Electrocatalysis Mechanism and Structure–Activity Relationship of Atomically Dispersed Metal-Nitrogen-Carbon Catalysts for Electrocatalytic Reactions
Long-Ji Yuan
Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorCorresponding Author
Xu-Lei Sui
Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorChang Liu
Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorYu-Ling Zhuo
Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorQi Li
Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorHui Pan
Institute of Applied Physics and Materials Engineering, University of Macau, Macao, SAR, 999078 China
Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao, SAR, 999078 China
Search for more papers by this authorCorresponding Author
Zhen-Bo Wang
Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorLong-Ji Yuan
Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorCorresponding Author
Xu-Lei Sui
Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorChang Liu
Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorYu-Ling Zhuo
Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorQi Li
Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
Search for more papers by this authorHui Pan
Institute of Applied Physics and Materials Engineering, University of Macau, Macao, SAR, 999078 China
Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao, SAR, 999078 China
Search for more papers by this authorCorresponding Author
Zhen-Bo Wang
Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Atomically dispersed metal-nitrogen-carbon catalysts (M-N-C) have been widely used in the field of energy conversion, which has already attracted a huge amount of attention. Due to their unsaturated d-band electronic structure of the center atoms, M-N-C catalysts can be applied in different electrocatalytic reactions by adjusting their own microscopic electronic structures to achieve the optimization of the structure–activity relationship. Consequently, it is of great significance for the revelation of electrocatalytic mechanism and structure–activity relationship of M-N-C catalysts. Thus, this review first introduces the relative research methods, including in situ/operando characterization techniques and theoretical calculation methods. Furthermore, clarifying the electrocatalytic mechanism and structure–activity relationship of M-N-C catalysts in different electrochemical energy conversion reactions is focused. Moreover, the future research directions are pointed out based on the discussion. This review will provide good guidance to systematically study the catalytic mechanism of single-atom catalysts and reasonably design the single-atom catalysts.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1a) J. Bednar, M. Obersteiner, A. Baklanov, M. Thomson, F. Wagner, O. Geden, M. Allen, J. W. Hall, Nature 2021, 596, 377; b) S. Chu, A. Majumdar, Nature 2012, 488, 294; c) C. Hepburn, E. Adlen, J. Beddington, E. A. Carter, S. Fuss, N. Mac Dowell, J. C. Minx, P. Smith, C. K. Williams, Nature 2019, 575, 87; d) N. A. Sepulveda, J. D. Jenkins, A. Edington, D. S. Mallapragada, R. K. Lester, Nat. Energy 2021, 6, 506.
- 2M. J. Chen, Y. H. He, J. S. Spendelow, G. Wu, ACS Energy Lett. 2019, 4, 1619.
- 3N. Corbin, J. Zeng, K. Williams, K. Manthiram, Nano Res. 2019, 12, 2093.
- 4a) H. Ding, H. F. Liu, W. S. Chu, C. Z. Wu, Y. Xie, Chem. Rev. 2021, 121, 13174; b) J. Q. Guan, X. Bai, T. M. Tang, Nano Res. 2021, 15, 818.
- 5P. Aggarwal, D. Sarkar, K. Awasthi, P. W. Menezes, Coord. Chem. Rev. 2022, 452, 214289.
- 6a) J. G. Chen, R. M. Crooks, L. C. Seefeldt, K. L. Bren, R. M. Bullock, M. Y. Darensbourg, P. L. Holland, B. Hoffman, M. J. Janik, A. K. Jones, M. G. Kanatzidis, P. King, K. M. Lancaster, S. V. Lymar, P. Pfromm, W. F. Schneider, R. R. Schrock, Science 2018, 360, eaar6611; b) G. Soloveichik, Nat. Catal. 2019, 2, 377.
- 7X. N. Li, L. H. Liu, X. Y. Ren, J. Gao, Y. Huang, B. Liu, Sci. Adv. 2020, 39, 6.
- 8a) S. P. Ding, M. J. Hülsey, J. Pérez-Ramírez, N. Yan, Joule 2019, 3, 2897; b) X. J. Cui, W. Li, P. Ryabchuk, K. Junge, M. Beller, Nat. Catal. 2018, 1, 385; c) L. Liu, A. Corma, Chem. Rev. 2018, 118, 4981; d) H. Mistry, A. S. Varela, S. Kühl, P. Strasser, B. R. Cuenya, Nat. Rev. Mater. 2016, 1, 16009.
