Structural and Thermal Properties of Faba Bean Starch and Flax Seed Oil Nanoemulsion: Effect of Processing Conditions on Nanoemulsion
Madhu Sharma
Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, 144411 India
Search for more papers by this authorAarti Bains
Department of Microbiology, Lovely Professional University, Phagwara, Punjab, 144411 India
Search for more papers by this authorMinaxi Sharma
Department of Applied Biology, University of Science and Technology, Meghalaya, 793101 India
Search for more papers by this authorBaskaran Stephen Inbaraj
Department of Food Science, Fu Jen Catholic University, New Taipei City, 242062 Taiwan
Search for more papers by this authorNemat Ali
Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451 Saudi Arabia
Search for more papers by this authorMuzaffar Iqbal
Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451 Saudi Arabia
Search for more papers by this authorSandip Patil
Deparment of Haematology and Oncology, Shenzhen Children's Hospital, 7019 Yi Tian Road Shenzhen, Shenzhen, 510038 China
Search for more papers by this authorCorresponding Author
Prince Chawla
Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, 144411 India
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Kandi Sridhar
Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore, 641021 India
E-mail: [email protected]; [email protected]
Search for more papers by this authorMadhu Sharma
Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, 144411 India
Search for more papers by this authorAarti Bains
Department of Microbiology, Lovely Professional University, Phagwara, Punjab, 144411 India
Search for more papers by this authorMinaxi Sharma
Department of Applied Biology, University of Science and Technology, Meghalaya, 793101 India
Search for more papers by this authorBaskaran Stephen Inbaraj
Department of Food Science, Fu Jen Catholic University, New Taipei City, 242062 Taiwan
Search for more papers by this authorNemat Ali
Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451 Saudi Arabia
Search for more papers by this authorMuzaffar Iqbal
Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451 Saudi Arabia
Search for more papers by this authorSandip Patil
Deparment of Haematology and Oncology, Shenzhen Children's Hospital, 7019 Yi Tian Road Shenzhen, Shenzhen, 510038 China
Search for more papers by this authorCorresponding Author
Prince Chawla
Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, 144411 India
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Kandi Sridhar
Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore, 641021 India
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Nanoemulsions derived from unconventional polysaccharides have gained attention as efficient delivery systems for bioactive compounds, helping in their enhanced absorption. Nontraditional sources of starch have been investigated in recent years due to their potential applications. Therefore, this study investigates the potential of extracting starch from faba beans and investigating their structural properties. Furthermore, the nanoemulsion is developed from starch, flax seed oil, and tween 80 and evaluated for different processing methods (temperature, pH, and NaCl). The extracted starch yields 31.20 g/100 g and X-ray diffraction reveals its semicrystalline structure. The optimized nanoemulsion (N3) has an average droplet size of 108.62 ± 2.78 nm and a surface charge of −27.74 ± 0.12 mV. At different pH levels (2–9), temperature (30, 50, 70, and 90 °C), and ionic strengths (0.5, 1, and 2 m), the N3 nanoemulsion demonstrates significantly greater changes in stability. All the samples show excellent structural properties and stability. Overall, the results suggest that faba bean starch-based nanoemulsion shows promise as a stable delivery system for bioactive compounds, but its stability is influenced by pH levels and ionic strengths.
Conflict of Interest
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1M. Huang, Y. Sun, C. Tan, Food Hydrocoll. 2023, 140, 108682.
- 2P. Adewale, M. S. Yancheshmeh, E. Lam, Carbohydr. Polym. 2022, 291, 119590.
- 3A. Namphonsane, P. Suwannachat, C. H. Chia, R. Wongsagonsup, S. M. Smith, T. Amornsakchai, Membranes (Basel) 2023, 13, 458.
- 4K. Tao, W. Yu, P. Sangeeta, R. G. Gilbert, in The Third Int. Tropical Agriculture Conf. (TROPAG 2019), 2020.
- 5F. Zou, T. Budtova, Carbohydr. Polym. 2021, 255, 117344.
