Minocycline in neurodegenerative and psychiatric diseases: An update
Diego Romero-Miguel
Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
Contribution: Data curation (supporting), Formal analysis (lead), Funding acquisition (supporting), Methodology (equal), Writing - original draft (equal)
Search for more papers by this authorNicolás Lamanna-Rama
Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
Contribution: Investigation (equal), Visualization (equal), Writing - review & editing (equal)
Search for more papers by this authorMarta Casquero-Veiga
Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
CIBER de Salud Mental (CIBERSAM), Madrid
Contribution: Formal analysis (equal), Funding acquisition (equal), Investigation (equal), Validation (equal), Visualization (equal), Writing - review & editing (equal)
Search for more papers by this authorVanessa Gómez-Rangel
Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
Contribution: Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Manuel Desco
Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Spain
Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
CIBER de Salud Mental (CIBERSAM), Madrid
Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
Correspondence
Manuel Desco and María Luisa Soto-Montenegro, Laboratorio de Imagen. Medicina Experimental, Hospital General Universitario Gregorio Marañón, Dr. Esquerdo, 46, E-28007 Madrid, Spain.
E-mail: [email protected] (MD); [email protected] (MLS)
Contribution: Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
María Luisa Soto-Montenegro
Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
CIBER de Salud Mental (CIBERSAM), Madrid
Correspondence
Manuel Desco and María Luisa Soto-Montenegro, Laboratorio de Imagen. Medicina Experimental, Hospital General Universitario Gregorio Marañón, Dr. Esquerdo, 46, E-28007 Madrid, Spain.
E-mail: [email protected] (MD); [email protected] (MLS)
Contribution: Conceptualization (lead), Funding acquisition (lead), Investigation (equal), Supervision (lead), Writing - review & editing (equal)
Search for more papers by this authorDiego Romero-Miguel
Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
Contribution: Data curation (supporting), Formal analysis (lead), Funding acquisition (supporting), Methodology (equal), Writing - original draft (equal)
Search for more papers by this authorNicolás Lamanna-Rama
Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
Contribution: Investigation (equal), Visualization (equal), Writing - review & editing (equal)
Search for more papers by this authorMarta Casquero-Veiga
Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
CIBER de Salud Mental (CIBERSAM), Madrid
Contribution: Formal analysis (equal), Funding acquisition (equal), Investigation (equal), Validation (equal), Visualization (equal), Writing - review & editing (equal)
Search for more papers by this authorVanessa Gómez-Rangel
Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
Contribution: Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Manuel Desco
Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Spain
Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
CIBER de Salud Mental (CIBERSAM), Madrid
Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
Correspondence
Manuel Desco and María Luisa Soto-Montenegro, Laboratorio de Imagen. Medicina Experimental, Hospital General Universitario Gregorio Marañón, Dr. Esquerdo, 46, E-28007 Madrid, Spain.
E-mail: [email protected] (MD); [email protected] (MLS)
Contribution: Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
María Luisa Soto-Montenegro
Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
CIBER de Salud Mental (CIBERSAM), Madrid
Correspondence
Manuel Desco and María Luisa Soto-Montenegro, Laboratorio de Imagen. Medicina Experimental, Hospital General Universitario Gregorio Marañón, Dr. Esquerdo, 46, E-28007 Madrid, Spain.
E-mail: [email protected] (MD); [email protected] (MLS)
Contribution: Conceptualization (lead), Funding acquisition (lead), Investigation (equal), Supervision (lead), Writing - review & editing (equal)
Search for more papers by this authorAbstract
Background and purpose
Minocycline is a broad-spectrum antibiotic, effective as a chronic treatment for recurrent bacterial infections. Beyond its antibiotic action, minocycline also has important anti-inflammatory, antioxidant and antiapoptotic properties. Its efficacy has therefore been evaluated in many neurodegenerative and psychiatric diseases that have an inflammatory basis. Our aim was to review preclinical and clinical studies performed in neurological and psychiatric diseases whose treatment involved the use of minocycline and thereby to discern the possible beneficial effect of minocycline in these disorders.
Methods
Completed and ongoing preclinical studies and clinical trials of minocycline for both neurodegenerative diseases and psychiatric disorders, published from January 1995 to January 2020, were identified through searching relevant databases (https://www.ncbi.nlm.nih.gov/pubmed/, https://clinicaltrials.gov/). A total of 74 preclinical studies and 44 clinical trials and open-label studies were selected.
Results
The results of the nearly 20 years of research identified are diverse. While minocycline mostly proved to be effective in animal models, clinical results showed divergent outcomes, with positive results in some studies counterbalanced by a number of cases with no significant improvements. Specific data for each disease are further individually described in this review.
Conclusions
Despite minocycline demonstrating antioxidant and anti-inflammatory effects, discrepancies between preclinical and clinical data indicate that we should be cautious in analyzing the outcomes. Improving and standardizing protocols and refining animal models could help us to determine if minocycline really is a useful drug in the treatment of these pathologies.
CONFLICT OF INTEREST
The authors declare that they have no financial or other conflicts of interest.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
ene14642-sup-0001-TableS1.docxWord document, 16.7 KB | Table S1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Garrido-Mesa N, Zarzuelo A, Gálvez J. Minocycline: far beyond an antibiotic. Br J Pharmacol. 2013; 169(2): 337-352.
