Bacillus thuringiensis membrane-damaging toxins acting on mammalian cells
Francesco Celandroni
Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
Search for more papers by this authorSara Salvetti
Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
Search for more papers by this authorSonia Senesi
Department of Biology, University of Pisa, Pisa, Italy
Search for more papers by this authorCorresponding Author
Emilia Ghelardi
Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
Correspondence: Emilia Ghelardi, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno 37, Pisa 56127, Italy. Tel.: +39 050 2213686;
fax: +39 050 2213711;
e-mail: [email protected]
Search for more papers by this authorFrancesco Celandroni
Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
Search for more papers by this authorSara Salvetti
Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
Search for more papers by this authorSonia Senesi
Department of Biology, University of Pisa, Pisa, Italy
Search for more papers by this authorCorresponding Author
Emilia Ghelardi
Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
Correspondence: Emilia Ghelardi, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno 37, Pisa 56127, Italy. Tel.: +39 050 2213686;
fax: +39 050 2213711;
e-mail: [email protected]
Search for more papers by this authorAbstract
Bacillus thuringiensis is widely used as a biopesticide in forestry and agriculture, being able to produce potent species-specific insecticidal toxins and considered nonpathogenic to other animals. More recently, however, repeated observations are documenting the association of this microorganism with various infectious diseases in humans, such as food-poisoning-associated diarrheas, periodontitis, bacteremia, as well as ocular, burn, and wound infections. Similar to B. cereus, B. thuringiensis produces an array of virulence factors acting against mammalian cells, such as phosphatidylcholine- and phosphatidylinositol-specific phospholipase C (PC-PLC and PI-PLC), hemolysins, in particular hemolysin BL (HBL), and various enterotoxins. The contribution of some of these toxins to B. thuringiensis pathogenicity has been studied in animal models of infection, following intravitreous, intranasal, or intratracheal inoculation. These studies lead to the speculation that the activities of PC-PLC, PI-PLC, and HBL are responsible for most of the pathogenic properties of B. thuringiensis in nongastrointestinal infections in mammals. This review summarizes data regarding the biological activity, the genetic basis, and the structural features of these membrane-damaging toxins.
References
- Agaisse H, Gominet M, Økstad OA, Kolstø A-B & Lereclus D (1999) PlcR is a pleiotropic regulator of extracellular virulence factor gene expression in Bacillus thuringiensis. Mol Microbiol 32: 1043–1053.
- Alberti-Segui C, Goeden KR & Higgins DE (2007) Differential function of Listeria monocytogenes listeriolysin O and phospholipases C in vacuolar dissolution following cell-to-cell spread. Cell Microbiol 9: 179–195.
- Antikainen NM, Hergenrother PJ, Harris MM, Corbett W & Martin SF (2003) Altering substrate specificity of phosphatidylcholine-preferring phospholipase C of Bacillus cereus by random mutagenesis of the headgroup binding site. Biochemistry 42: 1603–1610.
- Becker KP & Hannun YA (2005) Protein kinase C and phospholipase D: intimate interactions in intracellular signaling. Cell Mol Life Sci 62: 1448–1461.
- Beecher DJ & MacMillan JD (1991) Characterization of the components of hemolysin BL from Bacillus cereus. Infect Immun 59: 1778–1784.
- Beecher DJ & Wong AC (1994) Improved purification and characterization of hemolysin BL, a hemolytic dermonecrotic vascular permeability factor from Bacillus cereus. Infect Immun 62: 980–986.
- Beecher DJ & Wong AC (1997) Tripartite hemolysin BL from Bacillus cereus. Hemolytic analysis of component interactions and a model for its characteristic paradoxical zone phenomenon. J Biol Chem 272: 233–239.
- Beecher DJ & Wong ACL (2000) Cooperative, synergistic and antagonistic haemolytic interactions between haemolysin BL, phosphatidylcholine phospholipase C and sphingomyelinase from Bacillus cereus. Microbiology 146: 3033–3039.
- Beecher DJ, Schoeni JL & Wong AC (1995) Enterotoxic activity of hemolysin BL from Bacillus cereus. Infect Immun 63: 4423–4428.
- Beecher DJ, Olsen TW, Somers EB & Wong AC (2000) Evidence for contribution of tripartite hemolysin BL, phosphatidylcholine-preferring phospholipase C, and collagenase to virulence of Bacillus cereus endophthalmitis. Infect Immun 68: 5269–5276.
- Benfield AP, Goodey NM, Philips LT & Martin SF (2007) Structural studies examining the substrate specificity profiles of PC-PLC(Bc) protein variants. Arch Biochem Biophys 460: 41–47.
