Reduced VOC Deficit of Mixed Lead–Tin Perovskite Solar Cells via Strain-Releasing and Synergistic Passivation Additives
Wentao Chen
School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 China
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192 China
Search for more papers by this authorYuqiong Huang
School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 China
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
Search for more papers by this authorHong Cui
School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 China
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192 China
Search for more papers by this authorSihan Li
School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 China
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192 China
Search for more papers by this authorYaqing Feng
School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 China
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192 China
Search for more papers by this authorCorresponding Author
Bao Zhang
School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 China
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192 China
E-mail: [email protected]
Search for more papers by this authorWentao Chen
School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 China
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192 China
Search for more papers by this authorYuqiong Huang
School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 China
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
Search for more papers by this authorHong Cui
School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 China
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192 China
Search for more papers by this authorSihan Li
School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 China
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192 China
Search for more papers by this authorYaqing Feng
School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 China
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192 China
Search for more papers by this authorCorresponding Author
Bao Zhang
School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 China
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192 China
E-mail: [email protected]
Search for more papers by this authorAbstract
The power conversion efficiency (PCE) of tin–lead perovskite solar cells (PSCs) is normally lower than that of Pb cells, mainly due to greater open circuit voltage (VOC) losses. Herein, the additive 2,6-diaminopyridine (TNPD) is designed to anchor on the surface of the perovskite precursor colloid as nucleating agent to modulate the growth of Pb–Sn perovskites. It is observed that the TNPD not only effectively induces crystal growth during the nucleation stage, remaining on the crystal surface and ultimately passivating the resulting perovskite films, but also releases the micro-strain generated during the film growth. Furthermore, TNPD could lower the defect density (Sn4+ amount) by screening the perovskite against oxygen and by synergistically bonding with undercoordinated Sn/Pb on the surface. Finally, a high VOC of 0.85 V is obtained, corresponding to a voltage deficit of 0.41 V using a perovskite absorber with a bandgap of 1.26 eV, and a high PCE (20.35%) reported so far for Pb–Sn PSCs. Moreover, the stability of the TNPD-incorporated device is significantly improved, and the PCE maintains 50% of the initial value after about 1000 h storage in glovebox without encapsulated, in comparison to that of the control device (about 700 h, maintaining 30% of the initial value).
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
smtd202201276-sup-0001-SuppMat.pdf2.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Rong, Y. Hu, A. Mei, H. Tan, M. I. Saidaminov, S. I. Seok, M. D. Mcgehee, E. H. Sargent, H. Han, Science 2018, 21, eaat8235.
- 2N. Li, X. Niu, Q. Chen, H. Zhou, Chem. Soc. Rev. 2020, 49, 8235.
- 3T. Leijtens, R. Prasanna, A. Gold-Parker, M. F. Toney, M. D. Mcgehee, ACS Energy Lett. 2017, 2, 2159.
- 4F. Hao, C. C. Stoumpos, R. P. H. Chang, M. G. Kanatzidis, J. Am. Chem. Soc. 2014, 136, 8094.
- 5W. Liao, D. Zhao, Y. Yu, N. Shrestha, K. Ghimire, C. R. Grice, C. Wang, Y. Xiao, A. J. Cimaroli, R. J. Ellingson, N. J. Podraza, K. Zhu, R.-G. Xiong, Y. Yan, J. Am. Chem. Soc. 2016, 138, 12360.
- 6K. Chen, P. Wu, W. Yang, R. Su, D. Luo, X. Yang, Y. Tu, R. Zhu, Q. Gong, Nano Energy 2018, 49, 411.
- 7W. Ke, C. C. Stoumpos, M. G. Kanatzidis, Adv. Mater. 2019, 31, 1803230.
- 8J. Cao, F. Yan, Energy Environ. Sci. 2021, 14, 1286.
- 9J. Euvrard, Y. Yan, D. B. Mitzi, Nat. Rev. Mater 2021, 6, 531.