- 2Zhang L, Zhao J. Profile of minocycline and its potential in the treatment of schizophrenia. Neuropsychiatr Dis Treat. 2014; 10: 1103-1111.
- 3Garrido-Mesa N, Zarzuelo A, Gálvez J. What is behind the non-antibiotic properties of minocycline? Pharmacol Res. 2013; 67(1): 18-30.
- 4Kohno M, Link J, Dennis LE, et al. Neuroinflammation in addiction: a review of neuroimaging studies and potential immunotherapies. Pharmacol Biochem Behav. 2019; 179: 34-42.
- 5Kim JW, Hong JY, Bae SM. Microglia and autism spectrum disorder: overview of current evidence and novel immunomodulatory treatment options. Clin Psychopharmacol Neurosci. 2018; 16(3): 246-252.
- 6Rosenblat JD, McIntyre RS. Efficacy and tolerability of minocycline for depression: a systematic review and meta-analysis of clinical trials. J Affect Disord. 2017; 227: 219-225.
- 7Derfuss T, Mehling M, Papadopoulou A, et al. Advances in oral immunomodulating therapies in relapsing multiple sclerosis. Lancet Neurol. 2020; 19(4): 336-347.
- 8Cankaya S, Cankaya B, Kilic U, Kilic E, Yulug B. The therapeutic role of minocycline in Parkinson’s disease. Drugs Context. 2019; 8(212553): 1-14.
10.7573/dic.212553 Google Scholar
- 9Çakici N, van Beveren NJM, Judge-Hundal G, Koola MM, Sommer IEC. An update on the efficacy of anti-inflammatory agents for patients with schizophrenia: a meta-analysis. Psychol Med. 2019; 49(14): 2307-2319.
- 10Li C, Yuan K, Schluesener H. Impact of minocycline on neurodegenerative diseases in rodents: a meta-analysis. Rev Neurosci. 2013; 24(5): 553-562.
- 11Ballard C, Gauthier S, Corbett A, et al. Alzheimer’s disease. Lancet. 2011; 377(9770): 1019-1031.
- 12Familian A, Boshuizen RS, Eikelenboom P, Veerhuis R. Inhibitory effect of minocycline on amyloid β fibril formation and human microglial activation. Glia. 2006; 53(3): 233-240.
- 13Seabrook TJ, Jiang L, Maier M, Lemere CA. Minocycline affects microglia activation, Aβ deposition, and behavior in APP-tg mice. Glia. 2006; 53: 776-782.
- 14Garwood CJ, Cooper JD, Hanger DP, Noble W. Anti-inflammatory impact of minocycline in a mouse model of tauopathy. Front Pshychiatry. 2010; 1(136): 1-8.
- 15Parachikova A, Visilevko V, Cribbs DH, LaFerla FM, Green KN. Reduction in Aβ-derived neuroinflammation, with minocycline, restore cognition but do not significantly affect tau hyperphosphorylation. J Alzheimers Dis. 2014; 21(2): 527-542.
- 16Ferretti MT, Allard S, Partridge V, Ducatenzeiler A, Cuello AC. Minocycline corrects early, pre-plaque neuroinflammation and inhibits BACE-1 in a transgenic model of Alzheimer’s disease-like amyloid pathology. J Neuroinflammation. 2012; 9(1): 62.
- 17El-Shimy IA, Heikal OA, Hamdi N. Minocycline attenuates Aβ oligomers-induced pro-inflammatory phenotype in primary microglia while enhancing Aβ fibrils phagocytosis. Neurosci Lett. 2015; 609: 36-41.
- 18Lima Garcez M, Mina F, Bellettini-Santos T, et al. Minocycline reduces inflammatory parameters in the brain structures and serum and reverses memory impairment caused by the administration of amyloid β (1–42) in mice. Prog Neuropsychopharmacol Biol Psychiatry. 2017; 77: 23-31.
- 19Choi Y, Kim H-S, Shin KY, et al. Minocycline attenuates neuronal cell death and improves cognitive impairment in Alzheimer’s disease models. Neuropsychopharmacology. 2007; 32(11): 2393-2404.
- 20Noble W, Garwood C, Stephenson J, et al. Minocycline reduces the development of abnormal tau species in models of Alzheimer’s disease. FASEB J. 2009; 23(3): 739-750.
- 21Hunter CL, Quintero EM, Gilstrap L, Bhat NR, Granholm A-C. Minocycline protects basal forebrain cholinergic neurons from mu p75-saporin immunotoxic lesioning. Eur J Neurosci. 2004; 19(12): 3305-3316.
- 22Biscaro B, Lindvall O, Tesco G, Ekdahl CT, Nitsch RM. Inhibition of microglial activation protects hippocampal neurogenesis and improves cognitive deficits in a transgenic mouse model for Alzheimer’s disease. Neurodegener Dis. 2012; 9(4): 187-198.
- 23Fan R, Xu F, Lou PM, et al. Minocycline reduces microglial activation and improves behavioral deficits in a transgenic model of cerebral microvascular amyloid. Neurobiol Dis. 2007; 27(12): 3057-3063.
- 24Jiang Y, Liu Y, Zhu C, et al. Minocycline enhances hippocampal memory, neuroplasticity and synapse-associated proteins in aged C57 BL/6 mice. Neurobiol Learn Mem. 2015; 121: 20-29.
