12566. https://doi.org/10.1007/s13277-014-2576-7
- Zong, A. Z., Cao, H. Z., & Wang, F. S. (2012). Anticancer polysaccharides from natural resources: A review of recent research. Carbohydrate Polymers, 90, 1395–1410. https://doi.org/10.1016/j.carbpol.2012.07.026