- Borgström B (1980) Importance of phospholipids, pancreatic phospholipase A2, and fatty acid for the digestion of dietary fat: in vitro experiments with the porcine enzymes. Gastroenterology 78: 954–962.
- Buchanan RE & Gibbons NE (1974) Bacillus. Bergey's Manual of Determinative Bacteriology, Vol. 8 ( RE Buchanan & NE Gibbons, eds), pp. 613–634. Williams and Wilkins, Baltimore, MD.
- Burley SK & Petsko GA (1988) Weakly polar interactions in proteins. Adv Protein Chem 39: 125–189.
- Callegan MC, Cochran DC, Kane ST, Gilmore MS, Gominet M & Lereclus D (2002) Contribution of membrane-damaging toxins to Bacillus endophthalmitis pathogenesis. Infect Immun 70: 5381–5389.
- Callegan MC, Kane ST, Cochran DC, Gilmore MS, Gominet M & Lereclus D (2003) Relationship of plcR-regulated factors to Bacillus endophthalmitis virulence. Infect Immun 71: 3116–3124.
- Callegan MC, Kane ST, Cochran DC, Novosad B, Gilmore MS, Gominet M & Lereclus D (2005) Bacillus endophthalmitis: roles of bacterial toxins and motility during infection. Invest Ophthalmol Vis Sci 46: 3233–3238.
- Callegan MC, Cochran DC, Kane ST, Ramadan RT, Chodosh J, McLean C & Stroman DW (2006) Virulence factor profiles and antimicrobial susceptibilities of ocular Bacillus isolates. Curr Eye Res 31: 693–702.
- Cheng J, Karri S, Grauffel C, Wang F, Reuter N, Roberts MF, Wintrode PL & Gershenson A (2013) Does changing the predicted dynamics of a phospholipase C alter activity and membrane binding? Biophys J 104: 185–195.
- Clark M, Shorr R & Bomalaski J (1986) Antibodies prepared to Bacillus cereus phospholipase C crossreact with a phosphatidylcholine preferring phospholipase C in mammalian cells. Biochem Biophys Res Commun 140: 114–119.
- Damgaard PH, Granum PE, Bresciani J, Torregrossa MV, Eilenberg J & Valentino L (1997) Characterization of Bacillus thuringiensis isolated from infections in burn wounds. FEMS Immunol Med Microbiol 18: 47–53.
- Daugherty S & Low MG (1993) Cloning, expression, and mutagenesis of phosphatidylinositol-specific phospholipase C from Staphylococcus aureus: a potential staphylococcal virulence factor. Infect Immun 61: 5078–5089.
- Dougherty DA (1996) Cation-pi interactions in chemistry and biology: a new view of benzene, Phe, Tyr, and Trp. Science 271: 163–168.
- Drobniewski FA (1993) Bacillus cereus and related species. Clin Microbiol Rev 6: 324–338.
- Ellis MV, Carne A & Katan M (1993) Structural requirements of phosphatidylinositol-specific phospholipase C N1 for enzyme activity. Eur J Biochem 213: 339–347.
- El-Sayed MY, DeBose CD, Coury L & Roberts MF (1985) Sensitivity of phospholipase C (Bacillus cereus) activity to phosphatidylcholine structural modifications. Biochim Biophys Acta 837: 325–335.
- Fagerlund A, Dubois T, Økstad OA et al. (2014) SinR controls enterotoxin expression in Bacillus thuringiensis biofilms. PLoS ONE 31: e87532.
- Ganash M, Phung D, Sedelnikova SE, Lindbäck T, Granum PE & Artymiuk PJ (2013) Structure of the NheA component of the Nhe toxin from Bacillus cereus: implications for function. PLoS ONE 8: e74748.
- Gaviria Rivera AM, Granum PE & Priest FG (2000) Common occurrence of enterotoxin genes and enterotoxicity in Bacillus thuringiensis. FEMS Microbiol Lett 190: 151–155.
- Ghelardi E, Celandroni F, Salvetti S, Beecher DJ, Gominet M, Lereclus D, Wong AC & Senesi S (2002) Requirement of flhA for swarming differentiation, flagellin export, and secretion of virulence-associated proteins in Bacillus thuringiensis. J Bacteriol 184: 6424–6433.
- Ghelardi E, Celandroni F, Salvetti S, Fiscarelli E & Senesi S (2007) Bacillus thuringiensis pulmonary infection: critical role for bacterial membrane-damaging toxins and host neutrophils. Microbes Infect 9: 591–598.