- 25Howard R, Zubko O, Bradley R, et al. Minocycline at 2 different dosages vs placebo for patients with mild Alzheimer Disease: a randomized clinical trial. JAMA Neurol. 2020; 77(2): 164-174.
- 26Dzamko N, Geczy C, Halliday G. Inflammation is genetically implicated in Parkinson´s disease. Neuroscience. 2015; 302: 89-102.
- 27Sánchez-Guajardo V, Tentillier N, Romero-Ramos M. The relation between α-synuclein and microglia in Parkinson´s disease: recent developments. Neuroscience. 2015; 302: 47-58.
- 28Wu DC, Jackson-Lewis V, Vila M, et al. Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci. 2002; 22(5): 1763-1771.
- 29Sriram K, Miller DB, O´Callaghan JP. Minocycline attenuates microglial activation but fails to mitigate striatal dopaminergic neurotoxicity: role of tumor necrosis factor-α. J Neurochem. 2006; 96(3): 706-718.
- 30Du Y, Ma Z, Lin S, et al. Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease. Neurobiology. 2001; 98(25): 14669-14674.
- 31Dixit A, Srivastava G, Verma D, et al. Minocycline, levodopa and MnTMPyP induced changes in the mitochondrial proteome profile of MPTP and maneb and paraquat mice models of Parkinson’s disease. Biochim Biophys Acta - Mol Basis Dis. 2013; 1832(8): 1227-1240.
- 32Quintero EM, Willis L, Singleton R, et al. Behavioral and morphological effects of minocycline in the 6-hydroxydopamine rat model of Parkinson’s disease. Brain Res. 2006; 1093(1): 198-207.
- 33Casarejos M, Menéndez J, Solano R, et al. Susceptibility to rotenone is increased in neurons from parkin null mice and is reduced by minocycline. J Neurochem. 2006; 97(4): 934-946.
- 34Radad K, Moldzio R, Rausch WD. Minocycline protects dopaminergic neurons against long-term rotenone toxicity. Can J Neurol Sci. 2010; 37(1): 81-85.
- 35Sun C, Wang Y, Mo M, et al. Minocycline protects against rotenone-induced neurotoxicity correlating with upregulation of Nurr1 in a Parkinson’s Disease rat model. Biomed Res Int. 2019; 1-7.
- 36Kumar V, Singh BK, Chauhan AK, et al. Minocycline rescues from zinc-induced nigrostriatal dopaminergic neurodegeneration: biochemical and molecular interventions. Mol Neurobiol. 2016; 53(5): 2761-2777.
- 37Tomás-Camardiel M, Rite I, Herrera AJ, et al. Minocycline reduces the lipopolysaccharide-induced inflammatory reaction, peroxynitrite-mediated nitration of proteins, disruption of the blood-brain barrier, and damage in the nigral dopaminergic system. Neurobiol Dis. 2004; 16(1): 190-201.
- 38Peng J, Xie L, Stevenson FF, et al. Nigrostriatal dopaminergic neurodegeneration in the weaver mouse is mediated via neuroinflammation and alleviated by minocycline administration. J Neurosci. 2006; 26(45): 11644-11651.
- 39Inamdar AA, Chaudhuri A, O’Donnell J. The protective effect of minocycline in a paraquat-induced Parkinsons disease model in drosophila is modified in altered genetic backgrounds. Parkinsons Dis. 2012; 2012: 938528.
- 40Ortega-Arellano HF, Jimenez-Del-Rio M, Velez-Pardo C. Minocycline protects, rescues and prevents knockdown transgenic parkin Drosophila against paraquat/iron toxicity: Implications for autosomic recessive juvenile parkinsonism. Neurotoxicology. 2017; 60: 42-53.
- 41Faust K, Gehrke S, Yang Y, et al. Neuroprotective effects of compounds with antioxidant and anti-inflammatory properties in a Drosophila model of Parkinson’s disease. BMC Neurosci. 2009; 10: 109.
- 42Cronin A, Grealy M. Neuroprotective and neuro-restorative effects of minocycline and rasagiline in a zebrafish 6-hydroxydopamine model of Parkinson’s Disease. Neuroscience. 2017; 367: 34-46.
- 43Yang L, Sugama S, Chirichigno JW, et al. Minocycline enhances MPTP toxicity to dopaminergic neurons. J Neurosci Res. 2003; 74(2): 278-285.
- 44Diguet E, Fernagut P-O, Wei X, et al. Deleterious effects of minocycline in animal models of Parkinson’s disease and Huntington’s disease. Eur J Neurosci. 2004; 19(12): 3266-3276.
- 45Investigators TNN-P. A randomized, double-blind, futility clinical trial of creatine and minocycline in early Parkinson disease. Neurology. 2006; 66(5): 664-671.
- 46Investigators TNN-P. A pilot clinical trial of creatine and minocycline in early Parkinson disease: 18-month results. Clin Neuropharmacol. 2008; 31(3): 141-150.
- 47Dodel R, Spottke A, Gerhard A, et al. Minocycline 1-year therapy in multiple-system-atrophy: effect on clinical symptoms and [11C] (R)-PK11195 PET (MEMSA-trial). Mov Disord. 2010; 25(1): 97-107.
- 48Bates GP, Dorsey R, Gusella JF, et al. Huntington disease. Nat Rev. 2015; 1: 1-21.
