A hybrid stochastic Galerkin method for uncertainty quantification applied to a conservation law modelling a clarifier-thickener unit
R. Bürger
CI2MA and Departamento de Ingeniería Matemática, Universidad de Concepción, Casilla 160-C, Concepción, Chile
Search for more papers by this authorCorresponding Author
I. Kröker
IANS, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
IANS, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, GermanySearch for more papers by this authorC. Rohde
IANS, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
Search for more papers by this authorR. Bürger
CI2MA and Departamento de Ingeniería Matemática, Universidad de Concepción, Casilla 160-C, Concepción, Chile
Search for more papers by this authorCorresponding Author
I. Kröker
IANS, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
IANS, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, GermanySearch for more papers by this authorC. Rohde
IANS, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
Search for more papers by this authorAbstract
The continuous sedimentation process in a clarifier-thickener can be described by a scalar nonlinear conservation law for the local solids volume fraction. The flux density function is discontinuous with respect to spatial position due to feed and discharge mechanisms. Typically, the feed flow cannot be given deterministically and efficient numerical simulation requires a concept for quantifying uncertainty. In this paper uncertainty quantification is expressed by a new hybrid stochastic Galerkin (HSG) method that extends the classical polynomial chaos approximation by multiresolution discretization in the stochastic space. The new approach leads to a deterministic hyperbolic system for a finite number of stochastic moments which is however partially decoupled and thus allows efficient parallelisation. The complexity of the problem is further reduced by stochastic adaptivity. For the approximate solution of the resulting high-dimensional system a finite volume scheme is introduced. Numerical experiments cover one- and two-dimensional situations.
References
- [1]R. Abgrall, A simple, flexible and generic deterministic apporach to uncertainty quantifications in nonlinear problems: application to fluid flow problems, submitted to J. Comput. Phys., also INRIA Report (2007).
- [2]B.K. Alpert, Wavelets and Other Bases for Fast Numerical Linear Algebra. In: Wavelets, Vol. 2 of Wavelet Anal. Appl. (Academic Press, Boston, MA, 1992), pp. 181–216.
- [3]B.K. Alpert, A class of bases in L2 for the sparse representation of integral operators, SIAM J. Math. Anal. 24, 246–262 (1993).
- [4]E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users' Guide, third edition, (Society for Industrial and Applied Mathematics, Philadelphia, PA, 1999).
- [5]R. Bürger, K.H. Karlsen, N.H. Risebro, and J.D. Towers, Well-posedness in BVt and convergence of a difference scheme for continuous sedimentation in ideal clarifier-thickener units, Numer. Math. 97, 25–65 (2004).
- [6]R. Bürger, K.H. Karlsen, H. Torres, and J.D. Towers, Second-order schemes for conservation laws with discontinuous flux modelling clarifier-thickener units, Numer. Math. 116, 579–617 (2010).
- [7]R. Bürger, K.H. Karlsen, and J.D. Towers, A model of continuous sedimentation of flocculated suspensions in clarifier-thickener units, SIAM J. Appl. Math. 65, 882–940 (2005).
- [8]R. Bürger, K.H. Karlsen, and J.D. Towers, An Engquist-Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections, SIAM J. Numer. Anal. 47, 1684–1712 (2009).
- [9]R. Bürger, I. Kröker, and C. Rohde, Uncertainty quantification for a clarifier-thickener model with random feed. In: Finite Volumes for Complex Applications VI, Vol. 1 (Springer, Berlin, Heidelberg, 2011). pp. 195–203.
- [10]R. Bürger, R. Ruiz, K. Schneider, and M. Sepúlveda, Fully adaptive multiresolution schemes for strongly degenerate parabolic equations in one space dimension, M2AN Math. Model. Numer. Anal. 42, 535–563 (2008).
- [11]R. Bürger, R. Ruiz-Baier, and K. Schneider, Adaptive multiresolution methods for the simulation of waves in excitable media, J. Sci. Comput. 43, 261–290 (2010).
- [12]R. Bürger, R. Ruiz-Baier, K. Schneider, and H. Torres, A multiresolution method for the simulation of sedimentation in inclined channels, Int. J. Numer. Anal. Model. 9, 479–504 (2012).
- [13]R. Bürger, R. Ruiz-Baier, and H. Torres, A stabilized finite volume element formulation for sedimentation-consolidation processes, SIAM J. Sci. Comput. B 34, 265–289 (2012).
- [14]R. Bürger, W.L. Wendland, and F. Concha, Model equations for gravitational sedimentation-consolidation processes, Z. Angew. Math. Mech. 80, 79–92 (2000).
- [15]R.H. Cameron and W.T. Martin, The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals, Ann. Math. 48(2), 385–392 (1947).