- 9a) Y. A. Shang, X. Xu, B. Y. Gao, S. Wang, X. Duan, Chem. Soc. Rev. 2021, 50, 5281; b) Q. Q. Zhang, J. Q. Guan, Adv. Funct. Mater. 2020, 30, 2000768; c) L. Li, X. Chang, X. Lin, Z. J. Zhao, J. Gong, Chem. Soc. Rev. 2020, 49, 8156.
- 10X. Wang, Y. W. Zhang, J. Wu, Z. Zhang, Q. Liao, Z. Kang, Y. Zhang, Chem. Rev. 2022, 122, 1273.
- 11a) T. Asset, P. Atanassov, Joule 2020, 4, 33; b) X. X. Wang, V. Prabhakaran, Y. H. He, Y. Shao, G. Wu, Adv. Mater. 2019, 31, 1805126; c) B. Singh, M. B. Gawande, A. D. Kute, R. S. Varma, P. Fornasiero, P. McNeice, R. V. Jagadeesh, M. Beller, R. Zboril, Chem. Rev. 2021, 121, 13620.
- 12a) A. Q. Wang, J. Li, T. Zhang, Nat. Rev. Chem. 2018, 2, 65; b) C. Gao, S. D. Mu, R. Yan, F. Chen, T. Ma, S. Cao, S. Li, L. Ma, Y. Wang, C. Cheng, Small 2022, 18, e2105409.
- 13a) J. B. Wu, L. K. Xiong, B. Zhao, M. Liu, L. Huang, Small Methods 2019, 4, 1900540; b) C. Xia, Y. R. Qiu, Y. Xia, P. Zhu, G. King, X. Zhang, Z. Wu, J. Y. T. Kim, D. A. Cullen, D. Zheng, P. Li, M. Shakouri, E. Heredia, P. Cui, H. N. Alshareef, Y. Hu, H. Wang, Nat. Chem. 2021, 13, 887; c) D. F. Yan, Y. X. Li, J. Huo, R. Chen, L. Dai, S. Wang, Adv. Mater. 2017, 29, 1606459; d) L. P. Yuan, T. Tang, J. S. Hu, L.-J. Wan, Acc. Mater. Res. 2021, 2, 907; e) Y. F. Zhao, W. J. Jiang, J. Q. Zhang, E. C. Lovell, R. Amal, Z. Han, X. Lu, Adv. Mater. 2021, 33, 2102801.
- 14D. Tian, S. R. Denny, K. Z. Li, H. Wang, S. Kattel, J. G. Chen, Chem. Soc. Rev. 2021, 50, 12338.
- 15a) Y. C. Yang, L. Lai, L. Wei, Y. Chen, J. Energy Chem. 2021, 63, 667; b) Y. H. He, S. W. Liu, C. Priest, Q. Shi, G. Wu, Chem. Soc. Rev. 2020, 49, 3484.
- 16a) Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Norskov, T. F. Jaramillo, Science 2017, 355, eaad4998; b) Y. Wang, X. B. Zheng, D. S. Wang, Nano Res. 2021, 15, 1730.
- 17a) L. Z. Fang, S. Seifert, R. E. Winans, T. Li, Small Methods 2021, 5, 2001194; b) J. K. Li, J. L. Gong, Energy Environ. Sci. 2020, 13, 3748.
- 18a) S. W. Zuo, Z. P. Wu, H. B. Zhang, X. W. Lou, Adv. Energy Mater. 2022, 12, 2103383; b) Y. Yao, S. Q. Zhu, H. J. Wang, H. Li, M. Shao, J. Am. Chem. Soc. 2018, 140, 1496; c) H. J. Liu, Z. M. Qi, L. Song, J. Phys. Chem. C 2021, 125, 24289; d) H. H. Tian, N. Zhang, L. M. Tong, J. Zhang, Small Methods 2017, 1, 1700126; e) A. D. Handoko, F. X. Wei, Jenndy, B. S. Yeo, Z. W. Seh, Nat. Catal. 2018, 1, 922.
- 19a) J. Yano, V. K. Yachandra, Photosynth. Res. 2009, 102, 241; b) H. Dau, P. Liebisch, M. Haumann, Anal. Bioanal. Chem. 2003, 376, 562.
- 20a) S. Z. Song, J. Zhou, X. Z. Su, Y. Wang, J. Li, L. Zhang, G. Xiao, C. Guan, R. Liu, S. Chen, H.-J. Lin, S. Zhang, J.-Q. Wang, Energy Environ. Sci. 2018, 11, 2945; b) M. L. Xiao, J. B. Zhu, L. Ma, Z. Jin, J. Ge, X. Deng, Y. Hou, Q. He, J. Li, Q. Jia, S. Mukerjee, R. Yang, Z. Jiang, D. Su, C. Liu, W. Xing, ACS Catal. 2018, 8, 2824.