- 49Ghavami S, Shojaei S, Yeganeh B, et al. Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog Neurogibol. 2013; 112: 24-49.
- 50Chen M, Ona VO, Li M, et al. Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat Med. 2000; 6(7): 797-801.
- 51Stack EC, Smith KM, Ryu H, et al. Combination therapy using minocycline and coenzyme Q10 in R6/2 transgenic Huntington’s disease mice. Biochim Biophys. 2006; 1762(3): 373-380.
- 52Sancho M, Herrera AE, Gortat A, et al. Minocycline inhibits cell death and decreases mutant Huntingtin aggregation by targeting Apaf-1. Hum Mol Genet. 2011; 20(18): 3545-3553.
- 53Kalonia H, Mishra J. Targeting neuro-inflammatory cytokines and oxidative stress by minocycline attenuates quinolinic-acid-induced Huntington’s disease-like symptoms in rats. Neurotox Res. 2012; 22(4): 310-320.
- 54Ryu J, Choi H, McLarnon J. Combined minocycline plus pyruvate treatment enhances effects of each agent to inhibit inflammation, oxidative damage, and neuronal loss in an excitotoxic animal model of Huntington´s disease. Neuroscience. 2006; 141(4): 1835-1848.
- 55Wang X, Zhu S, Drozda M, et al. Minocycline inhibits caspase-independent and -dependent mitochondrial cell death pathways in models of Huntington’s disease. PNAS. 2003; 100(18): 10483-10487.
- 56Bantubungi K, Jacquard C, Greco A, et al. Minocycline in phenotypic models of Huntington’s disease. Neurobiol Dis. 2005; 18(1): 206-217.
- 57Kumar A, Chaudhary T, Mishra J. Minocycline modulates neuroprotective effect of hesperidin against quinolinic acid induced Huntington’s disease like symptoms in rats : Behavioral, biochemical, cellular and histological evidences. Eur J Pharmacol. 2013; 720(1–3): 16-28.
- 58Smith DL, Woodman B, Mahal A, et al. Minocycline and doxycycline are not beneficial in a model of Huntington’s disease. Ann Neurol. 2003; 54(2): 186-196.
- 59Mievis S, Levivier M, Communi D, et al. Lack of minocycline efficiency in genetic models of Huntington’s disease. Neuromolecular Med. 2007; 7(9): 47-54.
- 60Menalled LB, Patry M, Ragland N, et al. Comprehensive behavioral testing in the R6/2 mouse model of Huntington’s Disease shows no benefit from CoQ10 or minocycline. PLoS One. 2010; 5(3):e9793.
- 61Denovan-Wright E, Devarajan S, Dursun S, Robertson H. Maintained improvement with minocycline of a patient with advanced Huntington’s disease. J Psychopharmacol. 2002; 16(4): 393-394.
- 62Bonelli RM, Heuberger C, Reisecker F. Minocycline for Huntington’s disease: an open label study. Neurology. 2003; 60(5): 883-885.
- 63Bonelli RM, Hödl AK, Hofmann P, Kapfhammer H-P. Neuroprotection in Huntington’s disease: a 2-year study on minocycline. Int Clin Psychopharmacol. 2004; 19(6): 337-342.
- 64Thomas M, Ashizawa T, Jankovic J. Minocycline in Huntington’s disease: a pilot study. Mov Disord. 2004; 19(6): 345-348.
- 65Reynolds N. Revisiting safety of minocycline as neuroprotection in Huntington’s disease. Mov Disord. 2007; 22(2): 292.
- 66Investigators D. A Futility study of minocycline in Huntington’s disease. Mov Disord. 2010; 25(13): 2219-2224.
- 67Volk AE, Weishaupt JH, Andersen PM, Ludolph AC, Kubisch C. Current knowledge and recent insights into the genetic basis of amyotrophic lateral sclerosis. Medizinische Genet. 2018; 30(2): 252-258.
- 68Kriz J, Nguyen MD, Julien J-P. Minocycline slows disease progression in a mouse model of amyotrophic lateral sclerosis. Neurobiol Dis. 2002; 10(3): 268-278.
- 69Zhu S, Stavrovskaya IG, Drozda M, et al. Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature. 2002; 417(6884): 74-78.
- 70Van Den BL, Tilkin CAP, Lemmens G, Robberecht W. Minocycline delays disease onset and mortality in a transgenic model of ALS. Neuropharmacol Neurotoxicol. 2002; 13(8): 1067-1070.
- 71Zhang W, Narayanan M, Friedlander RM. Additive neuroprotective effects of minocycline with creatine in a mouse model of ALS. Ann Neurol. 2003; 53(2): 267-270.
- 72Pontieri F, Ricci A, Pellicano C, Benincasa D, Buttarelli F. Minocycline in amyotrophic lateral sclerosis: a pilot study. Neurol Sci. 2005; 26(4): 285-287.
- 73Gordon P, Moore D, Gelinas D, et al. Placebo-controlled phase I/II studies of minocycline in amyotrophic lateral sclerosis. Neurology. 2004; 62(10): 1845-1847.
- 74Gordon PH, Moore DH, Miller RG, et al. Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomised trial. Lancet Neurol. 2007; 6(12): 1045-1053.
