COVID-19 and comorbidities: A role for dipeptidyl peptidase 4 (DPP4) in disease severity?
新冠肺炎与合并症:二肽基肽酶4在疾病严重程度中的作用?
Corresponding Author
Margaret F. Bassendine
Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
Correspondence
Margaret F. Bassendine, Translational and Clinical Research Institute, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
Email: [email protected]
Search for more papers by this authorSimon H. Bridge
Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
Search for more papers by this authorGeoffrey W. McCaughan
Centenary Institute and The University of Sydney Faculty of Medicine and Health, Sydney, Australia
Search for more papers by this authorMark D. Gorrell
Centenary Institute and The University of Sydney Faculty of Medicine and Health, Sydney, Australia
Search for more papers by this authorCorresponding Author
Margaret F. Bassendine
Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
Correspondence
Margaret F. Bassendine, Translational and Clinical Research Institute, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
Email: [email protected]
Search for more papers by this authorSimon H. Bridge
Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
Search for more papers by this authorGeoffrey W. McCaughan
Centenary Institute and The University of Sydney Faculty of Medicine and Health, Sydney, Australia
Search for more papers by this authorMark D. Gorrell
Centenary Institute and The University of Sydney Faculty of Medicine and Health, Sydney, Australia
Search for more papers by this authorFunding information: National Medical Research Council; Northumbria University; Action Medical Research
Abstract
enThe coronavirus disease 2019 (COVID-19) pandemic is caused by a novel betacoronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), similar to SARS-CoV and Middle East respiratory syndrome (MERS-CoV), which cause acute respiratory distress syndrome and case fatalities. COVID-19 disease severity is worse in older obese patients with comorbidities such as diabetes, hypertension, cardiovascular disease, and chronic lung disease. Cell binding and entry of betacoronaviruses is via their surface spike glycoprotein; SARS-CoV binds to the metalloprotease angiotensin-converting enzyme 2 (ACE2), MERS-CoV utilizes dipeptidyl peptidase 4 (DPP4), and recent modeling of the structure of SARS-CoV-2 spike glycoprotein predicts that it can interact with human DPP4 in addition to ACE2. DPP4 is a ubiquitous membrane-bound aminopeptidase that circulates in plasma; it is multifunctional with roles in nutrition, metabolism, and immune and endocrine systems. DPP4 activity differentially regulates glucose homeostasis and inflammation via its enzymatic activity and nonenzymatic immunomodulatory effects. The importance of DPP4 for the medical community has been highlighted by the approval of DPP4 inhibitors, or gliptins, for the treatment of type 2 diabetes mellitus. This review discusses the dysregulation of DPP4 in COVID-19 comorbid conditions; DPP4 activity is higher in older individuals and increased plasma DPP4 is a predictor of the onset of metabolic syndrome. DPP4 upregulation may be a determinant of COVID-19 disease severity, which creates interest regarding the use of gliptins in management of COVID-19. Also, knowledge of the chemistry and biology of DPP4 could be utilized to develop novel therapies to block viral entry of some betacoronaviruses, potentially including SARS-CoV-2.
摘要
zh摘要
2019年新冠肺炎冠状病毒大流行是由一种新型β新冠状病毒-严重急性呼吸综合征冠状病毒2型(SARS-CoV-2)引起的, 类似于SARS-CoV和中东呼吸综合征(MERS-CoV), 可引起急性呼吸窘迫综合征和死亡。新冠肺炎病的严重程度在患有糖尿病, 高血压, 心血管疾病和慢性肺部疾病的老年肥胖患者中更严重。β冠状病毒结合并进入细胞是通过它们的表面刺状糖蛋白;SARS-CoV是与金属蛋白酶血管紧张素转换酶2(ACE2)结合, 而MERS-CoV利用二肽肽酶4(DPP4)进入细胞。最近对SARS-CoV-2刺激性糖蛋白结构的模拟, 预测除了ACE2之外, 它还可以与人DPP4相互作用。DPP4是一种无处不在的膜结合型氨基肽酶, 在血浆中循环, 具有多种功能, 在营养, 代谢, 免疫和内分泌系统中发挥作用。DPP4通过其酶活性和非酶免疫调节作用, 调节葡萄糖稳态和炎症。DPP4抑制剂或格列普汀被批准用于治疗2型糖尿病, 这突显了DPP4对医学界的重要性。本文就新冠肺炎合并疾病时DPP4的异常调节进行综述。老年人DPP4活性较高, 血浆DPP4升高是代谢综合征发病的预测因子。DPP4上调可能是新冠肺炎疾病严重程度的决定因素, 这引起了人们对格列普汀在新冠肺炎治疗中使用的兴趣。此外, DPP4的化学和生物学知识可以用来开发新的疗法, 阻止一些β冠状病毒如SARS-CoV-2等入侵体内。
REFERENCES
- 1Lam TT, Shum MH, Zhu HC, et al. Identifying SARS-CoV-2 related coronaviruses in Malayan pangolins. Nature. 2020. [Epub ahead of print].
