Energy Absorption and Deformation Behavior of 3D Printed Triply Periodic Minimal Surface Stainless Steel Cellular Structures under Compression
Yingjing Liang
School of Civil Engineering, Guangzhou University, Guangzhou, 510006 China
Search for more papers by this authorWei Zhou
School of Civil Engineering, Guangzhou University, Guangzhou, 510006 China
Search for more papers by this authorYijie Liu
School of Civil Engineering, Guangzhou University, Guangzhou, 510006 China
Search for more papers by this authorZhanshuo Li
School of Civil Engineering, Guangzhou University, Guangzhou, 510006 China
Search for more papers by this authorYang Yang
School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006 China
Search for more papers by this authorHuifeng Xi
School of Mechanics & Construction Engineering and MOB Lab for Disaster Forecast & Control in Engineering, Jinan University, Guangzhou, 510632 China
Search for more papers by this authorCorresponding Author
Zhigang Wu
School of Civil Engineering, Guangzhou University, Guangzhou, 510006 China
Search for more papers by this authorYingjing Liang
School of Civil Engineering, Guangzhou University, Guangzhou, 510006 China
Search for more papers by this authorWei Zhou
School of Civil Engineering, Guangzhou University, Guangzhou, 510006 China
Search for more papers by this authorYijie Liu
School of Civil Engineering, Guangzhou University, Guangzhou, 510006 China
Search for more papers by this authorZhanshuo Li
School of Civil Engineering, Guangzhou University, Guangzhou, 510006 China
Search for more papers by this authorYang Yang
School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006 China
Search for more papers by this authorHuifeng Xi
School of Mechanics & Construction Engineering and MOB Lab for Disaster Forecast & Control in Engineering, Jinan University, Guangzhou, 510632 China
Search for more papers by this authorCorresponding Author
Zhigang Wu
School of Civil Engineering, Guangzhou University, Guangzhou, 510006 China
Search for more papers by this authorAbstract
This article investigates the energy absorption performance and deformation mechanism of 316L stainless steel (SS316L) triply periodic minimal surface (TPMS) cellular structures fabricated by a selective laser melting (SLM) technique. The as-built specimens are subjected to abrasive blasting treatment to improve the surface quality of the printed parts, in order to reveal the true surface and mechanical characteristics of the TPMS structures. It is found that the P-type structure outperforms the G-type structure with a higher energy absorption capability at low relative densities (<0.35). The macroscopic examination of these micro-architectures reveals that the P-type structure develops a rapid local cell deformation following the diagonal shear geometry on the face sheet, whereas the G-type structure experiences continuous strain hardening along the stress plateau and deforms in a gradual manner during compression. The apparent strain hardening effect of the G-type structure is caused by the development of many macro-localities with extreme geometry distortion and cell wall self-contacting during compression. The findings in this study may provide valuable insight into design, fabrication, and post-fabrication treatment of metallic TPMS structures for the applications of high compression performance.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1F. S. L. Bobbert, K. Lietaert, A. A. Eftekhari, B. Pouran, S. M. Ahmadi, H. Weinans, A. A. Zadpoor, Acta Biomater. 2017, 53, 572.
- 2M. G. Rashed, M. Ashraf, R. A. W. Mines, P. J. Hazell, Mater. Des. 2016, 95, 518.
- 3H. N. G. Wadley, N. A. Fleck, A. G. Evans, Compos. Sci. Technol. 2003, 63, 2331.
- 4I. W. Hall, M. Guden, C. J. Yu, Scr. Mater. 2000, 43, 515.
- 5B. H. Smith, S. Szyniszewski, J. F. Hajjar, B. W. Schafer, S. R. Arwade, J. Constr. Steel Res. 2012, 71, 1.
- 6X. Zheng, H. Lee, T. H. Weisgraber, M. Shusteff, J. DeOtte, E. B. Duoss, J. D. Kuntz, M. M. Biener, Q. Ge, J. A. Jackson, Science 2014, 344, 1373.
- 7J. Bauer, L. R. Meza, T. A. Schaedler, R. Schwaiger, X. Zheng, L. Valdevit, Adv. Mater. 2017, 29, 1701850.
- 8A. G. Evans, J. W. Hutchinson, N. A. Fleck, M. Ashby, H. Wadley, Prog. Mater. Sci. 2001, 46, 309.
- 9V. S. Deshpande, N. A. Fleck, M. F. Ashby, J. Mech. Phy. Solids 2001, 49, 1747.
- 10L. Dong, V. Deshpande, H. Wadley, Int. J. Solids Struct. 2015, 60–61, 107.
- 11L. R. Meza, S. Das, J. R. Greer, Science 2014, 345, 1322.
- 12H.-U. Nissen, Science 1969, 166, 1150.
- 13K. Michielsen, D. G. Stavenga, J. R. Soc. Interface 2007, 5, 85.
- 14J. W. Galusha, L. R. Richey, J. S. Gardner, J. N. Cha, M. H. Bartl, Phys. Rev. E 2008, 77, 050904.
- 15M. Morey, A. Davidson, G. Stucky, J. Porous Mat. 1998, 5, 195.
- 16M. Vallet-Regi, A. Ramila, R. Del Real, J. Pérez-Pariente, Chem. Mater. 2001, 13, 308.
- 17E. J. W. Crossland, M. Kamperman, M. Nedelcu, C. Ducati, U. Wiesner, D. M. Smilgies, G. E. S. Toombes, M. A. Hillmyer, S. Ludwigs, U. Steiner, H. J. Snaith, Nano Lett. 2009, 9, 2807.
