Fascinating Electrocatalysts with Dispersed Di-Metals in MN3-M′N4 Moiety as Two Active Sites Separately for N2 and CO2 Reduction Reactions and Jointly for CN Coupling and Urea Production
Changyan Zhu
Institute of Functional Material Chemistry, Faculty of Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University, Changchun, 130024 China
Search for more papers by this authorYun Geng
Institute of Functional Material Chemistry, Faculty of Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University, Changchun, 130024 China
Search for more papers by this authorXiaohui Yao
Institute of Functional Material Chemistry, Faculty of Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University, Changchun, 130024 China
Search for more papers by this authorCorresponding Author
Guangshan Zhu
Institute of Functional Material Chemistry, Faculty of Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University, Changchun, 130024 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorZhongmin Su
Institute of Functional Material Chemistry, Faculty of Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University, Changchun, 130024 China
State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130021 China
Search for more papers by this authorCorresponding Author
Min Zhang
Institute of Functional Material Chemistry, Faculty of Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University, Changchun, 130024 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorChangyan Zhu
Institute of Functional Material Chemistry, Faculty of Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University, Changchun, 130024 China
Search for more papers by this authorYun Geng
Institute of Functional Material Chemistry, Faculty of Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University, Changchun, 130024 China
Search for more papers by this authorXiaohui Yao
Institute of Functional Material Chemistry, Faculty of Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University, Changchun, 130024 China
Search for more papers by this authorCorresponding Author
Guangshan Zhu
Institute of Functional Material Chemistry, Faculty of Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University, Changchun, 130024 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorZhongmin Su
Institute of Functional Material Chemistry, Faculty of Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University, Changchun, 130024 China
State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130021 China
Search for more papers by this authorCorresponding Author
Min Zhang
Institute of Functional Material Chemistry, Faculty of Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University, Changchun, 130024 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
The idealized urea electrocatalyst is crucial to boost the CN coupling reaction and simultaneously suppress their isolated reduction process after adsorbing N2 and CO2 molecules. Therefore, the dispersed MN3-M′N4 moiety is investigated systematically, including 26 homonuclear and 650 heteronuclear di-metal systems. After, 205 stable systems are selected using lowest-energy principle and ab initio molecular dynamics simulations. According to three possible pathways, NCON, CO, and OCOH to produce urea, a five-step high-throughput screening method for excellent catalytic activity and a five-aspect high-throughput screening strategy for outstanding catalytic selectivity are proposed, respectively. The potential determined steps and the limiting potential through three pathways are identified. The data indicates both CO pathway and OCOH pathway are more competitive at lower Gibbs free energy. Significantly, the most favorite RuN3-CoN4 combination possesses an extremely low limiting potential of −0.80 V for urea production, meanwhile it exists a strong foundation for experimental preparation. This work not only broadens electrocatalytic potentiality of developing di-metals as two active sites, but also provides a feasible high-throughput screening recipe for urea production.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
smtd202201331-sup-0001-SuppMat.pdf37.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. W. Erisman, M. A. Sutton, J. Galloway, Z. Klimont, W. Winiwarter, Nat. Geosci. 2008, 1, 636.
- 2J. Lim, C. A. Fernández, S. W. Lee, M. C. Hatzell, ACS Energy Lett. 2021, 6, 3676.
- 3Y. Liu, X. Zhao, L. A. Ye, Ind. Eng. Chem. Res. 2016, 55, 8743.
- 4F. Barzagli, F. Mani, M. Peruzzini, Green Chem. 2011, 13, 1267.
- 5M. Kitano, Y. Inoue, Y. Yamazaki, F. Hayashi, S. Kanbara, S. Matsuishi, T. Yokoyama, S. W. Kim, M. Hara, H. Hosono, Nat. Chem. 2012, 4, 934.
- 6S. Giddey, S. P. S. Badwal, A. Kulkarni, Int. J. Hydrogen Energy 2013, 38, 14576.
- 7M. Pérez-Fortes, A. Bocin-Dumitriu, E. Tzimas, Energy Proc. 2014, 63, 7968.
- 8M. Kitano, S. Kanbara, Y. Inoue, N. Kuganathan, P. V. Sushko, T. Yokoyama, M. Hara, H. Hosono, Nat. Commun. 2015, 6, 6731.
- 9D. B. Kayan, F. Köleli, Appl. Catal. B 2016, 181, 88.
- 10C. Chen, N. He, S. Wang, Small Sci. 2021, 1, 2100070.
- 11Z. Tao, C. L. Rooney, Y. Liang, H. Wang, J. Am. Chem. Soc. 2021, 143, 19630.