- 21a) J. K. Li, S. Ghoshal, W. T. Liang, M.-T. Sougrati, F. Jaouen, B. Halevi, S. McKinney, G. McCool, C. Ma, X. Yuan, Z.-F. Ma, S. Mukerjee, Q. Jia, Energy Environ. Sci. 2016, 9, 2418; b) N. Zhang, T. P. Zhou, J. K. Ge, Y. Lin, Z. Du, C. a. Zhong, W. Wang, Q. Jiao, R. Yuan, Y. Tian, W. Chu, C. Wu, Y. Xie, Matter 2020, 3, 509; c) H. T. Lien, S. T. Chang, P. T. Chen, D. P. Wong, Y. C. Chang, Y. R. Lu, C. L. Dong, C. H. Wang, K. H. Chen, L. C. Chen, Nat. Commun. 2020, 11, 4233.
- 22a) C. Genovese, M. E. Schuster, E. K. Gibson, D. Gianolio, V. Posligua, R. Grau-Crespo, G. Cibin, P. P. Wells, D. Garai, V. Solokha, S. Krick Calderon, J. J. Velasco-Velez, C. Ampelli, S. Perathoner, G. Held, G. Centi, R. Arrigo, Nat. Commun. 2018, 9, 935; b) H. P. Xu, D. Rebollar, H. Y. He, L. Chong, Y. Liu, C. Liu, C.-J. Sun, T. Li, J. V. Muntean, R. E. Winans, D.-J. Liu, T. Xu, Nat. Energy 2020, 5, 623.
- 23N. Leonard, W. Ju, I. Sinev, J. Steinberg, F. Luo, A. S. Varela, B. Roldan Cuenya, P. Strasser, Chem. Sci. 2018, 9, 5064.
- 24a) B. Ravel, M. Newville, J. Synchrotron Radiat. 2005, 12, 537; b) C. H. van Oversteeg, H. Q. Doan, F. M. de Groot, T. Cuk, Chem. Soc. Rev. 2017, 46, 102; c) Z. L. Jiang, W. M. Sun, H. S. Shang, W. Chen, T. Sun, H. Li, J. Dong, J. Zhou, Z. Li, Y. Wang, R. Cao, R. Sarangi, Z. Yang, D. Wang, J. Zhang, Y. Li, Energy Environ. Sci. 2019, 12, 3508.
- 25G. Q. Lu, S. G. Sun, L. R. Cai, S.-P. Chen, Z.-W. Tian, K.-K. Shiu, Langmuir 1999, 16, 778.
- 26a) K. Fan, H. Y. Zou, Y. Lu, H. Chen, F. Li, J. Liu, L. Sun, L. Tong, M. F. Toney, M. Sui, J. Yu, ACS Nano 2018, 12, 12369; b) S. H. Chen, W. H. Li, W. J. Jiang, J. Yang, J. Zhu, L. Wang, H. Ou, Z. Zhuang, M. Chen, X. Sun, D. Wang, Y. Li, Angew. Chem., Int. Ed. 2022, 61, e202114450; c) A. Wuttig, M. Yaguchi, K. Motobayashi, M. Osawa, Y. Surendranath, Proc. Natl. Acad. Sci. USA 2016, 113, E4585.
- 27a) L. L. Han, M. C. Hou, P. F. Ou, H. Cheng, Z. Ren, Z. Liang, J. A. Boscoboinik, A. Hunt, I. Waluyo, S. Zhang, L. Zhuo, J. Song, X. Liu, J. Luo, H. L. Xin, ACS Catal. 2020, 11, 509; b) W. C. Ma, S. J. Xie, T. T. Liu, Q. Fan, J. Ye, F. Sun, Z. Jiang, Q. Zhang, J. Cheng, Y. Wang, Nat. Catal. 2020, 3, 478; c) N. M. Martin, M. Skoglundh, G. Smedler, A. Raj, D. Thompsett, P. Velin, F. J. Martinez-Casado, Z. Matej, O. Balmes, P.-A. Carlsson, J. Phys. Chem. C 2017, 121, 26321; d) L. B. Wang, W. B. Zhang, X. S. Zheng, Y. Chen, W. Wu, J. Qiu, X. Zhao, X. Zhao, Y. Dai, J. Zeng, Nat. Energy 2017, 2, 869.
- 28a) C. Hess, Chem. Soc. Rev. 2021, 50, 3519; b) J. R. Lombardi, Nat. Mater. 2017, 16, 878.