- 6E. Apostolidis, G. N. Stoforos, I. Mandala, Carbohydr. Polym. 2023, 305, 120554.
- 7E. Tran, G. L. Richmond, Langmuir 2021, 37, 12643.
- 8L. Wang, J. Zhan, R. Ma, Y. Tian, Colloids Surf. A Physicochem. Eng. Asp. 2023, 665, 131218.
- 9S. Rout, S. Tambe, R. K. Deshmukh, S. Mali, J. Cruz, P. P. Srivastav, P. D. Amin, K. K. Gaikwad, E. H. D. A. Andrade, M. S. D. Oliveira, Trends Food Sci. Technol. 2022, 129, 421.
- 10G. L. Zabot, F. Schaefer Rodrigues, L. Polano Ody, M. Vinícius Tres, E. Herrera, H. Palacin, J. S. Córdova-Ramos, I. Best, L. Olivera-Montenegro, Polymers (Basel) 2022, 14, 4194.
- 11F. Islam, F. Saeed, M. Afzaal, M. Hussain, A. Ikram, M. A. Khalid, J. Food Sci. Technol. 2023, 60, 1461.
- 12C. G. Awuchi, S. Morya, T. A. Dendegh, C. O. R. Okpala, M. Korzeniowska, Bioresour. Technol. Rep. 2022, 19, 101088.
- 13V. Sharma, M. Kaur, K. S. Sandhu, S. K. Godara, Int. J. Biol. Macromol. 2020, 159, 243.
- 14Z. Tang, R.-F. Ying, B.-F. Lv, L.-H. Yang, Z. Xu, L.-Q. Yan, J.-Z. Bu, Y.-S. Wei, Qual. Assur. Saf. Crops Foods 2021, 13, 1.
- 15F. Ruggero, E. Carretti, R. Gori, T. Lotti, C. Lubello, Chemosphere 2020, 246, 125770.
- 16M. E. Rodriguez-Garcia, M. A. Hernandez-Landaverde, J. M. Delgado, C. F. Ramirez-Gutierrez, M. Ramirez-Cardona, B. M. Millan-Malo, S. M. Londoño-Restrepo, Curr. Opin. Food Sci. 2021, 37, 107.
- 17L. Zhang, F. Zhang, Z. Fan, B. Liu, C. Liu, X. Meng, Food Res. Int. 2019, 121, 359.
- 18N. K. Mohammed, B. J. Muhialdin, A. S. Hussin, Food Sci. Nutr. 2020, 8, 2608.
- 19S. A. Onaizi, J. Pet. Sci. Eng. 2022, 209, 109857.
- 20A. Nawaz, M. S. Latif, M. A. Alnuwaiser, S. Ullah, M. Iqbal, M. Alfatama, V. Lim, Gels 2022, 8, 412.
- 21C. Cheng, X. Yu, D. J. McClements, Q. Huang, H. Tang, K. Yu, X. Xiang, P. Chen, X. Wang, Q. Deng, Food Chem. 2019, 301, 125207.
- 22S. Caballero, G. Davidov-Pardo, Food Chem. 2021, 338, 128083.
- 23D. Bi, M. Li, L. Yao, N. Zhu, W. Fang, W. Guo, Y. Wu, H. Xu, Z. Hu, X. Xu, Food Chem. 2023, 414, 135670.
- 24D. Wu, J. Lu, S. Zhong, P. Schwarz, B. Chen, J. Rao, Food Funct. 2019, 10, 2817.
- 25M. Langton, S. Ehsanzamir, S. Karkehabadi, X. Feng, M. Johansson, D. P. Johansson, Food Hydrocoll. 2020, 103, 105622.
- 26L. Li, T. Z. Yuan, R. Setia, R. B. Raja, B. Zhang, Y. Ai, Food Chem. 2019, 276, 599.