- 75Leigh PN, Meininger V, Bensimon G, Cudkowicz M, Robberecht W. Minocycline for patients with ALS. Lancet Neurol. 2008; 7(2): 119-120.
- 76Carrì MT. Minocycline for patients with ALS. Lancet Neurol. 2008; 7(2): 118-119.
- 77Yáñez M, Matías-Guiu J, Arranz-Tagarro JA, et al. The neuroprotection exerted by memantine, minocycline and lithium, against neurotoxicity of CSF from patients with amyotrophic lateral sclerosis, is antagonized by riluzole. Neurodegener Dis. 2014; 13(2–3): 171-179.
- 78Gordon PH, Cheung Y-K, Levin B, et al. A novel, efficient, randomized selection trial comparing combinations of drug therapy for ALS. Physiol Behav. 2008; 9(4): 212-222.
- 79Khiat A,D´Amour M, Souchon F, Boulanger Y. MRS study of the effects of minocycline on markers of neuronal and microglial integrity in ALS. Magn Reson Imaging. 2010; 28(10): 1456-1460.
- 80Ceruti S. What role does multiple sclerosis play in the development of untreatable painful conditions? Pain Manag. 2018; 8(1): 37-44.
- 81Lopez-Diego RS, Weiner HL. Novel therapeutic strategies for multiple sclerosis – a multifaceted adversary. Nat Rev. 2008; 7: 909-925.
- 82Brundula V, Rewcastle NB, Metz LM, Bernard CC, Yong VW. Targeting leukocyte MMPs and transmigration. Minocycline as a potential therapy for multiple sclerosis. Brain. 2002; 125(6): 1297-1308.
- 83Popovic N, Schubart A, Goetz BD, et al. Inhibition of autoimmune encephalomyelitis by a tetracycline. Ann Neurol. 2002; 51: 215-223.
- 84Nessler S, Dodel R, Bittner A, et al. Effect of minocycline in experimental autoimmune encephalomyelitis. Ann Neurol. 2002; 52(5): 689-690.
- 85Giuliani F, Anne S, Metz LM, Yong VW. Effective combination of minocycline and interferon-β in a model of multiple sclerosis. J Neuroimmunol. 2005; 165: 83-91.
- 86Giuliani F, Metz LM, Wilson T, et al. Additive effect of the combination of glatiramer acetate and minocycline in a model of MS. J Neuroimmunol. 2005; 158: 213-221.
- 87Nikodemova M, Watters JJ, Jackson SJ, Yang SK, Duncan ID. Minocycline down-regulates MHC II expression in microglia and macrophages through inhibition of IRF-1 and protein kinase C (PKC) α/βII. J Biol Chem. 2007; 282(20): 15208-15216.
- 88Chen X, Hu X, Zou Y, et al. Combined treatment with minocycline and prednisone attenuates experimental autoimmune encephalomyelitis in C57 BL/6 mice. J Neuroimmunol. 2009; 210(1–2): 22-29.
- 89Chen X, Ma L, Jiang Y, et al. Minocycline up-regulates the expression of brain-derived neurotrophic factor and nerve growth factor in experimental autoimmune encephalomyelitis. Eur J Pharmacol. 2012; 686(1–3): 124-129.
- 90Stoop MP, Rosenling T, Attali A, et al. Minocycline effects on the cerebrospinal fluid proteome of experimental autoimmune encephalomyelitis rats. J Proteome Res. 2012; 11: 4315-4325.
- 91Metz LM, Zhang Y, Yeung M, et al. Minocycline reduces gadolinium-enhancing magnetic resonance imaging lesions in multiple sclerosis. Ann Neurol. 2004; 55(5): 756.
- 92Zabad R, Metz L, Todoruk T, et al. The clinical response to minocycline in multiple sclerosis is accompanied by beneficial immune changes: a pilot study. Mult Scler. 2007; 13(4): 517-526.
- 93Zhang Y, Metz LM, Yong VW, et al. Pilot study of minocycline in relapsing-remitting multiple sclerosis. Can J Neurol Sci. 2008; 35(2): 185-191.
- 94Metz L, Li D, Traboulsee A, et al. Glatiramer acetate in combination with minocycline in patients with relapsing-remitting multiple sclerosis: results of a Canadian, multicenter, double-blind, placebo-controlled trial. Mult Scler. 2009; 15(10): 1183-1194.
- 95Metz L, Li D, Traboulsee A, et al. Trial of minocycline in a clinically isolated syndrome of multiple sclerosis. N Engl J Med. 2017; 376(22): 2122-2133.
- 96Sorensen PS, Sellebjerg F, Lycke J, et al. Minocycline added to subcutaneous interferon B-1a in multiple sclerosis: randomized RECYCLINE study. Eur J Neurosci. 2016; 23: 861-870.
- 97Keller WR, Kum LM, Wehring HJ, et al. A review of anti-inflammatory agents for symptoms of schizophrenia. J Psychopharmacol. 2013; 27(4): 337-342.
- 98Zhang L, Shirayama Y, Iyo M, Hashimoto K. Minocycline attenuates hyperlocomotion and prepulse inhibition deficits in mice after administration of the NMDA receptor antagonist dizocilpine. Neuropsychopharmacology. 2007; 32(9): 2004-2010.