- 18A. A. Zadpoor, Biomater. Sci. 2015, 3, 231.
- 19W. E. Frazier, J. Mater. Eng. Perform. 2014, 23, 1917.
- 20C. Y. Yap, C. K. Chua, Z. L. Dong, Z. H. Liu, D. Q. Zhang, L. E. Loh, S. L. Sing, Appl. Phys. Rev. 2015, 2, 041101.
- 21Y. J. Liu, S. J. Li, H. L. Wang, W. T. Hou, Y. L. Hao, R. Yang, T. B. Sercombe, L. C. Zhang, Acta Mater. 2016, 113, 56.
- 22Y. J. Liu, H. L. Wang, S. J. Li, S. G. Wang, W. J. Wang, W. T. Hou, Y. L. Hao, R. Yang, L. C. Zhang, Acta Mater. 2017, 126, 58.
- 23N. Hafeez, J. Liu, L. Wang, D. Wei, Y. Tang, W. Lu, L.-C. Zhang, Addit. Manuf. 2020, 34, 101264.
- 24Y. J. Liu, S. J. Li, L. C. Zhang, Y. L. Hao, T. B. Sercombe, Scr. Mater. 2018, 153, 99.
- 25L.-C. Zhang, H. Attar, Adv. Eng. Mater. 2016, 18, 463.
- 26J. A. Cherry, H. M. Davies, S. Mehmood, N. P. Lavery, S. G. R. Brown, J. Sienz, Int. J. Adv. Manuf. Tech 2015, 76, 869.
- 27A. S. Wu, D. W. Brown, M. Kumar, G. F. Gallegos, W. E. King, Metall. Mater. Trans. A 2014, 45, 6260.
- 28Z. Sun, X. Tan, S. B. Tor, C. K. Chua, NPG Asia Mater. 2018, 10, 127.
- 29N. Raghavan, R. Dehoff, S. Pannala, S. Simunovic, M. Kirka, J. Turner, N. Carlson, S. S. Babu, Acta Mater. 2016, 112, 303.
- 30L. Thijs, K. Kempen, J.-P. Kruth, J. Van Humbeeck, Acta Mater. 2013, 61, 1809.
- 31T. Niendorf, S. Leuders, A. Riemer, H. A. Richard, T. Tröster, D. Schwarze, Metall. Mater. Trans. B 2013, 44, 794.
- 32S. Bahl, S. Mishra, K. Yazar, I. R. Kola, K. Chatterjee, S. Suwas, Addit. Manuf. 2019, 28, 65.
- 33L. Zhang, S. Feih, S. Daynes, S. Chang, M. Y. Wang, J. Wei, W. F. Lu, Addit. Manuf. 2018, 23, 505.
- 34O. Al-Ketan, D.-W. Lee, R. Rowshan, R. K. Abu Al-Rub, J. Mech. Behav. Biomed. Mater. 2020, 102, 103520.
- 35L. Yang, C. Yan, W. Cao, Z. Liu, B. Song, S. Wen, C. Zhang, Y. Shi, S. Yang, Acta Mater. 2019, 181, 49-66.
- 36H. Von Schnering, R. Nesper, Z. Phys. B Condens. Matter 1991, 83, 407.
10.1007/BF01313411 Google Scholar
- 37 ASTM, Standard Test Methods for Tension Testing of Metallic Materials, Annual Book of ASTM Standards, ASTM, West Conshohocken, PA 2001.
- 38L. Löber, C. Flache, R. Petters, U. Kühn, J. Eckert, Rapid Prototype J. 2013, 19, 173.
- 39W. Morton, S. Green, A. Rennie, T. Abram, in Proc. of the 5th Int. Conf. on Advanced Research and Rapid Prototyping Leiria, CRC Press-Taylor and Francis Group, Portugal, 2012, p. 503.
- 40Y. Zhong, L. Liu, S. Wikman, D. Cui, Z. Shen, J. Nucl. Mater. 2016, 470, 170.
- 41 ASTM, Standard Specification for Chromium and Chromium–Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications, ASTM, West Conshohocken, PA 2009.
- 42O. Al-Ketan, R. Rowshan, R. K. A. Al-Rub, Addit. Manuf. 2018, 19, 167.
- 43S. C. Han, J. W. Lee, K. Kang, Adv. Mater. 2015, 27, 5506.
- 44L. Yang, R. Mertens, M. Ferrucci, C. Yan, Y. Shi, S. Yang, Mater. Design 2019, 162, 394.
- 45P. Koehnen, C. Haase, J. Bueltmann, S. Ziegler, J. H. Schleifenbaum, W. Bleck, Mater. Des. 2018, 145, 205.
- 46T. Zhong, K. He, H. Li, L. Yang, Mater. Des. 2019, 181, 108076.
- 47 ISO, Mechanical Testing of Metals—Ductility Testing—Compression Test for Porous and Cellular Metals, ISO 13314: 2011, ISO, Geneva.
- 48L. R. Meza, G. P. Phlipot, C. M. Portela, A. Maggi, L. C. Montemayor, A. Comella, D. M. Kochmann, J. R. Greer, Acta Mater. 2017, 140, 424.
- 49L. J. Gibson, M. F. Ashby, Cellular Solids: Structure and Properties, Cambridge University Press, Cambridge 1999.
- 50V. S. Deshpande, M. F. Ashby, N. A. Fleck, Acta Mater. 2001, 49, 1035.