Multilayered Helical Spherical Triboelectric Nanogenerator with Charge Shuttling for Water Wave Energy Harvesting
Shijie Liu
CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 P. R. China
School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorXi Liang
CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 P. R. China
School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorPengfei Chen
CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 P. R. China
School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorHairong Long
CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 P. R. China
School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004 P. R. China
Search for more papers by this authorCorresponding Author
Tao Jiang
CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 P. R. China
School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Zhong Lin Wang
CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 P. R. China
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245 USA
E-mail: [email protected]; [email protected]
Search for more papers by this authorShijie Liu
CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 P. R. China
School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorXi Liang
CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 P. R. China
School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorPengfei Chen
CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 P. R. China
School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorHairong Long
CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 P. R. China
School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004 P. R. China
Search for more papers by this authorCorresponding Author
Tao Jiang
CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 P. R. China
School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Zhong Lin Wang
CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400 P. R. China
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245 USA
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
As an important part of natural resources, islands support the marine economy and build a blue barrier for marine ecological civilization. However, the power supply on these islands is difficult, limiting the development of marine internet of things (IoTs). In order to break the status quo, this work applies triboelectric nanogenerators (TENGs) to island power supply and ecological monitoring. A spherical TENG with two multilayered helical units is designed to harvest water wave energy, in which the space utilization rate reaches 92.5%. Then a charge shuttling mechanism is developed to improve the electrical output. The output current and power of a single TENG without power management reach 200.3 µA and 16.2 mW respectively, corresponding to a peak power density of 23.2 W m−3. Moreover, a scheme of the power managed TENG is proposed for realizing large-scale wave energy harvesting. The TENG is demonstrated to successfully power a water quality detector, a Bluetooth thermo-hygrometer, and an intelligent wireless alarm system for remote environmental monitoring. This work not only proposes a new type of TENG for water wave energy harvesting with improved performance, but also provides a new strategy for intelligent ocean IoTs, which even contributes to the carbon neutralization.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
smtd202201392-sup-0001-SuppMat.pdf1 MB | Supporting Information |
smtd202201392-sup-0002-VideoS1.mp421.7 MB | Supplemental Video 1 |
smtd202201392-sup-0003-VideoS2.mp410.1 MB | Supplemental Video 2 |
smtd202201392-sup-0004-VideoS3.mp417.6 MB | Supplemental Video 3 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Kuang, Y. Zhang, B. Zhou, C. Li, Y. Cao, L. Li, L. Zeng, Renew. Sust. Energ. Rev. 2016, 59, 504.
- 2a) L. Liu, X. Guo, W. Liu, C. Lee, Nanomaterials 2021, 11, 2975; b) X. Guo, L. Liu, Z. Zhang, S. Gao, T. He, Q. Shi, C. Lee, J. Micromech. Microeng. 2021, 31, 093002.
- 3C. H. Douglas, Sustain. Dev. 2006, 14, 75.
- 4a) N. Duic, G. Krajacic, M. Dagracacarvalho, Renew. Sust. Energ. Rev. 2008, 12, 1032; b) L. Liu, X. Guo, C. Lee, Nano Energy 2021, 88, 106304.
- 5D. J. Burke, D. J. Lipomi, Energy Environ. Sci. 2013, 6, 2053.
- 6N. S. Lewis, Science 2007, 315, 798.
- 7A. Myhr, C. Bjerkseter, A. Ågotnes, T. A. Nygaard, Renew. Energy 2014, 66, 714.
- 8M. Esteban, D. Leary, Appl. Energy 2012, 90, 128.
- 9R. M. F. Robin Pelc, Mar. Pol. 2002, 26, 471.
- 10A. S. Bahaj, Renew. Sust. Energ. Rev. 2011, 15, 3399.
- 11a) L. M. Zhang, C. B. Han, T. Jiang, T. Zhou, X. H. Li, C. Zhang, Z. L. Wang, Nano Energy 2016, 22, 87; b) J. Tollefson, Nature 2014, 508, 302; c) L. Liu, Q. Shi, C. Lee, Nano Energy 2020, 76, 105052.