- Gilmore MS, Cruz-Rodz AL, Leimeister-Wächter M, Kreft J & Goebel W (1989) A Bacillus cereus cytolytic determinant, cereolysin AB, which comprises the phospholipase C and sphingomyelinase genes: nucleotide sequence and genetic linkage. J Bacteriol 171: 744–753.
- Gohar M, Økstad OA, Gilois N, Sanchis V, Kolstø A-B & Lereclus D (2002) Two-dimensional electrophoresis analysis of the extracellular proteome of Bacillus cereus reveals the importance of the PlcR regulon. Proteomics 2: 784–791.
- Gohar M, Faegri K, Perchat S, Ravnum S, Økstad OA, Gominet M, Kolstø A-B & Lereclus D (2008) The PlcR virulence regulon of Bacillus cereus. PLoSONE 3: e2793.
- Gominet M, Slamti L, Gilois N, Rose M & Lereclus D (2001) Oligopeptide permease is required for expression of the Bacillus thuringiensis plcR regulon and for virulence. Mol Microbiol 40: 963–975.
- González-Bulnes P, González-Roura A, Canals D, Delgado A, Casas J & Llebaria A (2010) 2-aminohydroxamic acid derivatives as inhibitors of Bacillus cereus phosphatidylcholine preferred phospholipase C PC-PLCBc. Bioorg Med Chem 18: 8549–8555.
- Gordon RL, Haynes WC & Pang CHN (1973) The Genus Bacillus 427. Agricultural research service, US Department of Agriculture, Washington, DC.
- Grauffel C, Yang B, He T, Roberts MF, Gershenson A & Reuter N (2013) Cation-π interactions as lipid specific anchors for phosphatidylinositol-specific phospholipase-C. J Am Chem Soc 135: 5740–5750.
- Griffith OH & Ryan M (1999) Bacterial phosphatidylinositol-specific phospholipase C: structure, function, and interaction with lipids. Biochi Biophys Acta 1444: 237–254.
- Guinebretière MH, Auger S, Galleron N et al. (2013) Bacillus cytotoxicus sp. nov. is a novel thermotolerant species of the Bacillus cereus Group occasionally associated with food poisoning. Int J Syst Evol Microbiol 6: 31–40.
- Han CS, Xie G, Challacombe JF et al. (2006) Pathogenomic sequence analysis of Bacillus cereus and Bacillus thuringiensis isolates closely related to Bacillus anthracis. J Bacteriol 188: 3382–3390.
- Heinz DW, Ryan M & Griffith OH (1995) Crystal structure of the phosphatidylinositol-specific phospholipase C from Bacillus cereus in complex with myo-inositol. EMBO J 14: 3855–3863.
- Helgason E, Caugant DA, Olsen I & Kolstø A-B (2000a) Genetic structure of population of Bacillus cereus and Bacillus thuringiensis isolates associated with periodontitis and other human infections. J Clin Microbiol 38: 1615–1622.
- Helgason E, Økstad OA, Caugant DA, Johansen HA, Fouet A, Mock M, Hegna I & Kolstø A-B (2000b) Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis–one species on the basis of genetic evidence. Appl Environ Microbiol 66: 2627–2630.
- Henner DJ, Yang M, Chen E, Hellmiss R, Rodriguez H & Low MG (1986) Sequence of the Bacillus thuringiensis phosphatidylinositol specific phospholipase C. Nucleic Acids Res 16: 10383.
- Hernandez E, Ramisse F, Ducoureau J-P, Cruel T & Cavallo J-D (1998) Bacillus thuringiensis subsp. konkunian (serotype H34) superinfection: case report and experimental evidence of pathogenicity in immunosuppressed mice. J Clin Microbiol 36: 2138–2139.
- Hernandez E, Ramisse F, Cruel T, le Vagueresse R & Cavallo JD (1999) Bacillus thuringiensis serotype H34 isolated from human and insecticidal strains serotypes 3a3b and H14 can lead to death of immunocompetent mice after pulmonary infection. FEMS Immunol Med Microbiol 24: 43–47.
- Hoffmaster AR, Novak RT, Marston CK, Gee JE, Helsel L, Pruckler JM & Wilkin PP (2008) Genetic diversity of clinical isolates of Bacillus cereus using multilocus sequence typing. BMC Microbiol 2008: 191.
- Ikezawa H, Yamanegi M & Ohyabu T (1976) Studies on phosphatidylinositol phosphodiesterase (phospholipase C type) of Bacillus cereus. I. Purification, properties and phosphatase-releasing activity. Biochim Biophys Acta 450: 154–164.