- 99Giovanoli S, Engler H, Engler A, et al. Preventive effects of minocycline in a neurodevelopmental two-hit model with relevance to schizophrenia. Transl. Psychiatry. 2016; 6(e772).
- 100Levkovitz Y, Levi U, Braw Y, Cohen H. Minocycline, a second-generation tetracycline, as a neuroprotective agent in an animal model of schizophrenia. Brain Res. 2007; 1154: 154-162.
- 101Fujita Y, Ishima T, Kunitachi S, et al. Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of the antibiotic drug minocycline. Prog Neuropsychopharmacol Biol Psychiatry. 2008; 32(2): 336-339.
- 102Dokuyucu R, Kokacya H, Inanir S, Copoglu US, Erbas O. Antipsychotic-like effect of minocycline in a rat model. Int J Clin Exp Med. 2014; 7(10): 3354-3361.
- 103Miyaoka T, Yasukawa R, Yasuda H, et al. Possible antipsychotic effects of minocycline in patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31(1): 304-307.
- 104Miyaoka T, Yasukawa R, Yasuda H, et al. Minocycline as adjunctive therapy for schizophrenia: an open-label study. Clin Neuropharmacol. 2008; 31(5): 287-292.
- 105Levkovitz Y, Mendlovich S, Riwkes S, et al. A double-blind, randomized study of minocycline for the treatment of negative and cognitive symptoms in early-phase schizophrenia. J Clin Psychiatry. 2010; 71(2): 138-149.
- 106Chaudhry IB, Hallak J, Husain N, et al. Minocycline benefits negative symptoms in early schizophrenia: a randomised double-blind placebo-controlled clinical trial in patients on standard treatment. J Psychopharmacol. 2012; 26(9): 1185-1193.
- 107Chaves C, Marque CR, Maia-de-Oliveira JP, et al. Effects of minocycline add-on treatment on brain morphometry and cerebral perfusion in recent-onset schizophrenia. Schizophr Res. 2015; 161(2–3): 439-445.
- 108Liu F, Guo X, Wu R, et al. Minocycline supplementation for treatment of negative symptoms in early-phase schizophrenia: A double blind, randomized, controlled trial. Schizophr Res. 2014; 153(1–3): 169-176.
- 109Liu F, Xie L, Zhang B, et al. No effect of adjunctive minocycline treatment on body metabolism in patients with Schizophrenia. J Clin Psychopharmacol. 2018; 38(2): 125-128.
- 110Liu F, Zhang B, Xie L, et al. Changes in plasma levels of nitric oxide metabolites and negative symptoms after 16-week minocycline treatment in patients with schizophrenia. Schizophr Res. 2018; 199: 390-394.
- 111Khodaie-Ardakani M-R, Mirsha O, Farokhnia M, et al. Minocycline add-on to risperidone for treatment of negative symptoms in patients with stable schizophrenia: randomized double-blind placebo-controlled study. Psychiatry Res. 2014; 215(3): 540-546.
- 112Ghanizadeh A, Dehbozorgi S, Sigaroodi OM, Rezaei Z. Minocycline as add-on treatment decreases the negative symptoms of schizophrenia; a randomized placebo-controlled clinical trial. Recent Pat Inflamm Allergy Drug Discov. 2014; 8(3): 211-215.
- 113Kelly DL, Sullivan KM, McEvoy JP, et al. Adjunctive minocycline in clozapine treated schizophrenia patients with persistent symptoms. J Clin Psychopharmacol. 2015; 35(4): 374-381.
- 114Deakin B, Suckling J, Barnes TRE, et al. The benefit of minocycline on negative symptoms of schizophrenia in patients with recent-onset psychosis (BeneMin): a randomised, double-blind, placebo-controlled trial. Lancet Psychiat. 2018; 5(11): 885-894.
- 115Weiser M, Levi L, Burshtein S, et al. The effect of minocycline on symptoms in schizophrenia: results from a randomized controlled trial. Schizophr Res. 2019; 206: 325-332.
- 116Zhang L, Zheng H, Wu R, et al. The effect of minocycline on amelioration of cognitive deficits and pro-inflammatory cytokines levels in patients with schizophrenia. Schizophr Res. 2019; 212: 92-98.
- 117Lord C, Elsabbagh M, Baird G, Veenstra-Vanderweele J. Autism spectrum disorder. Lancet. 2018; 392(10146): 508-520.
- 118Siller SS, Broadie K. Matrix metalloproteinases and minocycline: therapeutic avenues for fragile X syndrome. Neural Plast. 2012; 2012: 124548.
- 119Siller SS, Broadie K. Neural circuit architecture defects in a Drosophila model of Fragile X syndrome are alleviated by minocycline treatment and genetic removal of matrix metalloproteinase. Dis Model Mech. 2011; 4(5): 673-685.
- 120Bilousova TV, Dansie L, Ngo M, et al. Minocycline promotes dendritic spine maturation and improves behavioural performance in the fragile X mouse model. J Med Genet. 2009; 46(2): 94-102.
- 121Rotschafer SE, Trujillo MS, Dansie LE, Ethell IM, Razak KA. Minocycline treatment reverses ultrasonic vocalization production deficit in a mouse model of Fragile X Syndrome. Brain Res. 2012; 1439: 7-14.
- 122Dansie LE, Phommahaxay K, Okusanya AG, et al. Long-lasting effects of minocycline on behavior in young but not adult fragile X mice. Neuroscience. 2014; 246: 186-198.
