To Molecularly Block Hydrogen Evolution Sites of Molybdenum Disulfide toward Improved Catalytic Performance for Electrochemical Nitrogen Reduction
Poe Ei Phyu Win
Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215006 China
Search for more papers by this authorDongxue Yu
Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215006 China
Search for more papers by this authorWenjuan Song
Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215006 China
Search for more papers by this authorCorresponding Author
Xiang Huang
Department of Physics, Southern University of Science and Technology, Shenzhen, 518055 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Peng Zhu
Department of Chemistry, Tsinghua University, Beijing, 100084 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorGuanyu Liu
School of Materials Science and Engineering, Tongji University, Shanghai, 201804 China
Search for more papers by this authorCorresponding Author
Jiong Wang
Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215006 China
Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorPoe Ei Phyu Win
Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215006 China
Search for more papers by this authorDongxue Yu
Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215006 China
Search for more papers by this authorWenjuan Song
Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215006 China
Search for more papers by this authorCorresponding Author
Xiang Huang
Department of Physics, Southern University of Science and Technology, Shenzhen, 518055 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Peng Zhu
Department of Chemistry, Tsinghua University, Beijing, 100084 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorGuanyu Liu
School of Materials Science and Engineering, Tongji University, Shanghai, 201804 China
Search for more papers by this authorCorresponding Author
Jiong Wang
Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215006 China
Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
2H-molybdenum disulfide (2H-MoS2) represents a classical catalyst for the electrochemical N2 reduction reaction (NRR) in water that offers a promising technology toward sustainable production of NH3 driven by renewable energy. While the catalytic efficiency is severely limited by a simultaneous and competing H2 evolution reaction (HER). Herein, it is proposed that the S edge of 2H-MoS2, which is known as main sites to afford HER, is intentionally covered by cobalt phthalocyanine (CoPc) molecules through axial coordination. While the Mo sites with S vacancies at 2H-MoS2 edge is recognized as highly NRR active, and can keep structurally intact in the CoPc based modification. The resultant composite thus exhibits high NRR performance with Faradic efficiency and NH3 yields increase by fourfold and twofold, respectively, comparing to pristine 2H-MoS2. These findings provide a deep insight into the mechanism of 2H-MoS2 based NRR catalysis and suggest an efficient molecular modification strategy to promote NRR in water.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
smtd202201463-sup-0001-SuppMat.pdf2.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) O. Elishav, B. Mosevitzky Lis, E. M. Miller, D. J. Arent, A. Valera-Medina, A. Grinberg Dana, G. E. Shter, G. S. Grader, Chem. Rev. 2020, 120, 5352; b) M. Ouikhalfan, O. Lakbita, A. Delhali, A. H. Assen, Y. Belmabkhout, Energy Fuels 2022, 36, 4198; c) S. Kar, H. Sanderson, K. Roy, E. Benfenati, J. Leszczynski, Chem. Rev. 2022, 122, 3637; d) L. Shi, Y. Yin, S. Wang, H. Sun, ACS Catal. 2020, 10, 6870.
- 2a) C. Guo, J. Ran, A. Vasileff, S.-Z. Qiao, Energy Environ. Sci. 2018, 11, 45; b) G. Qing, R. Ghazfar, S. T. Jackowski, F. Habibzadeh, M. M. Ashtiani, C.-P. Chen, M. R. Smith, T. W. Hamann, Chem. Rev. 2020, 120, 5437; c) J. Deng, J. A. Iñiguez, C. Liu, Joule 2018, 2, 846. d) H. Liu, X. Cao, L.-X. Ding, H. Wang, Adv. Funct. Mater. 2022, 32, 2111161.
- 3a) B. Yang, W. Ding, H. Zhang, S. Zhang, Energy Environ. Sci. 2021, 14, 672; b) H. Liu, L. Wei, F. Liu, Z. Pei, J. Shi, Z.-j. Wang, D. He, Y. Chen, ACS Catal. 2019, 9, 5245; c) A. R. Singh, B. A. Rohr, J. A. Schwalbe, M. Cargnello, K. Chan, T. F. Jaramillo, I. Chorkendorff, J. K. Nørskov, ACS Catal. 2017, 7, 706.
- 4a) M. J. Chalkley, M. W. Drover, J. C. Peters, Chem. Rev. 2020, 120, 5582; b) L. C. Seefeldt, Z.-Y. Yang, D. A. Lukoyanov, D. F. Harris, D. R. Dean, S. Raugei, B. M. Hoffman, Chem. Rev. 2020, 120, 5082.