- 10L. Lanzetta, T. Webb, N. Zibouche, X. Liang, D. Ding, G. Min, R. J. E. Westbrook, B. Gaggio, T. J. Macdonald, M. S. Islam, S. A. Haque, Nat. Commun. 2021, 12, 2853.
- 11M. I. Saidaminov, I. Spanopoulos, J. Abed, W. Ke, J. Wicks, M. G. Kanatzidis, E. H. Sargent, ACS Energy Lett. 2020, 5, 1153.
- 12J. Pascual, G. Nasti, M. H. Aldamasy, J. A. Smith, M. Flatken, N. Phung, D. Di Girolamo, S.-H. Turren-Cruz, M. Li, A. Dallmann, R. Avolio, A. Abate, Mater. Adv. 2020, 1, 1066.
- 13N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.-A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herz, H. J. Snaith, Energy Environ. Sci. 2014, 7, 3061.
- 14F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang, M. G. Kanatzidis, Nat. Photonics 2014, 8, 489.
- 15W. Ke, M. G. Kanatzidis, Nat. Commun. 2019, 10, 965.
- 16M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, Science 2012, 338, 643.
- 17W. Li, J. Li, J. Li, J. Fan, Y. Mai, L. Wang, J. Mater. Chem. A 2016, 4, 17104.
- 18T.-B. Song, T. Yokoyama, C. C. Stoumpos, J. Logsdon, D. H. Cao, M. R. Wasielewski, S. Aramaki, M. G. Kanatzidis, J. Am. Chem. Soc. 2017, 139, 836.
- 19R. Lin, K. Xiao, Z. Qin, Q. Han, C. Zhang, M. Wei, M. I. Saidaminov, Y. Gao, J. Xu, M. Xiao, A. Li, J. Zhu, E. H. Sargent, H. Tan, Nat. Energy 2019, 4, 864.
- 20T. Nakamura, S. Yakumaru, M. A. Truong, K. Kim, J. Liu, S. Hu, K. Otsuka, R. Hashimoto, R. Murdey, T. Sasamori, H. D. Kim, H. Ohkita, T. Handa, Y. Kanemitsu, A. Wakamiya, Nat. Commun. 2020, 11, 3008.
- 21C. Wang, Y. Zhang, F. Gu, Z. Zhao, H. Li, H. Jiang, Z. Bian, Z. Liu, Matter 2021, 4, 709.
- 22Q. Tai, X. Guo, G. Tang, P. You, T.-W. Ng, D. Shen, J. Cao, C.-K. Liu, N. Wang, Y. Zhu, C.-S. Lee, F. Yan, Angew. Chem., Int. Ed. 2019, 58, 806.
- 23T. Wang, Q. Tai, X. Guo, J. Cao, C.-K. Liu, N. Wang, D. Shen, Y. Zhu, C.-S. Lee, F. Yan, ACS Energy Lett. 2020, 5, 1741.
- 24X. Xu, C.-C. Chueh, Z. Yang, A. Rajagopal, J. Xu, S. B. Jo, A. K.-Y. Jen, Nano Energy 2017, 34, 392.
- 25K. Xiao, R. Lin, Q. Han, Y. Hou, Z. Qin, H. T. Nguyen, J. Wen, M. Wei, V. Yeddu, M. I. Saidaminov, Y. Gao, X. Luo, Y. Wang, H. Gao, C. Zhang, J. Xu, J. Zhu, E. H. Sargent, H. Tan, Nat. Energy 2020, 5, 870.
- 26J. Kim, G. Kim, H. Back, J. Kong, I-W. Hwang, T. K. Kim, S. Kwon, J-H. Lee, J. Lee, K. Yu, C-L. Lee, H. Kang, K. Lee, Adv. Mater. 2016, 28, 3159.
- 27G. Kapil, T. Bessho, T. Maekawa, A. K. Baranwal, Y. Zhang, M. A. Kamarudin, D. Hirotani, Q. Shen, H. Segawa, S. Hayase, Adv. Energy Mater. 2021, 11, 2101069.
- 28H. Cheng, C. Liu, J. Zhuang, J. Cao, T. Wang, W.-Y. Wong, F. Yan, Adv. Funct. Mater. 2022, 32, 2204880.