- 27M. Jamalabadi, S. Saremnezhad, A. Bahrami, S. M. Jafari, Food Sci. Nutr. 2019, 7, 2427.
- 28A. J. Ledley, G. R. Ziegler, R. J. Elias, D. W. Cockburn, Carbohydr. Polym. 2023, 314, 120935.
- 29W. Zhao, W. Liang, G. Ospankulova, M. Z. Muratkhan, K. Kh, W. Li, Food Chem. 2023, 427, 136690.
- 30Z. Zhang, X. Tian, P. Wang, H. Jiang, W. Li, Food Sci. Nutr. 2019, 7, 2485.
- 31C. Li, D. Zhou, T. Fan, M. Wang, M. Zhu, J. Ding, X. Zhu, W. Guo, Y.-C. Shi, Food Chem. 2020, 318, 126492.
- 32A. L. O. Gaenssle, C. A. Satyawan, G. Xiang, M. J. E. C. van der Maarel, E. Jurak, Carbohydr. Polym. 2021, 260, 117801.
- 33X. Y. Chen, X. W. Ma, J. Y. Wen, X. C. Liu, X. R. Yu, F. Xiong, Legume Res 2021, 44, 818.
- 34B. B. Paulo, I. D. Alvim, G. Reineccius, A. S. Prata, Colloids Surf. B Biointerfaces 2020, 190, 110939.
- 35A. Gomes, A. L. R. Costa, D. D. Cardoso, G. Náthia-Neves, M. A. A. Meireles, R. L. Cunha, Food Chem. 2021, 341, 128155.
- 36Y. Tan, D. Wannasin, D. J. McClements, Food Hydrocoll. 2023, 137, 108356.
- 37H. Lu, N. Ji, M. Li, Y. Wang, L. Xiong, L. Zhou, L. Qiu, X. Bian, C. Sun, Q. Sun, J. Agric. Food Chem. 2019, 67, 2916.
- 38H. Lu, R. Ma, R. Chang, Y. Tian, Food Hydrocoll. 2021, 120, 106975.
- 39M. Marhamati, G. Ranjbar, M. Rezaie, J. Mol. Liq. 2021, 340, 117218.
- 40Z. Cai, Y. Wei, A. Shi, J. Zhong, P. Rao, Q. Wang, H. Zhang, Adv. Colloid Interface Sci. 2023, 313, 102863.
- 41S. Ghelichi, M. Hajfathalian, B. Yesiltas, A.-D. M. Sørensen, P. J. García-Moreno, C. Jacobsen, Compr. Rev. Food Sci. Food Saf. 2023, 22, 1864.
- 42S. Prashar, S. Sharma, N. Kumar, R. Kaushik, P. Chawla, J. Am. Nutr. Assoc. 2022, 41, 291.
- 43F. Cui, S. Zhao, X. Guan, D. J. McClements, X. Liu, F. Liu, T. Ngai, Food Hydrocoll. 2021, 119, 106812.
- 44R. Richa, A. Choudhury, Int. J. Biol. Macromol. 2020, 156, 1287.
- 45S. Parajuli, E. E. Ureña-Benavides, Adv. Colloid Interface Sci. 2022, 299, 102530.
- 46Y. J. Kim, I. Y. Lee, T.-E. Kim, J. H. Lee, Y. G. Chun, B.-K. Kim, M. H. Lee, J. Sci. Food Agric. 2022, 102, 5738.
- 47G. Ren, B. Li, L. Ren, D. Lu, P. Zhang, L. Tian, W. Di, W. Shao, J. He, D. Sun, Nanomaterials 1390, 11, 1390.
- 48J. Zhang, S. Lin, Z. L. Wang, J. Phys. Chem. B 2022, 126, 2754.
- 49M. K. Al-Sakkaf, S. A. Onaizi, Fuel (Lond.) 2023, 344, 128052.
- 50M. Liu, C. Yang, E. Liu, F. Zhang, X. Meng, B. Liu, Food Chem. 2021, 343, 128475.