Neferine inhibits proliferation and migration of human prostate cancer stem cells through p38 MAPK/JNK activation
Corresponding Author
Suat Erdogan
Department of Medical Biology, School of Medicine, Trakya University, Edirne, Turkey
Correspondence
Suat Erdogan, Department of Medical Biology, School of Medicine, Trakya University, Balkan Campus 22030 Edirne, Turkey.
Email: [email protected]
Search for more papers by this authorKader Turkekul
Department of Medical Biology, School of Medicine, Trakya University, Edirne, Turkey
Search for more papers by this authorCorresponding Author
Suat Erdogan
Department of Medical Biology, School of Medicine, Trakya University, Edirne, Turkey
Correspondence
Suat Erdogan, Department of Medical Biology, School of Medicine, Trakya University, Balkan Campus 22030 Edirne, Turkey.
Email: [email protected]
Search for more papers by this authorKader Turkekul
Department of Medical Biology, School of Medicine, Trakya University, Edirne, Turkey
Search for more papers by this authorAbstract
Cancer stem cells (CSCs) are one of the significant causes of cancer treatment failure and metastasis, as they have significant chemo-and radio-resistance leading to tumor recurrence. Here we investigated the possible anticancer properties of neferine, a natural alkaloid, on human prostate cancer (PCa) cells and their stem cells. CD44+ CSCs were isolated from androgen-insensitive PC3 cells by magnetic-activated cell sorting system (MACS). Neferine dose-and time-dependently inhibited the viability of PC3 and CSCs as well as androgen-sensitive LNCaP cells through inducing apoptosis and cell cycle arrest at G1 phase. Neferine was shown to downregulate the expression of Bcl-2 and CDK4, and upregulate caspase 3, clePARP, p21, p27, and p53. The treatment significantly inhibits the migration of CSCs. Neferine induces JNK and p38 MAPK phosphorylation, and downregulates PI3K and NF-ĸβ signaling. In conclusion, neferine may have a therapeutic effect inhibiting the PCa cell proliferation as well as by eliminating CSCs.
Practical applications
Neferine is an alkaloid found in the seed embryo of Nelumbo nucifera and has recently been shown to have anticancer effects on various human cancer cells. More than 90% of cancer-related deaths develop after metastasis, and CSCs are considered to be largely responsible for the cell migration and invasion. It has been shown that treatment of neferine kills not only PCa cells but also CSCs, and may contribute to the prevention of progression of PCa and metastasis by inhibiting cell proliferation and migration.
CONFLICTS OF INTEREST
The authors declare no conflicts of interest.
REFERENCES
- Ansenberger-Fricano, K., Ganini, D., Mao, M., Chatterjee, S., Dallas, S., Mason, R. P., … Bonini, M. G. (2013). The peroxidase activity of mitochondrial superoxide dismutase. Free Radical Biology and Medicine, 54, 116–124. https://doi.org/10.1016/j.freeradbiomed.2012.08.573
- Chen, F., Castranova, V., & Shi, X. L. (2001). New insights into the role of nuclear factor-kappa B in cell growth regulation. American Journal of Pathology, 159(2), 387–397. https://doi.org/10.1016/S0002-9440(10)61708-7
- Deng, G., Zeng, S., Ma, J., Zhang, Y., Qu, Y., Han, Y., … Shen, H. (2017). The anti-tumor activities of Neferine on cell invasion and oxaliplatin sensitivity regulated by EMT via Snail signaling in hepatocellular carcinoma. Scientific Reports, 7, 41616. https://doi.org/10.1038/srep41616