- 2Zhong NS, Zheng BJ, Li YM, et al. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China, in February, 2003. Lancet. 2003; 362(9393): 1353-1358.
- 3de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol. 2016; 14(8): 523-534.
- 4Badawi A, Ryoo SG. Prevalence of comorbidities in the Middle East respiratory syndrome coronavirus (MERS-CoV): a systematic review and meta-analysis. Int J Infect Dis. 2016; 49: 129-133.
- 5Yang J, Zheng Y, Gou X, et al. Prevalence of comorbidities in the novel Wuhan coronavirus (COVID-19) infection: a systematic review and meta-analysis. Int J Infect Dis. 2020; 94: 91-95.
- 6Wang T, Du Z, Zhu F, et al. Comorbidities and multi-organ injuries in the treatment of COVID-19. Lancet. 2020; 395(10228):e52.
- 7Wang B, Li R, Lu Z, Huang Y. Does comorbidity increase the risk of patients with COVID-19: evidence from meta-analysis. Aging. 2020; 12(7): 6049–6057.
- 8Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020; 323: 1239.
- 9Remuzzi A, Remuzzi G. COVID-19 and Italy: what next? Lancet. 2020; 395(10231): 1225-1228.
- 10Rodriguez-Morales AJ, Cardona-Ospina JA, Gutierrez-Ocampo E, et al. Clinical, laboratory and imaging features of COVID-19: a systematic review and meta-analysis. Travel Med Infect Dis. 2020; 34: 101623.
- 11Chen T, Wu D, Chen H, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ. 2020; 368:m1091.
- 12Virgin HW, Wherry EJ, Ahmed R. Redefining chronic viral infection. Cell. 2009; 138(1): 30-50.
- 13Mandl JN, Ahmed R, Barreiro LB, et al. Reservoir host immune responses to emerging zoonotic viruses. Cell. 2015; 160(1–2): 20-35.
- 14Oh MD, Park WB, Choe PG, et al. Viral load kinetics of MERS coronavirus infection. N Engl J Med. 2016; 375(13): 1303-1305.
- 15Simmons G, Zmora P, Gierer S, Heurich A, Pohlmann S. Proteolytic activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting edge of antiviral research. Antiviral Res. 2013; 100(3): 605-614.
- 16Glowacka I, Bertram S, Muller MA, et al. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J Virol. 2011; 85(9): 4122-4134.
- 17Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020; 181: 271-280.e8.
- 18Zhou Y, Vedantham P, Lu K, et al. Protease inhibitors targeting coronavirus and filovirus entry. Antiviral Res. 2015; 116: 76-84.
- 19Raj VS, Mou H, Smits SL, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature. 2013; 495(7440): 251-254.
- 20Park YJ, Walls AC, Wang Z, et al. Structures of MERS-CoV spike glycoprotein in complex with sialoside attachment receptors. Nat Struct Mol Biol. 2019; 26(12): 1151-1157.
- 21Earnest JT, Hantak MP, Li K, McCray PB Jr, Perlman S, Gallagher T. The tetraspanin CD9 facilitates MERS-coronavirus entry by scaffolding host cell receptors and proteases. PLoS Pathog. 2017; 13(7):e1006546.
- 22Widagdo W, Sooksawasdi N, Ayudhya S, Hundie GB, Haagmans BL. Host determinants of MERS-CoV transmission and pathogenesis. Viruses. 2019; 11(3): 280.
- 23Peck KM, Scobey T, Swanstrom J, et al. Permissivity of dipeptidyl peptidase 4 Orthologs to Middle East respiratory syndrome coronavirus is governed by glycosylation and other complex determinants. J Virol. 2017; 91(19). e00534–17.
- 24Letko M, Miazgowicz K, McMinn R, et al. Adaptive evolution of MERS-CoV to species variation in DPP4. Cell Rep. 2018; 24(7): 1730-1737.
- 25Abbott CA, McCaughan GW, Levy MT, Church WB, Gorrell MD. Binding to human dipeptidyl peptidase IV by adenosine deaminase and antibodies that inhibit ligand binding involves overlapping, discontinuous sites on a predicted beta propeller domain. Eur J Biochem. 1999; 266(3): 798-810.