- 29G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A. Priimagi, G. Resnati, G. Terraneo, Chem. Rev. 2016, 116, 2478.
- 30Y. Chen, H. Yu, L. Zhang, H. Yang, Y. Lu, Chem. Commun. 2014, 50, 9647.
- 31K. Zhu, S. Cong, Z. Lu, Y. Lou, L. He, J. Li, J. Ding, N. Yuang, M. H. Rümmeli, G. Zou, J. Power Sources 2019, 428, 82.
- 32M.-J. Choi, Y.-S. Lee, I. H. Cho, S.-S. Kim, D.-H. Kim, S.-N. Kwon, S.-I. Na, Nano Energy 2020, 71, 104639.
- 33R. Wang, J. Xue, K.-L. Wang, Z.-K. Wang, Y. Luo, D. Fenning, G. Xu, S. Nuryyeva, T. Huang, Y. Zhao, J. L. Yang, J. Zhu, M. Wang, S. Tan, I. Yavuz, K. N. Houk, Y. Yang, Science 2019, 366, 1509.
- 34W. Ke, M. G. Kanatzidis, Nat. Commun. 2019, 10, 965.
- 35I. Chung, J.-H. Song, J. Im, J. Androulakis, C. D. Malliakas, H. Li, A. J. Freeman, J. T. Kenney, M. G. Kanatzidis, J. Am. Chem. Soc. 2012, 134, 8579.
- 36M. Kunitski, N. Eicke, P. Huber, J. Köhler, S. Zeller, J. Voigtsberger, N. Schlott, K. Henrichs, H. Sann, F. Trinter, L. P. H. Schmidt, A. Kalinin, M. S. Schöffler, T. Jahnke, M. Lein, R. Dörner, Nat. Commun. 2019, 10, 1.
- 37J. Cao, H. L. Loi, Y. Xu, X. Guo, N. Wang, C. K. Liu, T. Wang, H. Cheng, Y. Zhu, M. Li, W. Wong, F. Yan, Adv. Mater. 2022, 34, 2107729.
- 38S. Shao, J. Dong, H. Duim, G. H. Ten Brink, G. R. Blake, G. Portale, M. A. Loi, Nano Energy 2019, 60, 810.
- 39D. H. Cao, C. C. Stoumpos, T. Yokoyama, J. L. Logsdon, T.-B. Song, O. K. Farha, M. R. Wasielewski, J. T. Hupp, M. G. Kanatzidis, ACS Energy Lett. 2017, 2, 982.
- 40Y. Liao, H. Liu, W. Zhou, D. Yang, Y. Shang, Z. Shi, B. Li, X. Jiang, L. Zhang, L. N. Quan, R. Quintero-Bermudez, B. R. Sutherland, Q. Mi, E. H. Sargent, Z. Ning, J. Am. Chem. Soc. 2017, 139, 6693.
- 41D. Gebauer, M. Kellermeier, J. D. Gale, L. Bergström, H. Cölfen, Chem. Soc. Rev. 2014, 43, 2348.
- 42D. Gebauer, H. Cölfen, Nano Today 2011, 6, 564.
- 43M. Jung, S.-G. Ji, G. Kim, S. I. Seok, Chem. Soc. Rev. 2019, 48, 2011.
- 44C. Liu, Y.-B. Cheng, Z. Ge, Chem. Soc. Rev. 2020, 49, 1653.
- 45H. M. Gwisu Kim, K. S. Lee, Science 2020, 370, 108.
- 46D. Lewis, H. Pearson, Nature 1962, 196, 162.
- 47V. Mote, Y. Purushotham, B. Dole, J. Theor. Appl. Phys. 2102, 6, 6.
10.1186/2251-7235-6-6 Google Scholar
- 48Q. Jiang, J. Tong, Y. Xian, R. A. Kerner, S. P. Dunfield, C. Xiao, R. A. Scheidt, D. Kuciauskas, X. Wang, M. P. Hautzinger, R. Tirawat, M. C. Beard, D. P. Fenning, J. J. Berry, B. W. Larson, Y. Yan, K. Zhu, Nature 2022, 611, 278.