- Ding, H., Shi, J. H., Wang, Y., Guo, J., Zhao, J. H., & Dong, L. (2011). Neferine inhibits cultured hepatic stellate cell activation and facilitates apoptosis A possible molecular mechanism. European Journal of Pharmacology, 650(1), 163–169. https://doi.org/10.1016/j.ejphar.2010.10.025
- Eid, W., & Abdel-Rehim, W. (2017). Neferine enhances the antitumor effect of mitomycin-C in Hela cells through the activation of p38-MAPK pathway. Journal of Cellular Biochemistry, 118(10), 3472–3479. https://doi.org/10.1002/jcb.26006
- Erdogan, S., Doganlar, O., Doganlar, Z. B., Serttas, R., Turkekul, K., Dibirdik, I., & Bilir, A. (2016). The flavonoid apigenin reduces prostate cancer CD44(+) stem cell survival and migration through PI3K/Akt/NF-kappaB signaling. Life Sciences, 162, 77–86. https://doi.org/10.1016/j.lfs.2016.08.019
- Erdogan, S., Turkekul, K., Dibirdik, I., Doganlar, O., Doganlar, Z. B., Bilir, A., & Oktem, G. (2018). Midkine downregulation increases the efficacy of quercetin on prostate cancer stem cell survival and migration through PI3K/AKT and MAPK/ERK pathway. Biomedicine & Pharmacotherapy, 107, 793–805. https://doi.org/10.1016/j.biopha.2018.08.061
- Erdogan, S., Turkekul, K., Dibirdik, I., Doganlar, Z. B., Doganlar, O., & Bilir, A. (2020). Midkine silencing enhances the anti-prostate cancer stem cell activity of the flavone apigenin: Cooperation on signaling pathways regulated by ERK, p38, PTEN, PARP, and NF-kappaB. Investigational New Drugs, 38, 246–263. https://doi.org/10.1007/s10637-019-00774-8
- Erdogan, S., Turkekul, K., Serttas, R., & Erdogan, Z. (2017). The natural flavonoid apigenin sensitizes human CD44(+) prostate cancer stem cells to cisplatin therapy. Biomedicine & Pharmacotherapy, 88, 210–217. https://doi.org/10.1016/j.biopha.2017.01.056
- Global Burden of Disease Cancer Collaboration, Fitzmaurice, C., Akinyemiju, T. F., Al Lami, F. H., Alam, T., Alizadeh-Navaei, R., … Naghavi, M. (2018). Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2016: A systematic analysis for the global burden of disease study. JAMA Oncology, 4(11), 1553. https://doi.org/10.1001/jamaoncol.2018.2706
- Gecgel, K. K., Muduroglu, M., & Erdogan, S. (2017). Inhibition of telomerase potentiates enzalutamide efficiency of androgen-sensitive human prostate cancer cells. Journal of Buon, 22(6), 1570–1576. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/29332354
- Gu, G., Yuan, J., Wills, M., & Kasper, S. (2007). Prostate cancer cells with stem cell characteristics reconstitute the original human tumor in vivo. Cancer Research, 67(10), 4807–4815. https://doi.org/10.1158/0008-5472.CAN-06-4608
- Gupta, G. P., & Massague, J. (2006). Cancer metastasis: Building a framework. Cell, 127(4), 679–695. https://doi.org/10.1016/j.cell.2006.11.001
- Harris, K. S., & Kerr, B. A. (2017). Prostate cancer stem cell markers drive progression, therapeutic resistance, and bone metastasis. Stem Cells International, 2017, 8629234. https://doi.org/10.1155/2017/8629234
- He, L., He, T., Farrar, S., Ji, L., Liu, T., & Ma, X. (2017). Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cellular Physiology and Biochemistry, 44(2), 532–553. https://doi.org/10.1159/000485089
- Jeter, C. R., Yang, T., Wang, J. C., Chao, H. P., & Tang, D. G. (2015). Concise review: NANOG in cancer stem cells and tumor development: An update and outstanding questions. Stem Cells, 33(8), 2381–2390. https://doi.org/10.1002/stem.2007