- Jackson SG, Goodbrand RB, Ahmed R & Kasatiya S (1995) Bacillus cereus and Bacillus thuringiensis isolated in a gastroenteritis outbreak investigation. Lett Appl Microbiol 21: 103–105.
- Klimowicz AK, Benson TA & Handelsman JA (2010) Quadruple-enterotoxin-deficient mutant of Bacillus thuringiensis remains insecticidal. Microbiology 156: 3575–3583.
- Kuppe A, Evans LM, McMillen DA & Griffith OH (1989) Phosphatidylinositol-specific phospholipase C of Bacillus cereus: cloning, sequencing, and relationship to other phospholipases. J Bacteriol 171: 6077–6083.
- Kuroki R, Kawakami K, Qin L et al. (2009) Nosocomial bacteremia caused by biofilm-forming Bacillus cereus and Bacillus thuringiensis. Intern Med 48: 791–796.
- Lechner M, Kupke T, Stefanovic S & Gӧtz F (1989) Molecular characterization and sequence of phosphatidylinositol-specific phospholipase C of Bacillus thuringiensis. Mol Microbiol 3: 621–626.
- Lechner S, Mayr R, Fransis KP, Pruss BM, Kaplan T, Wiebner-Gunkel E, Stewart GS & Scherer AB (1998) Bacillus weihenstephanensis sp. nov. is a new psychrotolerant species of the Bacillus cereus group. Int J Syst Bacteriol 48: 1373–1382.
- Lereclus D, Agaisse H, Gominet M, Salamitou S & Sanchis V (1996) Identification of a Bacillus thuringiensis gene that positively regulates transcription of the phosphatidylinositol-specific phospholipase C gene at the onset of the stationary phase. J Bacteriol 1996: 2749–2756.
- Lovgren A, Carlson CR, Eskils K & Kolstø A-B (1998) Localization of putative virulence genes on a physical map of the Bacillus thuringiensis subsp. gelechiae chromosome. Curr Microbiol 1998: 245–250.
- Madegowda M, Eswaramoorthy S, Burley SK & Swaminathan S (2008) X-ray crystal structure of the B component of Hemolysin BL from Bacillus cereus. Proteins 71: 534–540.
- Martin SF, Follows B, Hergenrother P & Trotter B (2000) The choline binding site of phospholipase C (Bacillus cereus): insights into substrate specificity. Biochemistry 39: 3410–3415.
- Mateos MV, Uranga RM, Salvador GA & Giusto NM (2006) Coexistence of phosphatidylcholine-specific phospholipase C and phospholipase D activities in rat cerebral cortex synaptosomes. Lipids 41: 273–280.
- McIntyre L, Bernard K, Beniac D, Isaac-Renton JL & Naseby DC (2008) Identification of Bacillus cereus group species associated with food poisoning outbreaks in British Columbia, Canada. Appl Environ Microbiol 74: 7451–7453.
- Mengaud J, Braun-Breton C & Cossart P (1991) Identification of phosphatidylinositol-specific phospholipase C activity in Listeria monocytogenes: a novel type of virulence factor? Mol Microbiol 5: 367–372.
- Nakamura LK (1998) Bacillus pseudomycoides sp. nov. Int Syst Bacteriol 48: 1031–1034.
- Oestvang J & Johansen B (2006) PhospholipaseA2: a key regulator of inflammatory signaling and a connector to fibrosis development in atherosclerosis. Biochim Biophys Acta 1761: 1309–1316.
- Okstad OA, Gominet M, Purnelle B, Rose M, Lereclus D & Kolstø A-B (1999) Sequence analysis of three Bacillus cereus loci carrying PlcR-regulated genes encoding degradative enzymes and enterotoxin. Microbiology 145: 3129–3138.
- Peker E, Cagan E, Dogan M, Kilic A, Caksen H & Yesilmen O (2010) Periorbital cellulitis caused by Bacillus thuringiensis. Eur J Ophthalmol 20: 243–245.
- Pomerantsev AP, Kalnin KV, Osorio M & Leppla SH (2003) Phosphatidylcholine-specific phospholipase C and sphingomyelinase activities in bacteria of the Bacillus cereus group. Infect Immun 71: 6591–6606.
- Rasko DA, Altherr MR, Han CS & Ravel J (2005) Genomics of the Bacillus cereus group of organisms. FEMS Microbiol Rev 29: 303–329.
- Reardon D & Farber GK (1995) The structure and evolution of K/L barrel proteins. FASEB J 9: 497–503.