- 29a) B. Mondal, A. Rana, P. Sen, A. Dey, J. Am. Chem. Soc. 2015, 137, 11214; b) J. C. Dong, X. G. Zhang, V. Briega-Martos, X. Jin, J. Yang, S. Chen, Z.-L. Yang, D.-Y. Wu, J. M. Feliu, C. T. Williams, Z.-Q. Tian, J.-F. Li, Nat. Energy 2018, 4, 60.
- 30a) D. Graham, Angew. Chem., Int. Ed. 2010, 49, 9325; b) Z. Chen, S. Jiang, G. Kang, D. Nguyen, G. C. Schatz, R. P. Van Duyne, J. Am. Chem. Soc. 2019, 141, 15684; c) J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, Z. Q. Tian, Nature 2010, 464, 392.
- 31a) Y. H. Wang, J. B. Le, W. Q. Li, J. Wei, P. M. Radjenovic, H. Zhang, X. S. Zhou, J. Cheng, Z. Q. Tian, J. F. Li, Angew. Chem., Int. Ed. 2019, 58, 16062; b) J. Shen, R. Kortlever, R. Kas, Y. Y. Birdja, O. Diaz-Morales, Y. Kwon, I. Ledezma-Yanez, K. J. Schouten, G. Mul, M. T. Koper, Nat. Commun. 2015, 6, 8177; c) B. J. Trzesniewski, O. Diaz-Morales, D. A. Vermaas, A. Longo, W. Bras, M. T. Koper, W. A. Smith, J. Am. Chem. Soc. 2015, 137, 15112.
- 32a) L. Johnson, C. M. Li, Z. Liu, Y. Chen, S. A. Freunberger, P. C. Ashok, B. B. Praveen, K. Dholakia, J. M. Tarascon, P. G. Bruce, Nat. Chem. 2014, 6, 1091; b) D. Y. Wei, M. F. Yue, S. N. Qin, S. Zhang, Y. F. Wu, G. Y. Xu, H. Zhang, Z. Q. Tian, J. F. Li, J. Am. Chem. Soc. 2021, 143, 15635; c) H. Zhang, C. Wang, H. L. Sun, G. Fu, S. Chen, Y. J. Zhang, B. H. Chen, J. R. Anema, Z. L. Yang, J. F. Li, Z. Q. Tian, Nat. Commun. 2017, 8, 15447.
- 33Y. L. Deng, B. S. Yeo, ACS Catal. 2017, 7, 7873.
- 34a) U. I. Kramm, M. Lefevre, N. Larouche, D. Schmeisser, J. P. Dodelet, J. Am. Chem. Soc. 2014, 136, 978; b) G. Zichittella, Y. Polyhach, R. Tschaggelar, G. Jeschke, J. Perez-Ramirez, Angew. Chem., Int. Ed. 2021, 60, 3596.
- 35J. Zhao, Q. M. Deng, S. M. Avdoshenko, L. Fu, J. Eckert, M. H. Rummeli, Proc. Natl. Acad. Sci. USA 2014, 111, 15641.
- 36a) J. Y. Chen, L. N. Dang, H. F. Liang, W. Bi, J. B. Gerken, S. Jin, E. E. Alp, S. S. Stahl, J. Am. Chem. Soc. 2015, 137, 15090; b) J. K. Li, M. T. Sougrati, A. Zitolo, J. M. Ablett, I. C. Oğuz, T. Mineva, I. Matanovic, P. Atanassov, Y. Huang, I. Zenyuk, A. Di Cicco, K. Kumar, L. Dubau, F. Maillard, G. Dražić, F. Jaouen, Nat. Catal. 2020, 4, 10; c) Z. Y. Jin, P. P. Li, Y. Meng, Z. Fang, D. Xiao, G. Yu, Nat. Catal. 2021, 4, 615.
- 37I. Zegkinoglou, A. Zendegani, I. Sinev, S. Kunze, H. Mistry, H. S. Jeon, J. Zhao, M. Y. Hu, E. E. Alp, S. Piontek, M. Smialkowski, U. P. Apfel, F. Kormann, J. Neugebauer, T. Hickel, B. Roldan Cuenya, J. Am. Chem. Soc. 2017, 139, 14360.
- 38X. Li, Y. H. He, S. B. Cheng, B. Li, Y. Zeng, Z. Xie, Q. Meng, L. Ma, K. Kisslinger, X. Tong, S. Hwang, S. Yao, C. Li, Z. Qiao, C. Shan, Y. Zhu, J. Xie, G. Wang, G. Wu, D. Su, Adv. Mater. 2021, 33, 2106371.