- Jethwa, P., Naqvi, M., Hardy, R. G., Hotchin, N. A., Roberts, S., Spychal, R., & Tselepis, C. (2008). Overexpression of Slug is associated with malignant progression of esophageal adenocarcinoma. World Journal of Gastroenterology, 14(7), 1044–1052. https://doi.org/10.3748/wjg.14.1044
- Jin, H., Yu, Y., Zhang, T., Zhou, X., Zhou, J., Jia, L., … Feng, Y. (2010). Snail is critical for tumor growth and metastasis of ovarian carcinoma. International Journal of Cancer, 126(9), 2102–2111. https://doi.org/10.1002/ijc.24901
- Kadioglu, O., Law, B. Y. K., Mok, S. W. F., Xu, S. W., Efferth, T., & Wong, V. K. W. (2017). Mode of action analyses of neferine, a bisbenzylisoquinoline alkaloid of lotus (Nelumbo nucifera) against multidrug-resistant tumor cells. Frontiers in Pharmacology, 8, ARTN 238. https://doi.org/10.3389/fphar.2017.00238
- Kim, J. Y., Yu, S. J., Oh, H. J., Lee, J. Y., Kim, Y., & Sohn, J. (2011). Panaxydol induces apoptosis through an increased intracellular calcium level, activation of JNK and p38 MAPK and NADPH oxidase-dependent generation of reactive oxygen species. Apoptosis, 16(4), 347–358. https://doi.org/10.1007/s10495-010-0567-8
- Law, B. Y. K., Michelangeli, F., Qu, Y. Q., Xu, S.-W., Han, Y. U., Mok, S. W. F., … Wong, V. K. W. (2019). Neferine induces autophagy-dependent cell death in apoptosis-resistant cancers via ryanodine receptor and Ca(2+)-dependent mechanism. Scientific Reports, 9(1), 20034. https://doi.org/10.1038/s41598-019-56675-6
- Liang, H. X., Sun, L. B., & Liu, N. J. (2019). Neferine inhibits proliferation, migration and invasion of U251 glioma cells by down-regulation of miR-10b. Biomedicine & Pharmacotherapy, 109, 1032–1040. https://doi.org/10.1016/j.biopha.2018.10.122
- Liu, H., & Zhou, M. (2017). Antitumor effect of Quercetin on Y79 retinoblastoma cells via activation of JNK and p38 MAPK pathways. BMC Complementary and Alternative Medicine, 17(1), 531. https://doi.org/10.1186/s12906-017-2023-6
- Liu, Z., Zhang, S., Wang, T., Shao, H., Gao, J., Wang, Y., & Ge, Y. (2019). Neferine inhibits MDA-MB-231cells growth and metastasis by regulating miR-374a/FGFR-2. Chemico-Biological Interactions, 309, 108716. https://doi.org/10.1016/j.cbi.2019.06.029
- Maddika, S., Ande, S., Panigrahi, S., Paranjothy, T., Weglarczyk, K., Zuse, A., … Los, M. (2007). Cell survival, cell death and cell cycle pathways are interconnected: Implications for cancer therapy. Drug Resistance Updates, 10(1–2), 13–29. https://doi.org/10.1016/j.drup.2007.01.003
- Newman, D. J., Cragg, G. M., & Snader, K. M. (2003). Natural products as sources of new drugs over the period 1981–2002. Journal of Natural Products, 66(7), 1022–1037. https://doi.org/10.1021/np030096l
- Ozal, S. A., Gurlu, V., Turkekul, K., Guclu, H., & Erdogan, S. (2020). Neferine inhibits epidermal growth factor-induced proliferation and migration of retinal pigment epithelial cells through downregulating p38 MAPK and PI3K/AKT signalling. Cutaneous and Ocular Toxicology, 1–20. https://doi.org/10.1080/15569527.2020.1730882
- Pham, D. C., Chang, Y. C., Lin, S. R., Fuh, Y. M., Tsai, M. J., & Weng, C. F. (2018). FAK and S6K1 inhibitor, neferine, dually induces autophagy and apoptosis in human neuroblastoma cells. Molecules, 23(12), 3110. https://doi.org/10.3390/molecules23123110
- Philchenkov, A., Zavelevich, M., Kroczak, T. J., & Los, M. (2004). Caspases and cancer: Mechanisms of inactivation and new treatment modalities. Experimental Oncology, 26(2), 82–97.
