Posterior Inference in Bayesian Quantile Regression with Asymmetric Laplace Likelihood
Huixia Judy Wang
Department of Statistics, George Washington University, Washington, 20052 DC, USA
Search for more papers by this authorXuming He
Department of Statistics, University of Michigan, Ann Arbor, 48109 MI, USA
Search for more papers by this authorHuixia Judy Wang
Department of Statistics, George Washington University, Washington, 20052 DC, USA
Search for more papers by this authorXuming He
Department of Statistics, University of Michigan, Ann Arbor, 48109 MI, USA
Search for more papers by this authorSummary
The paper discusses the asymptotic validity of posterior inference of pseudo-Bayesian quantile regression methods with complete or censored data when an asymmetric Laplace likelihood is used. The asymmetric Laplace likelihood has a special place in the Bayesian quantile regression framework because the usual quantile regression estimator can be derived as the maximum likelihood estimator under such a model, and this working likelihood enables highly efficient Markov chain Monte Carlo algorithms for posterior sampling. However, it seems to be under-recognised that the stationary distribution for the resulting posterior does not provide valid posterior inference directly. We demonstrate that a simple adjustment to the covariance matrix of the posterior chain leads to asymptotically valid posterior inference. Our simulation results confirm that the posterior inference, when appropriately adjusted, is an attractive alternative to other asymptotic approximations in quantile regression, especially in the presence of censored data.
References
- Alhamazawi, R. & Yu, K. (2015). Bayesian Tobit quantile regression using g-prior distribution with ridge parameter. J. Statist. Comput. Simulation 85, 2903–2918.
- Alhamzawi, R. (2012). Brq: Bayesian analysis of quantile regression models. R package version 1.0.
- Alhamazawi, R. & Yu, K. (2012). Bayesian lasso-mixed quantile regression. J. Statist. Comput. Simulation 84, 868–880.
- Alhamazawi, R. & Yu, K. (2013). Conjugate priors and variable selection for bayesian quantile regression. Comput. Stat. Data Anal. 64, 209–219.
- Alhamzawi, R., Yu, K. & Benoit, D. F. (2012). Bayesian adaptive lasso quantile regression. Statistical Model. 12, 279–297.
- Benoit, D. F., Al-Hamzawi, R. & Yu, K., Van den Poel, D. (2014). bayesQR: Bayesian quantile regression. R package version 2.2.
- Benoit, D. F., Alhamzawi, R. & Yu, K. (2013). Bayesian lasso binary quantile regression. Comput. Stat. 28, 2861–2873.
- Benoit, D. F. & Poel, D. V. D. (2012). Binary quantile regression: a Bayesian approach based on the asymmetric Laplace distribution. J. Appl. Econom. 27, 1174–1188.
- Buchinsky, M. (1994). Changes in the U.S. wage structure 1963–1987: application of quantile regression. Econometrica 62, 405–458.
- Buchinsky, M. & Hahn, J. (1998). An alternative estimator for the censored quantile regression model. Econometrica 66, 653–672.
- Chen, C. & Yu, K. (2009). Automatic Bayesian quantile regression curve fitting. Stat. Comput. 19, 271–281.
- Chernozhukov, V. & Hong, H. (2002). Three-step censored quantile regression and extramarital affairs. J. Am. Statist. Assoc. 97, 872–882.
- Chernozhukov, V. & Hong, H. (2003). An MCMC approach to classical estimation. J. Econometrics 114, 293–346.
- Choi, H. M., Hobert, J. P. (2013). Analysis of MCMC algorithms for Bayesian linear regression with Laplace errors. J. Multivar. Anal. 117, 32–40.
- Dunson, T. & Taylor, J. (2005). Approximate Bayesian inference for quantiles. J. Nonparametr. Statist. 17, 385–400.
- Fitzenberger, B. (1997). Computational aspects of censored quantile regression. In Proceedings of the 3rd International Conference on Statistical Data Analysis Based on the l1-Norm and Related Methods, Dodge Y. (ed); pp. 171–186. CA:IMS.