- 5B. K. Burgess, D. J. Lowe, Chem. Rev. 1996, 96, 2983.
- 6a) G. Liu, J. Wang, Adv. Energy Sustainability Res. 2022, 3, 2100179; b) X. Guo, X. Wan, J. Shui, Cell Rep. Phys. Sci. 2021, 2, 100447.
- 7a) X. Zhang, Z. Lai, C. Tan, H. Zhang, Angew. Chem., Int. Ed. 2016, 55, 8816; b) L. Zhang, X. Ji, X. Ren, Y. Ma, X. Shi, Z. Tian, A. M. Asiri, L. Chen, B. Tang, X. Sun, Adv. Mater. 2018, 30, 1800191; c) X. Li, T. Li, Y. Ma, Q. Wei, W. Qiu, H. Guo, X. Shi, P. Zhang, A. M. Asiri, L. Chen, B. Tang, X. Sun, Adv. Energy Mater. 2018, 8, 1801357.
- 8a) B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, J. K. Nørskov, J. Am. Chem. Soc. 2005, 127, 5308; b) C. Tsai, F. Abild-Pedersen, J. K. Nørskov, Nano Lett. 2014, 14, 1381; c) L. Liu, X. Li, L.-C. Xu, R. Liu, Z. Yang, Appl. Surf. Sci. 2017, 396, 138.
- 9J. Zhang, X. Tian, M. Liu, H. Guo, J. Zhou, Q. Fang, Z. Liu, Q. Wu, J. Lou, J. Am. Chem. Soc. 2019, 141, 19269.
- 10a) J. Han, P. An, S. Liu, X. Zhang, D. Wang, Y. Yuan, J. Guo, X. Qiu, K. Hou, L. Shi, Y. Zhang, S. Zhao, C. Long, Z. Tang, Angew. Chem., Int. Ed. 2019, 58, 12711; b) Y. Liu, C. C. L. McCrory, Nat. Commun. 2019, 10, 1683; c) J. Wang, X. Huang, S. Xi, J.-M. Lee, C. Wang, Y. Du, X. Wang, Angew. Chem., Int. Ed. 2019, 58, 13532.
- 11H. Li, K. Yu, C. Li, Z. Tang, B. Guo, X. Lei, H. Fu, Z. Zhu, Sci. Rep. 2015, 5, 18730.
- 12Y. Kim, D. Kim, J. Lee, L. Y. S. Lee, D. K. P. Ng, Adv. Funct. Mater. 2021, 31, 2103290.
- 13J. Wang, X. Huang, S. Xi, H. Xu, X. Wang, Angew. Chem., Int. Ed. 2020, 59, 19162.
- 14I. S. Kwon, I. H. Kwak, H. G. Abbas, H. W. Seo, J. Seo, K. Park, J. Park, H. S. Kang, Nanoscale 2019, 11, 3780.
- 15Y. Yu, C. Li, Y. Liu, L. Su, Y. Zhang, L. Cao, Sci. Rep. 2013, 3, 1866.
- 16C. Chen, X. Sun, D. Yang, L. Lu, H. Wu, L. Zheng, P. An, J. Zhang, B. Han, Chem. Sci. 2019, 10, 1659.
- 17D. Zhu, L. Zhang, R. E. Ruther, R. J. Hamers, Nat. Mater. 2013, 12, 836.
- 18M. George, K. S. Nagaraja, N. Balasubramanian, Talanta 2008, 75, 27.
- 19a) J. Choi, B. H. R. Suryanto, D. Wang, H.-L. Du, R. Y. Hodgetts, F. M. Ferrero Vallana, D. R. MacFarlane, A. N. Simonov, Nat. Commun. 2020, 11, 5546; b) R. Y. Hodgetts, H.-L. Du, D. R. MacFarlane, A. N. Simonov, ChemElectroChem 2021, 8, 1596.
- 20Y. Liu, X. Zhu, Q. Zhang, T. Tang, Y. Zhang, L. Gu, Y. Li, J. Bao, Z. Dai, J.-S. Hu, J. Mater. Chem. A 2020, 8, 8920.
- 21J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, H. Jónsson, J. Phys. Chem. B 2004, 108, 17886.
- 22N. Salazar, S. Rangarajan, J. Rodríguez-Fernández, M. Mavrikakis, J. V. Lauritsen, Nat. Commun. 2020, 11, 4369.
- 23X. Huang, J. Wang, H. B. Tao, H. Tian, H. Xu, Chem. Sci. 2019, 10, 3340.