- 123Yau S, Bettio L, Vetrici M, et al. Chronic minocycline treatment improves hippocampal neuronal structure, NMDA receptor function, and memory processing in Fmr1 knockout mice. Neurobiol Dis. 2018; 113: 11-22.
- 124Pardo CA, Buckley A, Thurm A, et al. A pilot open-label trial of minocycline in patients with autism and regressive features. J Neurodev Disord. 2013; 5(1): 9.
- 125Ghaleiha A, Alikhani R, Kazemi M-R, et al. Minocycline as adjunctive treatment to risperidone in children with autistic disorder: a randomized, double-blind placebo-controlled trial. J Child Adolesc Psychopharmacol. 2016; 26(9): 784-791.
- 126Paribello C, Tao L, Folino A, et al. Open-label add-on treatment trial of minocycline in fragile X syndrome. BMC Neurol. 2010; 10: 91.
- 127Dziembowska M, Pretto DI, Janusz A, et al. High MMP-9 activity levels in fragile X syndrome are lowered by minocycline. Am J Med Genet. 2013; 161A(8): 1897-1903.
- 128Leigh MJS, Nguyen DV, Mu Y, et al. A randomized double-blind, placebo-controlled trial of minocycline in children adolescents with Fragile X Syndrome. J Dev Behav Pediatr. 2013; 34(3): 147-155.
- 129Schulz PE, Arora G. Depression. Am Acad Neurol. 2015; 21(3): 756-771.
- 130Pusic KM, Pusic AD, Kemme J, Kraig RP. Spreading depression requires microglia and is decreased by their M2a polarization from environmental enrichment. Glia. 2015; 62(7): 1176-1194.
- 131Molina-Hernández M, Tellez-Alcántara NP, Pérez-García J, Olivera-Lopez JI, Jaramillo-Jaimes MT. Antidepressant-like actions of minocycline combined with several glutamate antagonists. Prog Neuropsychopharmacol Biol Psychiatry. 2008; 32(2): 380-386.
- 132Majidi-Zolbanin J, Kosari-Nasab M, Salari A-A. Developmental minocycline treatment reverses the effects of neonatal immune activation on anxiety-and depression-like behaviors, hippocampal inflammation, and HPA axis activity in adult mice. Brain Res Bull. 2015; 120: 1-13.
- 133Saravi SSS, Amirkhanloo R, Arefidoust A, et al. On the effect of minocycline on the depressive-like behavior of mice repeatedly exposed to malathion: interaction between nitric oxide and cholinergic system. Metab Brain Dis. 2015; 31(3): 549-561.
- 134Saravi SSS, Mousavi SE, Saravi SSS, Dehpour AR. Minocycline attenuates depressive-like behaviour induced by rat model of testicular torsion: involvement of nitric oxide pathway. Basic Clin Pharmacol Toxicol. 2016; 118(4): 249-258.
- 135Gong X, Chen Y, Chang J, et al. Environmental enrichment reduces adolescent anxiety- and depression-like behaviors of rats subjected to infant nerve injury. J Neuroinflammation. 2018; 15(1): 262.
- 136Zheng L-S, Kaneko N, Sawamoto K. Minocycline treatment ameliorates interferon-α-induced neurogenic defects and depression-like behaviors in mice. Front Cell Neurosci. 2015; 9(5): 1-10.
- 137Wang H-T, Huang F-L, Hu Z-L, et al. Early-life social isolation-induced depressive-like behavior in rats results in microglial activation and neuronal histone methylation that are mitigated by minocycline. Neurotox Res. 2017; 31(4): 505-520.
- 138Wang Y-L, Han Q-Q, Gong W-Q, et al. Microglial activation mediates chronic mild behavior in adult rats. J Neuroinflammation. 2018; 15(1): 21.
- 139Zhang L, Zheng H, Wu R, et al. Minocycline adjunctive treatment to risperidone for negative symptoms in schizophrenia: association with pro-inflammatory cytokine levels. Prog Neuropsychopharmacol Biol Psychiatry. 2018; 85: 69-76.
- 140O´Connor J, Lawson M, André C,, et al. Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol Psychiatry. 2009; 14(5): 511-522.
- 141Burke NN, Kerr DM, Moriarty O, Finn DP, Roche M. Minocycline modulates neuropathic pain behaviour and cortical M1–M2 microglial gene expression in a rat model of depression. Brain Behav Immun. 2014; 42: 147-156.
- 142Liu H, Yue J, Hu L, et al. Chronic minocycline treatment reduces the anxiety-like behaviors induced by repeated restraint stress through modulating neuroinflammation. Brain Res Bull. 2018; 143: 19-26.
- 143Arakawa S, Shirayama Y, Fujita Y, et al. Minocycline produced antidepressant-like effects on the learned helplessness rats with alterations in levels of monoamine in the amygdala and no changes in BDNF levels in the hippocampus at baseline. Pharmacol Biochem Behav. 2012; 100(3): 601-606.
- 144Deak T, Bellamy C, D´Agostino LG, et al. Behavioral responses during the forced swim test are not affected by anti-inflammatory agents or acute illness induced by lipopolysaccharide. Behav Brain Res. 2005; 160(1): 125-134.