- Ryan PA, MacMillan JD & Zilinskas BA (1997) Molecular cloning and characterization of the genes encoding the L1 and L2 components of hemolysin BL from Bacillus cereus. J Bacteriol 179: 2551–2556.
- Salamitou S, Ramisse F, Brehélin M, Bourguet D, Gilois N, Gominet M, Hernandez E & Lereclus D (2000) The plcR regulon is involved in the opportunistic properties of Bacillus thuringiensis and Bacillus cereus in mice and insects. Microbiology 146: 2825–2832.
- Samples JR & Beuttner H (1983) Corneal ulcer caused by a biological insecticide (Bacillus thuringiensis). Am J Ophthalmol 95: 258–260.
- Sastalla I, Fattah R, Coppage N, Nandy P, Crown D, Pomerantsev AP & Leppla SH (2013) The Bacillus cereus Hbl and Nhe tripartite enterotoxin components assemble sequentially on the surface of target cells and are not interchangeable. PLoS ONE 8: e76955.
- Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR & Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol 62: 775–806.
- Scott JA (1984) Phospholipase activity and plasma membrane homeostasis. J Theor Biol 111: 659–665.
- Slamti L & Lereclus D (2002) A cell-cell signaling peptide activates the PlcR virulence regulon in bacteria of the Bacillus cereus group. EMBO J 21: 4550–4559.
- Snyder WR (1987) Bacillus cereus phospholipase C: carboxylic acid ester specificity and stereoselectivity. Biochim Biophys Acta 920: 155–160.
- Stenfors Arnesen LP, Fagerlund A & Granum PE (2008) From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol Rev 32: 579–606.
- Swiecicka I, Van der Auwera GA & Mahillon J (2006) Hemolytic and nonhemolytic enterotoxin genes are broadly distributed among Bacillus thuringiensis isolated from wild mammals. Microb Ecol 52: 544–551.
- Swiecicka I, Bartoszewicz M, Kasulyte-Creasey D, Drewnowska JM, Murawska E, Yernazarova A, Lukaszuk E & Mahillon J (2013) Diversity of thermal ecotypes and potential pathotypes of Bacillus thuringiensis soil isolates. FEMS Microbiol Ecol 85: 262–272.
- Tourasse NJ & Kolstø A-B (2008) SuperCAT: a supertree database for combined and integrative multilocus sequence typing analysis of the Bacillus cereus group of bacteria (including B. cereus, B. anthracis and B. thuringiensis). Nucleic Acids Res 36: D461–D468.
- Tourasse NJ, Helgason E, Klevan A, Sylvestre P, Moya M, Haustant M, Økstad OA, Fouet A, Mock M & Kolstø A-B (2011) Extended and global phylogenetic view of the Bacillus cereus group population by combination of MLST, AFLP, and MLEE genotyping data. Food Microbiol 28: 236–244.
- Treumann A, Lifely MR, Schneider P & Ferguson MAJ (1995) Primary structure of CD52. J Biol Chem 270: 6088–6099.
- Triggiani M, Granata F, Frattini A & Marone G (2006) Activation of human inflammatory cells by secreted phospholipases A2. Biochim Biophys Acta 1761: 1289–1300.
- Volwerk JJ, Koke JA & Griffith OH (1989) Functional characteristics of phosphatidylinositol-specific phospholipases C from Bacillus cereus and Bacillus thuringiensis. FEMS Microbiol Lett 52: 237–241.
- Wang H & Kazanietz MG (2006) The lipid second messenger diacylglycerol as a negative regulator of Rac signalling. Biochem Soc Trans 34: 855–857.
- Watkins JB (1985) Lipid digestion and absorption. Pediatrics 75: 151–156.
- Wehbi H, Feng J, Kolbeck J, Ananthanarayanan B, Cho W & Roberts MF (2003) Investigating the interfacial binding of bacterial phosphatidylinositol-specific phospholipase C. Biochemistry 42: 9374–9382.
- Zhang L, Zhao J, Su L, Huang B, Wang L, Su H, Zhang Y, Zhang S & Miao J (2010) D609 inhibits progression of preexisting atheroma and promotes lesion stability in apolipoprotein e-/- mice: a role of phosphatidylcholine-specific phospholipase in atherosclerosis. Arterioscler Thromb Vasc Biol 30: 411–418.
- Zhou C, Wu Y & Roberts MF (1997) Activation of phosphatidylinositol-specific phospholipase C toward inositol 1,2-(cyclic)-phosphate. Biochemistry 14: 347–355.