- Poornima, P., Kumar, V. B., Weng, C. F., & Padma, V. V. (2014). Doxorubicin induced apoptosis was potentiated by neferine in human lung adenocarcima, A549 cells. Food and Chemical Toxicology, 68, 87–98. https://doi.org/10.1016/j.fct.2014.03.008
- Poornima, P., Quency, R. S., & Padma, V. V. (2013). Neferine induces reactive oxygen species mediated intrinsic pathway of apoptosis in HepG2 cells. Food Chemistry, 136(2), 659–667. https://doi.org/10.1016/j.foodchem.2012.07.112
- Poornima, P., Weng, C. F., & Padma, V. V. (2013). Neferine from Nelumbo nucifera induces autophagy through the inhibition of PI3K/Akt/mTOR pathway and ROS hyper generation in A549 cells. Food Chemistry, 141(4), 3598–3605. https://doi.org/10.1016/j.foodchem.2013.05.138
- Poornima, P., Weng, C. F., & Padma, V. V. (2014). Neferine, an alkaloid from lotus seed embryo, inhibits human lung cancer cell growth by MAPK activation and cell cycle arrest. BioFactors, 40(1), 121–131. https://doi.org/10.1002/biof.1115
- Prasad, S., Gupta, S. C., & Tyagi, A. K. (2017). Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Letters, 387, 95–105. https://doi.org/10.1016/j.canlet.2016.03.042
- Rayan, A., Raiyn, J., & Falah, M. (2017). Nature is the best source of anticancer drugs: Indexing natural products for their anticancer bioactivity. PLoS ONE, 12(11), e0187925. https://doi.org/10.1371/journal.pone.0187925
- Reya, T., Morrison, S. J., Clarke, M. F., & Weissman, I. L. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414(6859), 105–111. https://doi.org/10.1038/35102167
- Selvi, S. K., Vinoth, A., Varadharajan, T., Weng, C. F., & Padma, V. V. (2017). Neferine augments therapeutic efficacy of cisplatin through ROS-mediated non-canonical autophagy in human lung adenocarcinoma (A549 cells). Food and Chemical Toxicology, 103, 28–40. https://doi.org/10.1016/j.fct.2017.02.020
- Shen, J., Liu, J., Long, Y., Miao, Y., Su, M., Zhang, Q., … Hao, X. (2009). Knockdown of survivin expression by siRNAs enhances chemosensitivity of prostate cancer cells and attenuates its tumorigenicity. Acta Biochimica et Biophysica Sinica (Shanghai), 41(3), 223–230. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/19280061. https://doi.org/10.1093/abbs/gmp005
- Sheng, S., Margarida Bernardo, M., Dzinic, S. H., Chen, K., Heath, E. I., & Sakr, W. A. (2018). Tackling tumor heterogeneity and phenotypic plasticity in cancer precision medicine: Our experience and a literature review. Cancer and Metastasis Reviews, 37(4), 655–663. https://doi.org/10.1007/s10555-018-9767-4
- Sivalingam, K., Amirthalingam, V., Ganasan, K., Huang, C. Y., & Viswanadha, V. P. (2019). Neferine suppresses diethylnitrosamine-induced lung carcinogenesis in Wistar rats. Food and Chemical Toxicology, 123, 385–398. https://doi.org/10.1016/j.fct.2018.11.014
- Sivalingam, K. S., Paramasivan, P., Weng, C. F., & Viswanadha, V. P. (2017). Neferine potentiates the antitumor effect of cisplatin in human lung adenocarcinoma cells via a mitochondria-mediated apoptosis pathway. Journal of Cellular Biochemistry, 118(9), 2865–2876. https://doi.org/10.1002/jcb.25937
- Trachootham, D., Alexandre, J., & Huang, P. (2009). Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach?Nature Reviews Drug Discovery, 8(7), 579–591. https://doi.org/10.1038/nrd2803