- 145Vogt M, Vogel A, Pfeiffer N, et al. Minocycline does not display anxiolytic and antidepressant-like effects in C57BL/6 mice. Brain Res Bull. 2015; 301: 96-101.
- 146Levine J. Possible antidepressant effect of minocycline. Am J Psychiatry. 1996; 153(4): 582.
- 147Miyaoka T, Wake R, Furuya M, et al. Minocycline as adjunctive therapy for patients with unipolar psychotic depression: an open-label study. Prog Neuropsychopharmacol Biol Psychiatry. 2012; 37(2): 222-226.
- 148Murrough JW, Huryk KM, Mao X, et al. A pilot study of minocycline for the treatment of bipolar depression: effects on cortical glutathione and oxidative stress in vivo. J Affect Disord. 2018; 230: 56-64.
- 149Savitz JB, Teague TK, Misaki M, et al. Treatment of bipolar depression with minocycline and/or aspirin: an adaptive, controlled, phase IIA clinical trial. Transl Psychiatry. 2018; 8(1): 27.
- 150Emadi-Kouchak H, Mohammadinejad P, Asadollahi-Amin A, et al. Therapeutic effects of minocycline on mild-to-moderate depression in HIV patients: a double-blind, placebo-controlled, randomized trial. Int Clin Psychopharmacol. 2016; 31(1): 20-26.
- 151Husain MI, Chaudhry IB, Husain N, et al. Minocycline as an adjunct for treatment-resistant depressive symptoms: a pilot randomised placebo-controlled trial. J Psychopharmacol. 2017; 31(9): 1166-1175.
- 152Dean OM, Kanchanatawan B, Ashton M, et al. Adjunctive minocycline treatment for major depressive disorder: a proof of concept trial. Aust New Zeal J Psychiatry. 2017; 51(8): 829-840.
- 153Kuloglu M, Atmaca M, Tezcan E, et al. Antioxidant enzyme activities and malondialdehyde levels in patients with obsessive-compulsive disorder. Biol Psychiatry. 2002; 46(1): 27-32.
- 154Graybiel AM, Rauch SL. Toward a neurobiology of obsessive-compulsive disorder. Neuron. 2000; 28(4): 343-347.
- 155Rodríguez CI, Bender J, Marcus SM, et al. Minocycline augmentation of pharmacotherapy in obsessive-compulsive disorder: an open-label trial. J Clin Psychiatry. 2010; 71(9): 1247-1249.
- 156Esalatmanesh S, Abrishami Z, Zeinoddini A, et al. Minocycline combination therapy with fluvoxamine in moderate-to-severe obsessive–compulsive disorder: a placebo-controlled, double-blind, randomized trial. Psychiatr Clin Neurosci. 2016; 70(11): 517-526.
- 157Agrawal R, Hewetson A, George C, Syapin P, Bergeson S. Minocycline reduces ethanol drinking. Brain Behav Immun. 2011; 25(1): 165-169.
- 158Fujita Y, Kunitachi S, Iyo M, Hashimoto K. The antibiotic minocycline prevents methamphetamine-induced rewarding effects in mice. Pharmacol Biochem Behav. 2012; 101(2): 303-306.
- 159Arezoomandan R, Haghparast A. Administration of the glial cell modulator, minocycline, in the nucleus accumbens attenuated the maintenance and reinstatement of morphine-seeking behavior. Can J Physiol Pharmacol. 2006; 94(3): 257-264.
- 160Attarzadeh-Yazdi G, Arezoomandan R, Haghparast A. Minocycline, an antibiotic with inhibitory effect on microglial activation, attenuates the maintenance and reinstatement of methamphetamine-seeking behavior in rat. Prog Neuro-Psychopharmacology Biol Psychiatry. 2014; 53: 142-148.
- 161Sofuoglu M, Waters AJ, Mooney M, O´Malley SS. Minocycline reduced craving for cigarettes but did not affect smoking or intravenous nicotine responses in humans. Pharmacol Biochem Behav. 2009; 92(1): 135-140.
- 162Arout CA, Waters AJ, MacLean RR, Compton P, Sofuoglu M. Minocycline does not affect experimental pain or addiction-related outcomes in opioid maintained patients. Psychopharmacology. 2019.
- 163Sofuoglu M, Mooney M, Kosten T, Waters AJ, Hashimoto K. Minocycline attenuates subjective-rewarding effects of dextroamphetamine in humans. Psychopharmacology. 2011; 213(1): 61-68.
- 164Milnarić A, Horvat M, Šupak SV. Dealing with the positive publication bias: Why you should really publish your negative results. Biochem Medica. 2017; 27(3): 1-6.
- 165Rice ASC, Morland R, Huang W, et al. Transparency in the reporting of in vivo pre-clinical pain research: The relevance and implications of the ARRIVE (Animal Research: Reporting In Vivo Experiments) guidelines. Scand J Pain. 2013; 4(2): 58-62.
- 166Schmidt-Pogoda A, Bonberg N, Koecke MHM, et al. Why most acute stroke studies are positive in animals but not in patients: a systematic comparison of preclinical, early phase, and phase 3 clinical trials of neuroprotective agents. Ann Neurol. 2020; 87(1): 40-51.
- 167 Huntington Study Group. Minocycline safety and tolerability in Huntington disease. Neurology. 2004; 63: 3: 547–549.