- 39a) V. Wang, N. Xu, J. C. Liu, G. Tang, W.-T. Geng, Comput. Phys. Commun. 2021, 267, 108033; b) G. Kresse, J. Hafner, Phys. Rev. B: Condens. Matter Mater. Phys. 1993, 47, 558.
- 40J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- 41a) S. Grimme, J. Comput. Chem. 2006, 27, 1787; b) J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, Phys. Rev. B: Condens. Matter Mater. Phys. 1992, 46, 6671.
- 42G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.
- 43M. Capdevila-Cortada, Z. Łodziana, N. López, ACS Catal. 2016, 6, 8370.
- 44a) J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, H. Jónsson, J. Phys. Chem. B 2004, 108, 17886; b) J. K. Nørskov, Prog. Surf. Sci. 1991, 38, 103.
- 45a) V. Viswanathan, H. A. Hansen, J. Rossmeisl, J. K. Nørskov, ACS Catal. 2012, 2, 1654; b) H. X. Xu, D. J. Cheng, D. P. Cao, X. C. Zeng, Nat. Catal. 2018, 1, 339.
- 46K. Fukui, Science 1982, 218, 747.
- 47M. R. Ashwin Kishore, P. Ravindran, J. Phys. Chem. C 2017, 121, 22216.
- 48a) R. Dronskowski, P. E. Bloechl, J. Phys. Chem. 2002, 97, 8617; b) S. Maintz, V. L. Deringer, A. L. Tchougreeff, R. Dronskowski, J. Comput. Chem. 2016, 37, 1030; c) V. L. Deringer, A. L. Tchougreeff, R. Dronskowski, J. Phys. Chem. A 2011, 115, 5461; d) G. Xiao, R. Lu, J. Liu, X. Liao, Z. Wang, Y. Zhao, Nano Res. 2021, 15, 3073; e) B. Li, H. Xie, C. Yang, C. Shi, C. He, N. Zhao, E. Liu, Appl. Surf. Sci. 2022, 595, 153526.
- 49a) A. Ruban, B. Hammer, P. Stoltze, H. L. Skriver, J. K. Nørskov, J. Mol. Catal. A: Chem. 1997, 115, 421; b) G. Q. Zhu, F. Liu, Y. C. Wang, Z. Wei, W. Wang, Phys. Chem. Chem. Phys. 2019, 21, 12826.
- 50H. G. Li, S. L. Di, P. Niu, S. Wang, J. Wang, L. Li, Energy Environ. Sci. 2022, 15, 1601.
- 51a) G. Henkelman, A. Arnaldsson, H. Jónsson, Comput. Mater. Sci. 2006, 36, 354; b) M. Yu, D. R. Trinkle, J. Chem. Phys. 2011, 134, 064111.
- 52X. N. Li, H. Y. Wang, H. B. Yang, W. Cai, S. Liu, B. Liu, Small Methods 2018, 2, 1700395.
- 53a) H. A. Gasteiger, N. M. Markovic, Science 2009, 324, 48; b) M. D. Bhatt, J. Y. Lee, Energy Fuels 2020, 34, 6634; c) H. S. Casalongue, S. Kaya, V. Viswanathan, D. J. Miller, D. Friebel, H. A. Hansen, J. K. Nørskov, A. Nilsson, H. Ogasawara, Nat. Commun. 2013, 4, 1.
- 54a) A. Kulkarni, S. Siahrostami, A. Patel, J. K. Norskov, Chem. Rev. 2018, 118, 2302; b) L. Li, Z. D. Wei, Y. Zhang, X. Qi, M. Xia, J. Zhang, Z. Shao, C. Sun, Sci. China, Ser. B: Chem. 2009, 52, 571; c) S. Y. Wang, E. B. Zhu, Y. Huang, H. Heinz, Sci. Adv. 2021, 7, eabb1435..
- 55H. W. Kim, V. J. Bukas, H. Park, S. Park, K. M. Diederichsen, J. Lim, Y. H. Cho, J. Kim, W. Kim, T. H. Han, J. Voss, A. C. Luntz, B. D. McCloskey, ACS Catal. 2019, 10, 852.
- 56K. X. Liu, Z. Qiao, S. Hwang, Z. Liu, H. Zhang, D. Su, H. Xu, G. Wu, G. Wang, Appl. Catal., B 2019, 243, 195.
- 57H. G. Zhang, S. Hwang, M. Y. Wang, Z. Feng, S. Karakalos, L. Luo, Z. Qiao, X. Xie, C. Wang, D. Su, Y. Shao, G. Wu, J. Am. Chem. Soc. 2017, 139, 14143.