- 26Gorrell MD. Dipeptidyl peptidase IV and related enzymes in cell biology and liver disorders. Clin Sci (Lond). 2005; 108(4): 277-292.
- 27Raj VS, Smits SL, Provacia LB, et al. Adenosine deaminase acts as a natural antagonist for dipeptidyl peptidase 4-mediated entry of the Middle East respiratory syndrome coronavirus. J Virol. 2014; 88(3): 1834-1838.
- 28Smith RE, Talhouk JW, Brown EE, Edgar SE. The significance of hypersialylation of dipeptidyl peptidase IV (CD26) in the inhibition of its activity by tat and other cationic peptides. CD26: a subverted adhesion molecule for HIV peptide binding. AIDS Res Hum Retroviruses. 1998; 14(10): 851-868.
- 29Vankadari N, Wilce JA. Emerging WuHan (COVID-19) coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg Microbes Infect. 2020; 9(1): 601-604.
- 30Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol. 2020; 5(4): 562-569.
- 31Kirby M, Yu DM, O'Connor S, Gorrell MD. Inhibitor selectivity in the clinical application of dipeptidyl peptidase-4 inhibition. Clin Sci (Lond). 2009; 118(1): 31-41.
- 32 To KF, Lo AW. Exploring the pathogenesis of severe acute respiratory syndrome (SARS): the tissue distribution of the coronavirus (SARS-CoV) and its putative receptor, angiotensin-converting enzyme 2 (ACE2). J Pathol. 2004; 203(3): 740-743.
- 33Qi F, Qian S, Zhang S, Zhang Z. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem Biophys Res Commun. 2020; 526: 135-140.
- 34Widagdo W, Begeman L, Schipper D, et al. Tissue distribution of the MERS-coronavirus receptor in bats. Sci Rep. 2017; 7(1): 1193.
- 35Cook SJ, Lee Q, Wong AC, et al. Differential chemokine receptor expression and usage by pre-cDC1 and pre-cDC2. Immunol Cell Biol. 2018; 96(10): 1131-1139.
- 36Gorrell MD, Gysbers V, McCaughan GW. CD26: a multifunctional integral membrane and secreted protein of activated lymphocytes. Scand J Immunol. 2001; 54(3): 249-264.
- 37Aemaimanan P, Sattayasai N, Wara-aswapati N, et al. Alanine aminopeptidase and dipeptidyl peptidase IV in saliva of chronic periodontitis patients. J Periodontol. 2009; 80(11): 1809-1814.
- 38Kim YI, Kim SG, Kim SM, et al. Infection and rapid transmission of SARS-CoV-2 in ferrets. Cell Host Microbe. 2020: 704–709.
- 39Sharma PK, Wong EB, Napier RJ, et al. High expression of CD26 accurately identifies human bacteria-reactive MR1-restricted MAIT cells. Immunology. 2015; 145(3): 443-453.
- 40Zhang W, Du RH, Li B, et al. Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerg Microbes Infect. 2020; 9(1): 386-389.
- 41Kim KM, Noh JH, Bodogai M, et al. Identification of senescent cell surface targetable protein DPP4. Genes Dev. 2017; 31(15): 1529-1534.
- 42Meyerholz DK, Lambertz AM, McCray PB Jr. Dipeptidyl peptidase 4 distribution in the human respiratory tract: implications for the Middle East respiratory syndrome. Am J Pathol. 2016; 186(1): 78-86.
- 43Seys LJM, Widagdo W, Verhamme FM, et al. DPP4, the Middle East respiratory syndrome coronavirus receptor, is upregulated in lungs of smokers and chronic obstructive pulmonary disease patients. Clin Infect Dis. 2018; 66(1): 45-53.
- 44Zhong J, Maiseyeu A, Davis SN, Rajagopalan S. DPP4 in cardiometabolic disease: recent insights from the laboratory and clinical trials of DPP4 inhibition. Circ Res. 2015; 116(8): 1491-1504.
- 45Noels H, Bernhagen J. Editorial: the CXCR4 ligand/receptor family and the DPP4 protease in high-risk cardiovascular patients. Front Immunol. 2016; 7: 58.
- 46Nistala R, Savin V. Diabetes, hypertension, and chronic kidney disease progression: role of DPP4. Am J Physiol Renal Physiol. 2017; 312(4): F661-F670.