- [16]J.-P. Chancelier, M. Cohen de Lara, and F. Pacard, Analysis of a conservation PDE with discontinuous flux: a model of settler, SIAM J. Appl. Math. 54, 954–995 (1994).
- [17]S. Diehl, A conservation law with point source and discontinuous flux function modelling continuous sedimentation, SIAM J. Appl. Math. 56, 388–419 (1996).
- [18]S. Diehl, Scalar conservation laws with discontinuous flux function: I. The viscous profile condition, Commun. Math. Phys. 176, 23–44 (1996).
- [19]S. Diehl, Operating charts for continuous sedimentation. I. Control of steady states, J. Eng. Math. 41, 117–144 (2001).
- [20]S. Diehl, Operating charts for continuous sedimentation. II. Step responses, J. Eng. Math. 53, 139–185 (2005).
- [21]S. Diehl, Operating charts for continuous sedimentation. III. Control of step inputs, J. Eng. Math. 54, 225–259 (2006).
- [22]S. Diehl, Operating charts for continuous sedimentation. IV. Limitations for control of dynamic behaviour, J. Eng. Math. 60, 249–264 (2008).
- [23]B. Engquist and S. Osher, One-sided difference approximations for nonlinear conservation laws, Math. Comput. 36, 321–351 (1981).
- [24]R.G. Ghanem and P.D. Spanos, Stochastic Finite Elements: a Spectral Approach (Springer-Verlag, New York, 1991).
- [25]J.R. Kamm, W.J. Rider, V.G. Weirs, S. Tarantola, and M. Ratto, Sensitivity and uncertainty quantification techniques applied to systems of conservation laws, Procedia – Social Behav. Sci. 2, 7686–7687 (2010).
10.1016/j.sbspro.2010.05.179 Google Scholar
- [26]S.N. Kružkov, First order quasilinear equations with several independent variables, Mat. Sb. (N.S.) 81, 228–255 (1970).
- [27]A. Kurganov and G. Petrova, Central-upwind schemes on triangular grids for hyperbolic systems of conservation laws, Numer. Methods Partial Differ. Equ. 21, 536–552 (2005).
- [28]G.J. Kynch, A theory of sedimentation, Trans. Faraday Soc. 48, 166–176 (1952).
- [29]O.P. Le Maître, H.N. Najm, R.G. Ghanem, and O.M. Knio, Multi-resolution analysis of Wiener-type uncertainty propagation schemes, J. Comput. Phys. 197, 502–531 (2004).
- [30]H.G. Matthies and A. Keese, Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations, Comput. Methods Appl. Mech. Eng. 194, 1295–1331 (2005).
- [31]H.G. Matthies, Stochastic finite elements: computational approaches to stochastic partial differential equations, Z. Angew. Math. Mech. 88(11), 849–873 (2008).
- [32]S. Mishra and Ch. Schwab, Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data, Math. Comput. 81, 1979–2018 (2012).
- [33]K. Oldham, J. Myland, and J. Spanier, An Atlas of Functions, second edition (Springer, New York, 2009).
- [34]G. Poëtte, B. Després, and D. Lucor, Uncertainty quantification for systems of conservation laws, J. Comput. Phys. 228, 2443–2467 (2009).
- [35]J.F. Richardson and W.N. Zaki, Sedimentation and fluidization: Part I, Trans. Inst. Chem. Eng. (London) 32, 35–53 (1954).
- [36]J.R. Shewchuk, Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator. In: Applied Computational Geometry: Towards Geometric Engineering, Vol. 1148 of Lecture Notes in Computer Science, edited by C. L. Ming and D. Manocha (Springer-Verlag, Berlin, Heidelberg, New York, 1996), pp. 203–222.
- [37]J. Tryoen, O. Le Maître, and A. Ern, Adaptive anisotropic spectral stochastic methods for uncertain scalar conservation laws, SIAM J. Sci. Comput. 34(5), A2459–A2481 (2012).
- [38]J. Tryoen, O. Le Maître, M. Ndjinga, and A. Ern, Intrusive Galerkin methods with upwinding for uncertain nonlinear hyperbolic systems, J. Comput. Phys. 229, 6485–6511 (2010).
- [39]A. Tveito and R. Winther, The solution of nonstrictly hyperbolic conservation laws may be hard to compute, SIAM J. Sci. Comput. 16, 320–329 (1995).
- [40]D. Xiu and G.E. Karniadakis, Modeling uncertainty in flow simulations via generalized polynomial chaos, J. Comput. Phys. 187(1), 137–167 (2003).
- [41]G.M. Karniadakis and R.M. Kirby, Parallel Scientific Computing in C++ and MPI (Cambridge University Press, New York, 2003).