- 58U. I. Kramm, J. Herranz, N. Larouche, T. M. Arruda, M. Lefevre, F. Jaouen, P. Bogdanoff, S. Fiechter, I. Abs-Wurmbach, S. Mukerjee, J. P. Dodelet, Phys. Chem. Chem. Phys. 2012, 14, 11673.
- 59Q. Y. Jia, N. Ramaswamy, H. Hafiz, U. Tylus, K. Strickland, G. Wu, B. Barbiellini, A. Bansil, E. F. Holby, P. Zelenay, S. Mukerjee, ACS Nano 2015, 9, 12496.
- 60N. Ramaswamy, U. Tylus, Q. Y. Jia, S. Mukerjee, J. Am. Chem. Soc. 2013, 135, 15443.
- 61X. Han, T. Y. Zhang, W. X. Chen, B. Dong, G. Meng, L. Zheng, C. Yang, X. Sun, Z. Zhuang, D. Wang, A. Han, J. Liu, Adv. Energy Mater. 2020, 11, 2002753.
- 62M. Jiang, F. Wang, F. Yang, H. He, J. Yang, W. Zhang, J. Luo, J. Zhang, C. Fu, Nano Energy 2022, 93, 106793.
- 63Y. Wang, Y. J. Tang, K. Zhou, J. Am. Chem. Soc. 2019, 141, 14115.
- 64U. Martinez, E. F. Holby, S. K. Babu, K. Artyushkova, L. Lin, S. Choudhury, G. M. Purdy, P. Zelenay, J. Electrochem. Soc. 2019, 166, F3136.
- 65I. T. Bae, D. A. Tryk, D. A. Scherson, J. Phys. Chem. B 1998, 102, 4114.
- 66U. Tylus, Q. Jia, K. Strickland, N. Ramaswamy, A. Serov, P. Atanassov, S. Mukerjee, J. Phys. Chem. C 2014, 118, 8999.
- 67G. K. Han, X. Zhang, W. Liu, Q. Zhang, Z. Wang, J. Cheng, T. Yao, L. Gu, C. Du, Y. Gao, G. Yin, Nat. Commun. 2021, 12, 6335.
- 68H. S. Shang, Z. L. Jiang, D. N. Zhou, J. Pei, Y. Wang, J. Dong, X. Zheng, J. Zhang, W. Chen, Chem. Sci. 2020, 11, 5994.
- 69Y. Y. Birdja, E. Pérez Gallent, M. C. Figueiredo, A. J. Göttle, F. Calle-Vallejo, M. T. M. Koper, Nat. Energy 2019, 4, 732.
- 70P. Saha, S. Amanullah, A. Dey, Acc. Chem. Res. 2022, 55, 134.
- 71W. Ma, X. He, W. Wang, S. Xie, Q. Zhang, Y. Wang, Chem. Soc. Rev. 2021, 50, 12897.
- 72a) M. Li, H. Wang, W. Luo, P. C. Sherrell, J. Chen, J. Yang, Adv. Mater. 2020, 32, 2001848; b) G. Wang, J. Chen, Y. Ding, P. Cai, L. Yi, Y. Li, C. Tu, Y. Hou, Z. Wen, L. Dai, Chem. Soc. Rev. 2021, 50, 4993.
- 73a) X. Jiang, X. W. Nie, X. W. Guo, C. Song, J. G. Chen, Chem. Rev. 2020, 120, 7984; b) J. Albo, M. Alvarez Guerra, P. Castaño, A. Irabien, Green Chem. 2015, 17, 2304.
- 74X. M. Hu, H. H. Hval, E. T. Bjerglund, K. J. Dalgaard, M. R. Madsen, M.-M. Pohl, E. Welter, P. Lamagni, K. B. Buhl, M. Bremholm, M. Beller, S. U. Pedersen, T. Skrydstrup, K. Daasbjerg, ACS Catal. 2018, 8, 6255.
- 75W. Ju, A. Bagger, G. P. Hao, A. S. Varela, I. Sinev, V. Bon, B. Roldan Cuenya, S. Kaskel, J. Rossmeisl, P. Strasser, Nat. Commun. 2017, 8, 944.
- 76a) W. O. Silva, G. C. Silva, R. F. Webster, T. M. Benedetti, R. D. Tilley, E. A. Ticianelli, ChemElectroChem 2019, 6, 4626; b) T. Tang, Z. Wang, J. Guan, Adv. Funct. Mater. 2022, 32, 2111504.