- 12a) Z. L. Wang, J. Chen, L. Lin, Energy Environ. Sci. 2015, 8, 2250; b) A. F. d. O. Falcão, Renew. Sust. Energ. Rev. 2010, 14, 899; c) Z. L. Wang, Nature 2017, 542, 159.
- 13a) A. v. Jauanne, Mech. Eng. 2006, 128, 24; b) R. Henderson, Renew. Energy 2006, 31, 271.
- 14F.-R. Fan, Z.-Q. Tian, Z. L. Wang, Nano Energy 2012, 1, 328.
- 15a) Z. L. Wang, Mater. Today 2017, 20, 74; b) Z. L. Wang, Rep. Prog. Phys. 2021, 84, 096520.
- 16a) X.-S. Zhang, M.-D. Han, B. Meng, H.-X. Zhang, Nano Energy 2015, 11, 304; b) H. Wu, S. Wang, Z. Wang, Y. Zi, Nat. Commun. 2021, 12, 5470; c) W. He, W. Liu, J. Chen, Z. Wang, Y. Liu, X. Pu, H. Yang, Q. Tang, H. Yang, H. Guo, C. Hu, Nat. Commun. 2020, 11, 4277; d) Y. Li, Z. Zhao, L. Liu, L. Zhou, D. Liu, S. Li, S. Chen, Y. Dai, J. Wang, Z. L. Wang, Adv. Energy Mater. 2021, 11, 2100050.
- 17a) C. Rodrigues, D. Nunes, D. Clemente, N. Mathias, J. M. Correia, P. Rosa-Santos, F. Taveira-Pinto, T. Morais, A. Pereira, J. Ventura, Energy Environ. Sci. 2020, 13, 2657; b) Z. L. Wang, T. Jiang, L. Xu, Nano Energy 2017, 39, 9.
- 18a) T. Jiang, Y. Yao, L. Xu, L. Zhang, T. Xiao, Z. L. Wang, Nano Energy 2017, 31, 560; b) T. X. Xiao, X. Liang, T. Jiang, L. Xu, J. J. Shao, J. H. Nie, Y. Bai, W. Zhong, Z. L. Wang, Adv. Funct. Mater. 2018, 28, 1802634.
- 19X. Liang, S. J. Liu, Z. W. Ren, T. Jiang, Z. L. Wang, Adv. Funct. Mater. 2022, 32, 2205313.
- 20a) X. Liang, T. Jiang, G. Liu, Y. Feng, C. Zhang, Z. L. Wang, Energy Environ. Sci. 2020, 13, 277; b) X. Liang, Z. Liu, Y. Feng, J. Han, L. Li, J. An, P. Chen, T. Jiang, Z. L. Wang, Nano Energy 2021, 83, 105836.
- 21a) X. Chen, L. X. Gao, J. F. Chen, S. Lu, H. Zhou, T. T. Wang, A. B. Wang, Z. F. Zhang, S. F. Guo, X. J. Mu, Z. L. Wang, Y. Yang, Nano Energy 2020, 69, 104440; b) S. Li, J. Nie, Y. Shi, X. Tao, F. Wang, J. Tian, S. Lin, X. Chen, Z. L. Wang, Adv. Mater. 2020, 32, 2001307; c) S. Li, Y. Fan, H. Chen, J. Nie, Y. Liang, X. Tao, J. Zhang, X. Chen, E. Fu, Z. L. Wang, Energy Environ. Sci. 2020, 13, 896.
- 22H. Wang, L. Xu, Y. Bai, Z. L. Wang, Nat. Commun. 2020, 11, 4203.
- 23J. An, Z. M. Wang, T. Jiang, X. Liang, Z. L. Wang, Adv. Funct. Mater. 2019, 29, 1904867.
- 24W. Harmon, D. Bamgboje, H. Guo, T. Hu, Z. L. Wang, Nano Energy 2020, 71, 104642.