- 47Wolke C, Teumer A, Endlich K, et al. Serum protease activity in chronic kidney disease patients: the GANI_MED renal cohort. Exp Biol Med (Maywood). 2017; 242(5): 554-563.
- 48Itou M, Kawaguchi T, Taniguchi E, Sata M. Dipeptidyl peptidase-4: a key player in chronic liver disease. World J Gastroenterol. 2013; 19(15): 2298-2306.
- 49Baumeier C, Schluter L, Saussenthaler S, et al. Elevated hepatic DPP4 activity promotes insulin resistance and non-alcoholic fatty liver disease. Mol Metab. 2017; 6(10): 1254-1263.
- 50Williams KH, Vieira De Ribeiro AJ, Prakoso E, et al. Circulating dipeptidyl peptidase-4 activity correlates with measures of hepatocyte apoptosis and fibrosis in non-alcoholic fatty liver disease in type 2 diabetes mellitus and obesity: a dual cohort cross-sectional study. J Diabetes. 2015; 7(6): 809-819.
- 51Zheng T, Chen B, Yang L, et al. Association of plasma dipeptidyl peptidase-4 activity with non-alcoholic fatty liver disease in nondiabetic Chinese population. Metabolism. 2017; 73: 125-134.
- 52Baumeier C, Saussenthaler S, Kammel A, et al. Hepatic DPP4 DNA methylation associates with fatty liver. Diabetes. 2017; 66(1): 25-35.
- 53Saussenthaler S, Ouni M, Baumeier C, et al. Epigenetic regulation of hepatic Dpp4 expression in response to dietary protein. J Nutr Biochem. 2019; 63: 109-116.
- 54Ghorpade DS, Ozcan L, Zheng Z, et al. Hepatocyte-secreted DPP4 in obesity promotes adipose inflammation and insulin resistance. Nature. 2018; 555(7698): 673-677.
- 55Romacho T, Sell H, Indrakusuma I, et al. DPP4 deletion in adipose tissue improves hepatic insulin sensitivity in diet-induced obesity. Am J Physiol Endocrinol Metab. 2020; 318(5): E590-E599.
- 56Lamers D, Famulla S, Wronkowitz N, et al. Dipeptidyl peptidase 4 is a novel adipokine potentially linking obesity to the metabolic syndrome. Diabetes. 2011; 60(7): 1917-1925.
- 57Stengel A, Goebel-Stengel M, Teuffel P, et al. Obese patients have higher circulating protein levels of dipeptidyl peptidase IV. Peptides. 2014; 61: 75-82.
- 58Kirino Y, Sei M, Kawazoe K, Minakuchi K, Sato Y. Plasma dipeptidyl peptidase 4 activity correlates with body mass index and the plasma adiponectin concentration in healthy young people. Endocr J. 2012; 59(10): 949-953.
- 59Yu DM, Slaitini L, Gysbers V, et al. Soluble CD26 / dipeptidyl peptidase IV enhances human lymphocyte proliferation in vitro independent of dipeptidyl peptidase enzyme activity and adenosine deaminase binding. Scand J Immunol. 2011; 73(2): 102-111.
- 60Zhong J, Rao X, Deiuliis J, et al. A potential role for dendritic cell/macrophage-expressing DPP4 in obesity-induced visceral inflammation. Diabetes. 2013; 62(1): 149-157.
- 61Julander JG, Siddharthan V, Evans J, et al. Efficacy of the broad-spectrum antiviral compound BCX4430 against Zika virus in cell culture and in a mouse model. Antiviral Res. 2017; 137: 14-22.
- 62Antonioli L, Fornai M, Blandizzi C, Pacher P, Hasko G. Adenosine signaling and the immune system: when a lot could be too much. Immunol Lett. 2019; 205: 9-15.
- 63Casrouge A, Decalf J, Ahloulay M, et al. Evidence for an antagonist form of the chemokine CXCL10 in patients chronically infected with HCV. J Clin Invest. 2011; 121(1): 308-317.
- 64Ragab D, Laird M, Duffy D, et al. CXCL10 antagonism and plasma sDPPIV correlate with increasing liver disease in chronic HCV genotype 4 infected patients. Cytokine. 2013; 63(2): 105-112.
- 65Rainczuk A, Rao JR, Gathercole JL, et al. Evidence for the antagonistic form of CXC-motif chemokine CXCL10 in serous epithelial ovarian tumours. Int J Cancer. 2014; 134(3): 530-541.
- 66Li B, Yang J, Zhao F, et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol. 2020; 109: 531-538.
- 67Guo W, Li M, Dong Y, et al. Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes Metab Res Rev. 2020;e3319. [Epub ahead of print].