- 77C. S. Diercks, S. Lin, N. Kornienko, E. A. Kapustin, E. M. Nichols, C. Zhu, Y. Zhao, C. J. Chang, O. M. Yaghi, J. Am. Chem. Soc. 2018, 140, 1116.
- 78S. X. Ren, D. Joulie, D. Salvatore, K. Torbensen, M. Wang, M. Robert, C. P. Berlinguette, Science 2019, 365, 367.
- 79M. Abdinejad, C. Dao, B. Deng, M. E. Sweeney, F. Dielmann, X. a. Zhang, H. B. Kraatz, ChemistrySelect 2020, 5, 979.
- 80J. Gu, C. S. Hsu, L. C. Bai, H. M. Chen, X. Hu, Science 2019, 364, 1091.
- 81X. N. Li, Y. Q. Zeng, C. W. Tung, Y.-R. Lu, S. Baskaran, S.-F. Hung, S. Wang, C.-Q. Xu, J. Wang, T.-S. Chan, H. M. Chen, J. Jiang, Q. Yu, Y. Huang, J. Li, T. Zhang, B. Liu, ACS Catal. 2021, 11, 7292.
- 82S. Liu, H. B. Yang, S. F. Hung, J. Ding, W. Cai, L. Liu, J. Gao, X. Li, X. Ren, Z. Kuang, Y. Huang, T. Zhang, B. Liu, Angew. Chem., Int. Ed. 2020, 59, 798.
- 83B. X. Zhang, J. L. Zhang, J. B. Shi, D. Tan, L. Liu, F. Zhang, C. Lu, Z. Su, X. Tan, X. Cheng, B. Han, L. Zheng, J. Zhang, Nat. Commun. 2019, 10, 2980.
- 84L. Jiao, J. T. Zhu, Y. Zhang, W. Yang, S. Zhou, A. Li, C. Xie, X. Zheng, W. Zhou, S. H. Yu, H. L. Jiang, J. Am. Chem. Soc. 2021, 143, 19417.
- 85H. Y. Cheng, X. M. Wu, M. M. Feng, X. Li, G. Lei, Z. Fan, D. Pan, F. Cui, G. He, ACS Catal. 2021, 11, 12673.
- 86L. L. Han, S. J. Song, M. J. Liu, S. Yao, Z. Liang, H. Cheng, Z. Ren, W. Liu, R. Lin, G. Qi, X. Liu, Q. Wu, J. Luo, H. L. Xin, J. Am. Chem. Soc. 2020, 142, 12563.
- 87H. Rao, L. C. Schmidt, J. Bonin, M. Robert, Nature 2017, 548, 74.
- 88T. Yang, X. N. Mao, Y. Zhang, X. Wu, L. Wang, M. Chu, C. W. Pao, S. Yang, Y. Xu, X. Huang, Nat. Commun. 2021, 12, 6022.
- 89S. F. Cao, S. N. Zhou, H. Y. Chen, S. Wei, S. Liu, X. Lin, X. Chen, Z. Wang, W. Guo, X. Lu, Energy Environ. Mater. 2022, 0, 1.
- 90X. Bai, Q. Wang, G. Xu, Y. Ning, K. Huang, F. He, Z. J. Wu, J. Zhang, Chemistry 2017, 23, 16862.
- 91a) L. C. Bai, C. S. Hsu, D. T. L. Alexander, H. M. Chen, X. Hu, Nat. Energy 2021, 6, 1054; b) L. C. Bai, C. S. Hsu, D. T. L. Alexander, H. M. Chen, X. Hu, J. Am. Chem. Soc. 2019, 141, 14190; c) W. R. Zheng, M. J. Liu, L. Y. S. Lee, ACS Catal. 2019, 10, 81.
- 92J. Q. Shan, Y. Zheng, B. Y. Shi, K. Davey, S.-Z. Qiao, ACS Energy Lett. 2019, 4, 2719.
- 93W. M. Tong, M. Forster, F. B. Dionigi, S. Dresp, R. Sadeghi Erami, P. Strasser, A. J. Cowan, P. Farràs, Nat. Energy 2020, 5, 367.
- 94H. Su, X. Zhao, W. R. Cheng, H. Zhang, Y. Li, W. Zhou, M. Liu, Q. Liu, ACS Energy Lett. 2019, 4, 1816.
- 95a) J. A. Turner, Science 2004, 305, 972; b) R. W. Coughlin, M. Farooque, Nature 1979, 279, 301.
- 96V. Fung, G. X. Hu, Z. L. Wu, D.-e. Jiang, J. Phys. Chem. C 2020, 124, 19571.