10.1214/lnms/1215454136 Google Scholar
- Gelfand, A. E. & Kottas, A. (2002). A computational approach for full nonparametric Bayesian inference under Dirichlet process mixture models. J. Comput. Graph. Statist. 11, 289–305.
- Geraci, M. & Bottai, M. (2007). Quantile regression for longitudinal data using the asymmetric Laplace distribution. Biostatistics 8, 140–154.
- Geraci, M. & Bottai, M. (2013). Linear quantile mixed models. Stat. Comput. 24, 461–479.
- Hu, Y., Gramacy, R. & Lian, H. (2013). Bayesian quantile regression for single-index models. Stat. Comput. 23, 437–454.
- Hu, Y., Zhao, K. & Lian, H. (2014). Bayesian quantile regression for partially linear additive models. Stat. Comput. 25, 651–668.
- Khare, K. & Hobert, J. P. (2012). Geometric ergodicity of the Gibbs sampler for Bayesian quantile regression. J. Multivar. Anal. 112, 108–116.
- Knight, K. (1998). Limiting distribution for l1 regression estimators under general conditions. Ann. Statist. 26, 755–770.
- Kobayashi, G. & Kozumi, H. (2012). Bayesian analysis of quantile regression for censored dynamic panel data. Comput. Stat. 27, 359–380.
- Koenker, R. (2004). Quantile regression for longitudinal data. J. Multivar. Anal. 91, 74–89.
- Koenker, R. (2005). Quantile Regression.Cambridge University Press: New York.
- Koenker, R. (2015). quantreg: quantile regression. R package version 5.11.
- Koenker, R. & Bassett, G. (1978). Regression quantiles. Econometrica 46, 33–50.
- Kottas, A. & Krnjajić, M. (2009). Bayesian semiparametric modelling in quantile regression. Scand. J. Stat. 36, 297–319.
- Kotz, S., Kozubowski, T. & Podgorski, K. (2001). The Laplace Distribution and Generalizations: A Revisit with Applications to Communications, Economics, Engineering, and Finance.Birkhuser: Boston.
10.1007/978-1-4612-0173-1 Google Scholar
- Kozumi, H. & Kobayashi, G. (2011). Gibbs sampling methods for Bayesian quantile regression. J. Statist. Comput. Simulation. 81, 1565–1578.
- Lancaster, T. & Jun, S. J. (2010). Bayesian quantile regression methods. J. Appl. Econom. 25, 287–307.
- Lee, D. & Neocleous, T. (2010). Bayesian quantile regression for count data with application to environmental epidemiology. J. R. Statist. Soc. C 59, 905–920.
- Li, Q., Xi, R. & Lin, N. (2010). Bayesian regularized quantile regression. Bayesian Anal. 5, 533–556.
- Li, Y., Zhu, J. (2008). l1-norm quantile regression. J. Comp. Graph. Stat. 17, 163–185.
- Lin, G., He, X. & Portnoy, S. L. (2012). Quantile regression with doubly censored data. Comput. Stat. Data Anal. 56, 798–812.
- Lum, K. & Gelfand, A. E. (2012). Spatial quantile multiple regression using the asymmetric Laplace process. Bayesian Anal. 7, 235–258.
- Luo, Y., Lian, H. & Tian, M. (2014). Bayesian quantile regression for longitudinal data models. J. Statist. Comput. Simulation 82, 1635–1649.
- Miguéis, V. L., Benoit, D. F. & Poel, D. V. D. (2013). Enhanced decision support in credit scoring using Bayesian binary quantile regression. J. Oper. Res. Soc. 64, 1374–1383.
- Mroz, T. A. (1987). The sensitivity of an empirical model of married women's hours of work to economic and statistical assumptions. Econometrica 55, 765–799.
- Otsu, T. (2008). Conditional empirical likelihood estimation and inference for quantile regression models. J. Econometrics 142, 508–538.
- Peng, L. & Huang, Y. (2008). Survival analysis with quantile regression models. J. Am. Statist. Assoc. 103, 637–649.
- Portnoy, S. (2003). Censored quantile regression. J. Am. Statist. Assoc. 98, 1001–1012.