- 49J. Tan, W. Yang, H. Lee, J. Park, K. Kim, O. S. Hutter, L. J. Phillips, S. Shim, J. Yun, Y. Park, J. Lee, J. D. Major, J. Moon, Appl. Catal., B 2021, 286, 119890.
- 50J. Werner, T. Moot, T. A. Gossett, I. E. Gould, A. F. Palmstrom, E. J. Wolf, C. C. Boyd, M. F. A. M. Van Hest, J. M. Luther, J. J. Berry, M. D. Mcgehee, ACS Energy Lett. 2020, 5, 1215.
- 51X. Meng, Y. Li, Y. Qu, H. Chen, N. Jiang, M. Li, D.-J. Xue, J.-S. Hu, H. Huang, S. Yang, Angew. Chem., Int. Ed. 2020, 60, 3693.
- 52A. R. Pascoe, Q. Gu, M. U. Rothmann, W. Li, Y. Zhang, A. D. Scully, X. Lin, L. Spiccia, U. Bach, Y.-B. Cheng, Sci. China Mater. 2017, 60, 617.
- 53J. H. Heo, D. H. Song, S. H. Im, Adv. Mater. 2014, 26, 8179.
- 54A. K. Dhara, S. Maity, B. B. Dhar, Org. Lett. 2021, 23, 3269.
- 55B.-B. Yu, L. Xu, M. Liao, Y. Wu, F. Liu, Z. He, J. Ding, W. Chen, B. Tu, Y. Lin, Y. Zhu, X. Zhang, W. Yao, A. B. Djurišić, J.-S. Hu, Z. He, Sol. RRL 2019, 3, 1800290.
- 56Q. Jiang, Z. Chu, P. Wang, X. Yang, H. Liu, Y. Wang, Z. Yin, J. Wu, X. Zhang, J. You, Adv. Mater. 2017, 29, 1703852.
- 57G. Kapil, T. Bessho, C. H. Ng, K. Hamada, M. Pandey, M. A. Kamarudin, D. Hirotani, T. Kinoshita, T. Minemoto, Q. Shen, T. Toyoda, T. N. Murakami, H. Segawa, S. Hayase, ACS Energy Lett. 2019, 4, 1991.
- 58C. Xu, Y. Yao, G. Wang, J. Dong, G. Xu, Y. Zhong, D. Lu, X. Zhao, D. Liu, G. Zhou, X. Yang, P. Li, L. Chen, Q. Song, Chem. Eng. J. 2022, 428, 132074.
- 59Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin, J. You, Nat. Photonics 2019, 13, 460.
- 60D. Pitarch-Tena, T. T. Ngo, M. Vallés-Pelarda, T. Pauporté, I. Mora-Seró, ACS Energy Lett. 2018, 3, 1044.
- 61I. Zarazua, G. Han, P. P. Boix, S. Mhaisalkar, F. Fabregat-Santiago, I. Mora-Seró, J. Bisquert, G. Garcia-Belmonte, J. Phys. Chem. Lett. 2016, 7, 5105.
- 62T. Wu, Y. Wang, X. Li, Y. Wu, X. Meng, D. Cui, X. Yang, L. Han, Adv. Energy Mater. 2019, 9, 1803766.
- 63Q. Xiong, L. Yang, Q. Zhou, T. Wu, C. Mai, Z. Wang, S. Wu, X. Li, P. Gao, ACS Appl. Mater. Interfaces 2020, 12, 46306.
- 64N. Ghimire, R. S. Bobba, A. Gurung, K. M. Reza, M. A. R. Laskar, B. S. Lamsal, K. Emshadi, R. Pathak, M. A. Afroz, A. H. Chowdhury, K. Chen, B. Bahrami, S. I. Rahman, J. Pokharel, A. Baniya, M. T. Rahman, Y. Zhou, Q. Qiao, ACS Appl. Energy Mater. 2021, 4, 1731.