- 68Simonnet A, Chetboun M, Poissy J, et al. High prevalence of obesity in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. Obesity. 2020. [Epub ahead of print]
- 69Yang F, Zheng T, Gao Y, et al. Increased plasma DPP4 activity is an independent predictor of the onset of metabolic syndrome in Chinese over 4 years: result from the China National Diabetes and metabolic disorders study. PLoS One. 2014; 9(3):e92222.
- 70Gallwitz B. Clinical use of DPP-4 inhibitors. Front Endocrinol. 2019; 10: 389.
- 71Kushwaha RN, Haq W, Katti SB. Sixteen-years of clinically relevant dipeptidyl peptidase-IV (DPP-IV) inhibitors for treatment of type-2 diabetes: a perspective. Curr Med Chem. 2014; 21(35): 4013-4045.
- 72Li X, Huang X, Bai C, et al. Efficacy and safety of teneligliptin in patients with type 2 diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials. Front Pharmacol. 2018; 9: 449.
- 73Pang Z, Nakagami H, Osako MK, et al. Therapeutic vaccine against DPP4 improves glucose metabolism in mice. Proc Natl Acad Sci U S A. 2014; 111(13): E1256-E1263.
- 74Fujihara K, Igarashi R, Matsunaga S, et al. Comparison of baseline characteristics and clinical course in Japanese patients with type 2 diabetes among whom different types of oral hypoglycemic agents were chosen by diabetes specialists as initial monotherapy (JDDM 42). Medicine. 2017; 96(7):e6122.
- 75Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med. 2020; 8(4):e21.
- 76Vaduganathan M, Vardeny O, Michel T, McMurray JJV, Pfeffer MA, Solomon SD. Renin-angiotensin-aldosterone system inhibitors in patients with COVID-19. N Engl J Med. 2020; 382: 1653-1659.
- 77Kagal UA, Angadi NB, Matule SM. Effect of dipeptidyl peptidase 4 inhibitors on acute and subacute models of inflammation in male Wistar rats: an experimental study. Int J Appl Basic Med Res. 2017; 7(1): 26-31.
- 78Birnbaum Y, Bajaj M, Qian J, Ye Y. Dipeptidyl peptidase-4 inhibition by Saxagliptin prevents inflammation and renal injury by targeting the Nlrp3/ASC inflammasome. BMJ Open Diabetes Res Care. 2016; 4(1):e000227.
- 79Beraldo JI, Benetti A, Borges-Junior FA, et al. Cardioprotection conferred by Sitagliptin is associated with reduced cardiac angiotensin II/angiotensin-(1–7) balance in experimental chronic kidney disease. Int J Mol Sci. 2019; 20(8): 1940.
- 80Schuppan D, Gorrell MD, Klein T, Mark M, Afdhal NH. The challenge of developing novel pharmacological therapies for non-alcoholic steatohepatitis. Liver Int. 2010; 30(6): 795-808.
- 81Tacelli M, Celsa C, Magro B, et al. Antidiabetic drugs in NAFLD: the accomplishment of two goals at once? Pharmaceuticals (Basel). 2018; 11(4): 121.
- 82Makdissi A, Ghanim H, Vora M, et al. Sitagliptin exerts an antinflammatory action. J Clin Endocrinol Metab. 2012; 97(9): 3333-3341.
- 83Tang S, Ma W, Bai P. A novel dynamic model describing the spread of the MERS-CoV and the expression of dipeptidyl peptidase 4. Comput Math Methods Med. 2017; 2017:5285810.
- 84Tomovic K, Lazarevic J, Kocic G, Deljanin-Ilic M, Anderluh M, Smelcerovic A. Mechanisms and pathways of anti-inflammatory activity of DPP-4 inhibitors in cardiovascular and renal protection. Med Res Rev. 2019; 39(1): 404-422.
- 85Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020; 395(10229): 1033-1034.
- 86Gao Y, Li T, Han M, et al. Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID-19. J Med Virol. 2020. [Epub ahead of print].
- 87Jiang L, Yin J, Ye L, et al. Novel risk loci for rheumatoid arthritis in Han Chinese and congruence with risk variants in Europeans. Arthritis Rheumatol. 2014; 66(5): 1121-1132.
- 88Kleine-Weber H, Schroeder S, Kruger N, et al. Polymorphisms in dipeptidyl peptidase 4 reduce host cell entry of Middle East respiratory syndrome coronavirus. Emerg Microbes Infect. 2020; 9(1): 155-168.