- 97L. Li, P. Wang, Q. Shao, X. Huang, Chem. Soc. Rev. 2020, 49, 3072.
- 98a) L. L. Cao, Q. Q. Luo, W. Liu, Y. Lin, X. Liu, Y. Cao, W. Zhang, Y. Wu, J. Yang, T. Yao, S. Wei, Nat. Catal. 2018, 2, 134; b) J. Li, Y. F. Jiang, Q. Wang, C. Q. Xu, D. Wu, M. N. Banis, K. R. Adair, K. Doyle-Davis, D. M. Meira, Y. Z. Finfrock, W. Li, L. Zhang, T. K. Sham, R. Li, N. Chen, M. Gu, J. Li, X. Sun, Nat. Commun. 2021, 12, 6806.
- 99J. M. Wei, M. Zhou, A. C. Long, Y. Xue, H. Liao, C. Wei, Z. J. Xu, Nanomicro Lett. 2018, 10, 75.
- 100Y. Q. Zhao, T. Ling, S. M. Chen, B. Jin, A. Vasileff, Y. Jiao, L. Song, J. Luo, S. Z. Qiao, Angew. Chem., Int. Ed. 2019, 58, 12252.
- 101a) C. X. Guo, J. R. Ran, A. Vasileff, S. Qiao, Energy Environ. Sci. 2018, 11, 45; b) D. Zhu, L. H. Zhang, R. E. Ruther, R. J. Hamers, Nat. Mater. 2013, 12, 836.
- 102a) C. Tang, S. Z. Qiao, Chem. Soc. Rev. 2019, 48, 3166; b) C. J. van der Ham, M. T. Koper, D. G. Hetterscheid, Chem. Soc. Rev. 2014, 43, 5183.
- 103M. A. Legare, G. Belanger-Chabot, R. D. Dewhurst, E. Welz, I. Krummenacher, B. Engels, H. Braunschweig, Science 2018, 359, 896.
- 104X. Zhao, G. Z. Hu, G. F. Chen, H. Zhang, S. Zhang, H. Wang, Adv. Mater. 2021, 33, 2007650.
- 105a) L. Li, C. Tang, H. Jin, K. Davey, S.-Z. Qiao, Chem 2021, 7, 3232; b) Y. Ren, C. Yu, X. Tan, H. Huang, Q. Wei, J. Qiu, Energy Environ. Sci. 2021, 14, 1176; c) X. Cui, C. Tang, Q. Zhang, Adv. Energy Mater. 2018, 8, 1800369.
- 106a) Z. Li, N. H. Attanayake, J. L. Blackburn, E. M. Miller, Energy Environ. Sci. 2021, 14, 6242; b) Y. Wan, J. Xu, R. Lv, Mater. Today 2019, 27, 69.
- 107a) E. Skulason, T. Bligaard, S. Gudmundsdottir, F. Studt, J. Rossmeisl, F. Abild-Pedersen, T. Vegge, H. Jonsson, J. K. Norskov, Phys. Chem. Chem. Phys. 2012, 14, 1235; b) X. N. Zheng, Y. Yao, Y. Wang, Y. Liu, Nanoscale 2020, 12, 9696; c) C. J. Jacobsen, S. Dahl, B. S. Clausen, S. Bahn, A. Logadottir, J. K. Norskov, J. Am. Chem. Soc. 2001, 123, 8404; d) J. H. Montoya, C. Tsai, A. Vojvodic, J. K. Norskov, ChemSusChem 2015, 8, 2180.
- 108C. Choi, S. Back, N. Y. Kim, J. Lim, Y.-H. Kim, Y. Jung, ACS Catal. 2018, 8, 7517.
- 109X. Liu, Y. Jiao, Y. Zheng, M. Jaroniec, S. Z. Qiao, J. Am. Chem. Soc. 2019, 141, 9664.
- 110J. C. Chen, H. Cao, J. W. Chen, S. J. Qian, G.-J. Xia, Y.-G. Wang, J. Li, J. Phys. Chem. C 2021, 125, 19821.
- 111Z. W. Chen, J. M. Yan, Q. Jiang, Small Methods 2019, 3, 1800291.
- 112M. F. Wang, S. S. Liu, T. Qian, J. Liu, J. Zhou, H. Ji, J. Xiong, J. Zhong, C. Yan, Nat. Commun. 2019, 10, 341.
- 113Y. Kong, Y. Li, X. H. Sang, B. Yang, Z. Li, S. Zheng, Q. Zhang, S. Yao, X. Yang, L. Lei, S. Zhou, G. Wu, Y. Hou, Adv. Mater. 2022, 34, 2103548.