- 12C. Chen, X. Zhu, X. Wen, Y. Zhou, L. Zhou, H. Li, L. Tao, Q. Li, S. Du, T. Liu, D. Yan, C. Xie, Y. Zou, Y. Wang, R. Chen, J. Huo, Y. Li, J. Cheng, H. Su, X. Zhao, W. Cheng, Q. Liu, H. Lin, J. Luo, J. Chen, M. Dong, K. Cheng, C. Li, S. Wang, Nat. Chem. 2020, 12, 717.
- 13M. Yuan, J. Chen, Y. Bai, Z. Liu, J. Zhang, T. Zhao, Q. Wang, S. Li, H. He, G. Zhang, Angew. Chem., Int. Ed. 2021, 60, 10910.
- 14M. Yuan, J. Chen, Y. Bai, Z. Liu, J. Zhang, T. Zhao, Q. Shi, S. Li, X. Wang, G. Zhang, Chem. Sci. 2021, 12, 6048.
- 15M. Yuan, J. Chen, Y. Xu, R. Liu, T. Zhao, J. Zhang, Z. Ren, Z. Liu, C. Streb, H. He, C. Yang, S. Zhang, G. Zhang, Energy Environ. Sci. 2021, 14, 6605.
- 16M. Yuan, J. Chen, H. Zhang, Q. Li, L. Zhou, C. Yang, R. Liu, Z. Liu, S. Zhang, G. Zhang, Energy Environ. Sci. 2022, 15, 2084.
- 17X. Zhu, X. Zhou, Y. Jing, Y. Li, Nat. Commun. 2021, 12, 4080.
- 18C. Zhu, C. Wen, M. Wang, M. Zhang, Y. Geng, Z. Su, Chem. Sci. 2022, 13, 1342.
- 19C. Zhu, M. Wang, C. Wen, M. Zhang, Y. Geng, G. Zhu, Z. Su, Adv. Sci. 2022, 9, 2105697.
- 20X. Liu, Y. Jiao, Y. Zheng, M. Jaroniec, S. Qiao, Nat. Commun. 2022, 13, 5471.
- 21Y. Feng, H. Yang, Y. Zhang, X. Huang, L. Li, T. Cheng, Q. Shao, Nano Lett. 2020, 20, 8282.
- 22N. Meng, Y. Huang, Y. Liu, Y. Yu, B. Zhang, Cell Rep. Phys. Sci. 2021, 2, 100378.
- 23N. Cao, Y. Quan, A. Guan, C. Yang, Y. Ji, L. Zhang, G. Zheng, J. Colloid Interface Sci. 2020, 577, 109.
- 24C. Lv, L. Zhong, H. Liu, Z. Fang, C. Yan, M. Chen, Y. Kong, C. Lee, D. Liu, S. Li, J. Liu, L. Song, G. Chen, Q. Yan, G. Yu, Nat. Sustainability 2021, 4, 868.
- 25X. Zhang, X. Zhu, S. Bo, C. Chen, M. Qiu, X. Wei, N. He, C. Xie, W. Chen, J. Zheng, P. Chen, S. Jiang, Y. Li, Q. Liu, S. Wang, Nat. Commun. 2022, 13, 5337.
- 26X. Wei, X. Wen, Y. Liu, C. Chen, C. Xie, D. Wang, M. Qiu, N. He, P. Zhou, W. Chen, J. Cheng, H. Lin, J. Jia, X. Z. Fu, S. Wang, J. Am. Chem. Soc. 2022, 144, 11530.
- 27Z. Li, H. He, H. Cao, S. Sun, W. Diao, D. Gao, P. Lu, S. Zhang, Z. Guo, M. Li, R. Liu, D. Ren, C. Liu, Y. Zhang, Z. Yang, J. Jiang, G. Zhang, Appl. Catal., B 2019, 240, 112.
- 28Z. Zhu, H. Yin, Y. Wang, C. H. Chuang, L. Xing, M. Dong, Y. R. Lu, G. Casillas-Garcia, Y. Zheng, S. Chen, Y. Dou, P. Liu, Q. Cheng, H. Zhao, Adv. Mater. 2020, 32, 2004670.
- 29X. Yang, T. Tat, A. Libanori, J. Cheng, X. Xuan, N. Liu, X. Yang, J. Zhou, A. Nashalian, J. Chen, Mater. Today 2021, 45, 54.
- 30H. Li, Y. Wen, M. Jiang, Y. Yao, H. Zhou, Z. Huang, J. Li, S. Jiao, Y. Kuang, S. Luo, Adv. Funct. Mater. 2021, 31, 2011289.
- 31Q. Zhang, P. Kumar, X. Zhu, R. Daiyan, N. M. Bedford, K. H. Wu, Z. Han, T. Zhang, R. Amal, X. Lu, Adv. Energy Mater. 2021, 11, 2100303.
- 32M. Tong, H. Sun, Y. Xie, Y. Wang, Y. Yang, C. Tian, L. Wang, H. Fu, Angew. Chem., Int. Ed. 2021, 60, 14005.