- Portnoy, S. (2010). Is ignorance bliss: fixed vs. random censoring. Inst Math Stat Collect 7, 215–223.
10.1214/10-IMSCOLL721 Google Scholar
- Powell, J. L. (1986). Censored regression quantiles. J. Econometrics 32, 143–155.
- R Core Team, (2014). R: A Language and Environment for Statistical Computing., R Foundation for Statistical Computing: Vienna, Austria.
- Reich, B. J. (2012). Spatiotemporal quantile regression for detecting distributional changes in environmental processes. J. R. Statist. Soc. C 61, 535–553.
- Reich, B. J., Bondell, H. D. & Wang, H. J. (2010). Flexible Bayesian quantile regression for independent and clustered data. Biostatistics 11, 337–352.
- Reich, B. J., Fuentesa, M. & Dunsona, D. B. (2011). Bayesian spatial quantile regression. J. Am. Statist. Assoc. 106, 6–20.
- Reich, B. J. & Smith, L. B. (2013). Bayesian quantile regression for censored data. Biometrics 69, 651–660.
- Sriram, K., Ramamoorthi, R. V. & Ghosh, P. (2013). Posterior consistency of Bayesian quantile regression based on the misspecified asymmetric Laplace density. Bayesian Anal. 8, 489–504.
- Tang, Y., Wang, H. J., He, X. & Zhu, Z. (2012). An informative subset-based estimator for censored quantile regression. Test 21, 635–655.
- Thompson, P., Cai, Y., Moyeed, R., Reeve, D. & Stander, J. (2010). Bayesian nonparametric quantile regression using splines. Comput. Stat. Data Anal. 54, 1138–1150.
- Tsionas, E. G. (2003). Bayesian quantile inference. J. Stat. Comput. Simul. 73, 659–674.
- Waldmann, E., Kneib, T., Yue, Y. R., Lang, S. & Flexeder, C. (2013). Bayesian semiparametric additive quantile regression. Statistical Model. 13, 223–252.
- Wang, H. J. & Wang, L. (2009). Locally weighted censored quantile regression. J. Am. Statist. Assoc. 104, 1117–1128.
- Wang, J. (2012). Bayesian quantile regression for parametric nonlinear mixed effects models. Stat. Methods. Appl. 21, 1635–1649.
- Wang, L. (2008). Nonparametric test for checking lack of fit of the quantile regression model under random censoring. Canad. J. Statist. 36, 321–336.
- Womersley, R. S. (1986). Censored discrete linear $l_1 $ approximation. SIAM J. Sci. Statist. Comput. 7, 105–122.
- Yang, Y. & He, X. (2012). Bayesian empirical likelihood for quantile regression. Ann. Statist. 40, 1102–1131.
- Ying, Z., Jung, S. H. & Wei, L. J. (1995). Survival analysis with median regression models. J. Am. Statist. Assoc. 90, 178–184.
- Yu, K. & Moyeed, R. A. (2001). Bayesian quantile regression. Stat. Probabil. Lett 54, 437–447.
- Yu, K. & Stander, J. (2007). Bayesian analysis of a Tobit quantile regression model. J. Econometrics 137, 260–276.
- Yuan, Y. & Yin, G. (2009). Bayesian quantile regression for longitudinal studies with nonignorable missing data. Biometrics 66, 105–114.
- Yue, Y. R. & Hong, H. G. (2014). Bayesian Tobit quantile regression model for medical expenditure panel survey data. Statistical Model. 12, 323–346.
- Yue, Y. R. & Rue, H. (2011). Bayesian inference for additive mixed quantile regression models. Comput. Stat. Data Anal. 55, 84–96.
- Zhao, K. & Lian, H. (2015). Bayesian Tobit quantile regression with single-index models. J. Statist. Comput. Simulation 85, 1247–1263.
- Zhu, H., Zeng, H. & Yu, K. (2013). Bayesian inference for non-parametric quantile regression using a Fourier representation. IJACT 5, 632–641.
10.4156/ijact.vol5.issue2.78 Google Scholar
- Zou, H. & Yuan, M. (2008). Composite quantile regression and the oracle model selection theory. Ann. Statist. 36, 1108–1126.