- Turkekul, K., Colpan, R. D., Baykul, T., Ozdemir, M. D., & Erdogan, S. (2018). Esculetin inhibits the survival of human prostate cancer cells by inducing apoptosis and arresting the cell cycle. Journal of Cancer Prevention, 23(1), 10–17. https://doi.org/10.15430/JCP.2018.23.1.10
- Wang, Y., Shi, J., Chai, K., Ying, X., & Zhou, B. P. (2013). The role of snail in EMT and tumorigenesis. Current Cancer Drug Targets, 13(9), 963–972. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/24168186
- White, J. E., & Tsan, M. F. (2001). Differential induction of TNF-alpha and MnSOD by endotoxin: Role of reactive oxygen species and NADPH oxidase. American Journal of Respiratory Cell and Molecular Biology, 24(2), 164–169. https://doi.org/10.1165/ajrcmb.24.2.4169
- Xie, Y., Lu, W., Liu, S., Yang, Q., Goodwin, J. S., Sathyanarayana, S. A., … Chen, Z. (2016). MMP7 interacts with ARF in nucleus to potentiate tumor microenvironments for prostate cancer progression in vivo. Oncotarget, 7(30), 47609–47619. https://doi.org/10.18632/oncotarget.10251
- Xu, L., Zhang, X., Li, Y., Lu, S., Lu, S., Li, J., … Liu, Z. (2016). Neferine induces autophagy of human ovarian cancer cells via p38 MAPK/JNK activation. Tumour Biology, 37(7), 8721–8729. https://doi.org/10.1007/s13277-015-4737-8
- Xue, F., Liu, Z., Xu, J., Xu, X., Chen, X., & Tian, F. (2019). Neferine inhibits growth and migration of gastrointestinal stromal tumor cell line GIST-T1 by up-regulation of miR-449a. Biomedicine & Pharmacotherapy, 109, 1951–1959. https://doi.org/10.1016/j.biopha.2018.11.029
- Yang, D. Y., Zou, X. C., Yi, R. K., Liu, W. W., Peng, D. G., & Zhao, X. (2016). Neferine increase in vitro anticancer effect of dehydroepiandrosterone on MCF-7 human breast cancer cells. Applied Biological Chemistry, 59(4), 585–596. https://doi.org/10.1007/s13765-016-0199-y
- Yoon, J.-S., Kim, H.-M., Yadunandam, A. K., Kim, N.-H., Jung, H.-A., Choi, J.-S., … Kim, G.-D. (2013). Neferine isolated from Nelumbo nucifera enhances anti-cancer activities in Hep3B cells: Molecular mechanisms of cell cycle arrest, ER stress induced apoptosis and anti-angiogenic response. Phytomedicine, 20(11), 1013–1022. https://doi.org/10.1016/j.phymed.2013.03.024
- Yoshida, G. J., & Saya, H. (2016). Therapeutic strategies targeting cancer stem cells. Cancer Science, 107(1), 5–11. https://doi.org/10.1111/cas.12817
- Yu, Z., Pestell, T. G., Lisanti, M. P., & Pestell, R. G. (2012). Cancer stem cells. International Journal of Biochemistry & Cell Biology, 44(12), 2144–2151. https://doi.org/10.1016/j.biocel.2012.08.022
- Zhang, Q., Li, Y., Miao, C., Wang, Y., Xu, Y., Dong, R., … Kong, B. (2018). Anti-angiogenesis effect of Neferine via regulating autophagy and polarization of tumor-associated macrophages in high-grade serous ovarian carcinoma. Cancer Letters, 432, 144–155. https://doi.org/10.1016/j.canlet.2018.05.049
- Zhang, X. Y., Liu, Z. J., Xu, B., Sun, Z. L., Gong, Y. Q., & Shao, C. S. (2012). Neferine, an alkaloid ingredient in lotus seed embryo, inhibits proliferation of human osteosarcoma cells by promoting p38 MAPK-mediated p21 stabilization. European Journal of Pharmacology, 677(1–3), 47–54. https://doi.org/10.1016/j.ejphar.2011.12.035