- 33X. Zhao, F. Wang, X. P. Kong, R. Fang, Y. Li, J. Am. Chem. Soc. 2021, 143, 16068.
- 34C. Rong, X. Shen, Y. Wang, L. Thomsen, T. Zhao, Y. Li, X. Lu, R. Amal, C. Zhao, Adv. Mater. 2022, 34, 2110103.
- 35J. Wang, Z. Huang, W. Liu, C. Chang, H. Tang, Z. Li, W. Chen, C. Jia, T. Yao, S. Wei, Y. Wu, Y. Li, J. Am. Chem. Soc. 2017, 139, 17281.
- 36Z. Lu, B. Wang, Y. Hu, W. Liu, Y. Zhao, R. Yang, Z. Li, J. Luo, B. Chi, Z. Jiang, M. Li, S. Mu, S. Liao, J. Zhang, X. Sun, Angew. Chem., Int. Ed. 2019, 58, 2622.
- 37M. Ma, A. Kumar, D. Wang, Y. Wang, Y. Jia, Y. Zhang, G. Zhang, Z. Yan, X. Sun, Appl. Catal., B 2020, 274, 119091.
- 38W. Ren, X. Tan, W. Yang, C. Jia, S. Xu, K. Wang, S. C. Smith, C. Zhao, Angew. Chem., Int. Ed. 2019, 58, 6972.
- 39Z. Yu, C. Si, A. P. LaGrow, Z. Tai, W. A. Caliebe, A. Tayal, M. J. Sampaio, J. P. S. Sousa, I. Amorim, A. Araujo, L. Meng, J. L. Faria, J. Xu, B. Li, L. Liu, ACS Catal. 2022, 12, 9397.
- 40L. Han, P. Ou, W. Liu, X. Wang, H. T. Wang, R. Zhang, C. W. Pao, X. Liu, W. F. Pong, J. Song, Z. Zhuang, M. V. Mirkin, J. Luo, H. L. Xin, Sci. Adv. 2022, 8, eabm3779.
- 41Y. Xiong, S. Wang, W. Chen, J. Zhang, Q. Li, H. S. Hu, L. Zheng, W. Yan, L. Gu, D. Wang, Y. Li, Small 2021, 17, 2006834.
- 42C. Ling, Y. Ouyang, Q. Li, X. Bai, X. Mao, A. Du, J. Wang, Small Methods 2019, 3, 1800376.
- 43X. Guo, S. Lin, J. Gu, S. Zhang, Z. Chen, S. Huang, ACS Catal. 2019, 9, 11042.
- 44H. Y. Zhuo, X. Zhang, J. X. Liang, Q. Yu, H. Xiao, J. Li, Chem. Rev. 2020, 120, 12315.
- 45C. Ling, Q. Li, A. Du, J. Wang, ACS Appl. Mater. Interfaces 2018, 10, 36866.
- 46L. Han, H. Cheng, W. Liu, H. Li, P. Ou, R. Lin, H. T. Wang, C. W. Pao, A. R. Head, C. H. Wang, X. Tong, C. J. Sun, W. F. Pong, J. Luo, J. C. Zheng, H. L. Xin, Nat. Mater. 2022, 21, 681.
- 47Z. Geng, Y. Liu, X. Kong, P. Li, K. Li, Z. Liu, J. Du, M. Shu, R. Si, J. Zeng, Adv. Mater. 2018, 30, 1803498.
- 48H. Yang, Y. Liu, Y. Luo, S. Lu, B. Su, J. Ma, ACS Sustainable Chem. Eng. 2020, 8, 12809.
- 49W. Zang, T. Sun, T. Yang, S. Xi, M. Waqar, Z. Kou, Z. Lyu, Y. P. Feng, J. Wang, S. J. Pennycook, Adv. Mater. 2021, 33, 2003846.
- 50H. Zhou, Y. Zhao, J. Gan, J. Xu, Y. Wang, H. Lv, S. Fang, Z. Wang, Z. Deng, X. Wang, P. Liu, W. Guo, B. Mao, H. Wang, T. Yao, X. Hong, S. Wei, X. Duan, J. Luo, Y. Wu, J. Am. Chem. Soc. 2020, 142, 12643.
- 51G. Zhang, Y. Jia, C. Zhang, X. Xiong, K. Sun, R. Chen, W. Chen, Y. Kuang, L. Zheng, H. Tang, W. Liu, J. Liu, X. Sun, W. F. Lin, H. Dai, Energy Environ. Sci. 2019, 12, 1317.
- 52J. Wang, R. You, C. Zhao, W. Zhang, W. Liu, X. P. Fu, Y. Li, F. Zhou, X. Zheng, Q. Xu, T. Yao, C. J. Jia, Y. G. Wang, W. Huang, Y. Wu, ACS Catal. 2020, 10, 2754.
- 53S. Yang, X. Xue, J. Zhang, X. Liu, C. Dai, Q. Xu, J. Lian, Y. Zhao, G. Li, H. Li, S. Yuan, Chem. Eng. J. 2020, 395, 125064.
- 54Y. Li, Q. Zhang, C. Li, H. N. Fan, W. B. Luo, H. K. Liu, S. X. Dou, J. Mater. Chem. A 2019, 7, 22242.
- 55H. Cheng, X. Wu, M. Feng, X. Li, G. Lei, Z. Fan, D. P. an, F. Cui, G. He, ACS Catal. 2021, 11, 12673.
- 56A. Han, X. Wang, K. Tang, Z. Zhang, C. Ye, K. Kong, H. Hu, L. Zheng, P. Jiang, C. Zhao, Q. Zhang, D. Wang, Y. Li, Angew. Chem., Int. Ed. 2021, 60, 19262.
- 57M. A. Hunter, J. M. T. A. Fischer, Q. Yuan, M. Hankel, D. J. Searles, ACS Catal. 2019, 9, 7660.
- 58H. Yang, S. Hung, S. Liu, K. Yuan, S. Miao, L. Zhang, X. Huang, H. Wang, W. Cai, R. Chen, J. Gao, X. Yang, W. Chen, Y. Huang, H. Chen, C. Li, T. Zhang, B. Liu, Nat. Energy 2018, 3, 140.
- 59P. Hou, W. Song, X. Wang, Z. Hu, P. Kang, Small 2020, 16, 2001896.
- 60T. Huan, N. Ranjbar, G. Rousse, M. Sougrati, A. Zitolo, V. Mougel, F. Jaouen, M. Fontecave, ACS Catal. 2017, 7, 1520.
- 61J. Zhang, W. Cai, F. Hu, H. Yang, B. Liu, Chem. Sci. 2021, 12, 6800.
- 62J. Liang, Q. Liu, A. Alshehri, X. Sun, Nano Res. Energy 2022, 1, e9120010.
- 63Y. Gu, B. Xi, W. Tian, H. Zhang, Q. Fu, S. Xiong, Adv. Mater. 2021, 33, 2100429.
- 64R. Dronskowski, P. E. Bloechl, J. Phys. Chem. 1993, 97, 8617.
- 65V. L. Deringer, A. L. T. chougréeff, R. Dronskowski, J. Phys. Chem. A 2011, 115, 5461.
- 66S. Maintz, V. L. Deringer, A. L. Tchougréeff, R. Dronskowski, J. Comput. Chem. 2013, 34, 2557.
- 67S. Maintz, V. L. Deringer, J. Comput. Chem. 2016, 37, 1030.
- 68J. Gu, Y. Peng, T. Zhou, J. Ma, H. Pang, Y. Yamauchi, Nano Res. Energy 2022, 1, e9120009.
- 69C. Du, P. Li, Z. Zhuang, Z. Fang, S. He, L. Feng, W. Chen, Coordin. Chem. Rev. 2022, 466, 214604.
- 70X. Zhi, A. Vasileff, Y. Zheng, Y. Jiao, S. Qiao, Energy Environ. Sci. 2021, 14, 3912.
- 71Y. Zhao, Z. Pei, X. F. Lu, D. Luan, X. Wang, X. W. Lou, Chem. Catal. 2022, 2, 1480.
- 72X. Guo, J. Gu, S. Lin, S. Zhang, Z. Chen, S. Huang, J. Am. Chem. Soc. 2020, 142, 5709.
- 73D. Kim, J. Shi, Y. Liu, J. Am. Chem. Soc. 2018, 140, 9127.
- 74D. Singh, J. Ashkenazi, Phys. Rev. B 1992, 46, 11570.
- 75B. Barbiellini, M. J. Puska, T. Korhonen, A. Harju, T. Torsti, R. M. Nieminen, Phys. Rev. B 1996, 53, 16201.
- 76J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- 77G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.
- 78S. Grimme, J. Comput. Chem. 2006, 27, 1787.
- 79S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- 80M. Fishman, H. L. Zhuang, K. Mathew, W. Dirschka, R. G. Hennig, Phys. Rev. B 2013, 87, 245402.
- 81K. Mathew, R. Sundararaman, K. Letchworth-Weaver, T. A. Arias, R. G. Hennig, J. Chem. Phys. 2014, 140, 084106.
- 82G. J. Martyna, M. L. Klein, M. Tuckerman, J. Chem. Phys. 1992, 97, 2635.
- 83J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, H. Jonsson, J. Phys. Chem. B 2004, 108, 17886.
- 84J. Rossmeisl, A. Logadottir, J. K. Nørskov, Chem. Phys. 2005, 319, 178.
- 85G. M. ills, H. Jónsson, Phys. Rev. Lett. 1994, 72, 1124.